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and potential applications
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Frequent use of hormones and drugs may be associated with side-effects.

Recent studies have shown that probiotics have effects on the prevention and

treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had

regulatory effects on intestinal microbiota, host epithelial cells, immune cells,

cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try)

metabolism, antioxidant enzymes, and expression of related genes, and

exhibits antibacterial and anti-inflammatory effects, leading to alleviation of

disease symptoms. Although the specific composition of the cell-free

supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal

models has drawn increased attention to its potential use. This review

summarizes the effects of L. reuteri on intestinal flora and immune regulation,

and discusses the feasibility of its application in atopic dermatitis (AD), asthma,

necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention

and treatment of immune-related diseases.

KEYWORDS

Limosilactobacillus reuteri, immune system disease, atopic dermatitis (AD), asthma,
systemic lupus erythematosus (SLE), rheumatoid arthritis, multiple sclerosis, necrotizing
enterocolitis (NEC)
1 Introduction

In recent years, with the development of the concepts of gut-lung axis, gut-brain axis,

gut-liver axis, and gut-skin axis, increased attention has been paid to the impact of

intestinal flora on health. In particular, the discovery that probiotics can reshape gut flora

(1) has triggered a wave of research focused on the gut microbiome. Probiotics colonize and

regulate the unbalanced microflora of the host, directly acting on host epithelial and

immune cells and regulating the epithelial or immune cells of specific tissues of the host

through their metabolites in situ or by entering the circulation and remodeling the
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microenvironment of the lesion site (2). Unlike drugs, probiotics are

associated with less side-effects, such as intestinal ecological

disorder and immune dysfunction (3). Various forms of probiotic

preparations are available. The employment of heat-killed

probiotics, cell-free supernatant (CFS) of probiotics and specific

components of purification, or genetic engineering editing of

probiotics to obtain certain specific functions and avoid side-

effects is an emerging trend in this field (4).

Lactobacillus is one of the earliest discovered probiotics (5) and

is most commonly used in foods and dietary supplements (6). It can

be isolated from a wide range of sources, including human or

animal milk, feces, and fermented foods (7–9). Lactobacillus

acidophilus, Lactobacillus rhamnosus (L. rhamnosus), and

Limosilactobacillus reuteri (L. reuteri) are currently the most

widely used probiotics (10–12). Probiotics have a wide range of

functions, including resistance to pathogenic microorganisms,

regulation of immunity, regulation of metabolism such as

cholesterol and sugar metabolism, antioxidant, and antitumor

effects. Notably, the probiotic-related protective mechanisms of

lactobacilli on the host are strain-dependent (13).

L. reuteri is one of the most studied strains of the Lactobacillus

genus. Its morphology and growth are affected by the host genotype

and environmental factors, such as temperature, pH, oxygen

concentration, and host dietary components. Genetic and

environmental differences lead to phenotypic heterogeneity of L.

reuteri strains (14, 15). L. reuterimay play a regulatory role in several

systemic diseases through a very intricate immunoregulatory

mechanism. First, it colonizes and survives in the gastrointestinal

tract by utilizing its acid-base resistant and adhesion properties.

Subsequently, it interacts with host intestinal epithelial cells (IECs),

by regulating the intestinal flora, to enhance intestinal mucosal

barrier, regulate immune cells, inflammatory factors, chemokines,

and antibodies, produce indole derivative from tryptophan, secrete

exopolysaccharide (EPS) and other bioactive factors, enhance tight

junctions (TJs), regulate gene expression, improve antioxidant

activity, and further regulate the immune system of the host. As

such, L. reuteri has the potential to be used as a new therapeutic or

adjunctive therapy in atopic or autoimmune diseases. Previous

reviews have focused on the use of L. reuteri in gastrointestinal

diseases such as colic and diarrhea. Based on its potential role in

immune regulation, this review summarizes the immunomodulatory

molecular mechanisms of different strains of L. reuteri. We searched

for studies on the application of L. reuteri in disease and found that it

was applied to diseases or disease models in multiple systems, with

digestive and immune-related diseases being the most common. In

these two categories of diseases, the existing reviews and meta-

analyses focused on a single L. reuteri strain or a single digestive

system disease, and no review summarized the application of different

strains of L. reuteri in immune-related diseases. This review

summarized the studies on the application of L. reuteri in immune-

related diseases. We explored the application value of L. reuteri in

these immune-related diseases such as atopic dermatitis, asthma,

necrotizing enterocolitis, systemic lupus erythematosus, rheumatoid

arthritis, and multiple sclerosis.
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2 Immune regulation mechanism

For probiotics to exert their beneficial effects on the host

organism, some basic characteristics should be fulfilled. First, they

need to be resistant to acid and bile salts to survive the passage

through the gastrointestinal tract. Second, they should be able to

adhere to mucus and IECs to colonize the host. Only after these

conditions are met can probiotics exert their anti-infection, anti-

inflammatory, and antioxidant properties in the host (16).
2.1 Changes in microbial structure,
metabolites, and expression of
functional genes

2.1.1 Regulation of microorganisms
The homeostasis of intestinal microorganisms is essential for

effective host intestinal barrier function and normal immune

responses (17). An imbalance in intestinal microecology decreases

the immune tolerance of the host to allergens and causes

autoimmune reactions (18). For example, L. reuteri is known to

adhere to and aggregate mucus and IECs, hindering the interaction of

pathogens with the host, thus constituting a defensive barrier against

invading pathogens (19). L. reuteri has also been reported to enrich

intestinal microbial diversity and regulate the relative abundance of

adminis, mainly manifesting as an increase in the numbers of

beneficial genera and decrease in those of harmful genera. For

example, studies have shown that following the administration of

L. reuteri, the numbers of Lactobacillus and Bifidobacterium were

increased (20, 21), whereas those of Escherichia coli (E.coli),

Staphylococcus, and Ruminococcus were decreased (22, 23), thus

balancing intestinal microecology (Figure 1A). However, no

consensus has been reached regarding its influence on microbial

composition by heredity, environment, and strain specificity. The

antibacterial effect of L. reuteri is achieved through the production of

organic acids, which regulate the local pH and facilitate the growth of

beneficial bacteria (24), or through the production of peroxides

(PEROXs) and reuterin that inhibit the growth of pathogens (25)

(Figure 1A). Among these antimicrobial metabolites, reuterin is of the

most significance. It metabolizes glycerol to hydroxypropionaldehyde

(3-HPA) (26). It’s the chemical nature of reuterin. This process is

mediated by glycerol dehydratase and assisted by coenzyme B12 (27,

28). 3-HPA is further converted into acrolein, which exerts cytotoxic

effects and inhibits the growth of gram-negative bacilli. This may be

the mechanism by which reuterin exerts its antibacterial effect (29,

30). L. reuteri has also been shown to inhibit the formation of

bacterial biofilms (Figure 1A). In addition, L. reuteri inhibited the

gene expression of invading bacteria, thus limiting their growth and

virulence (25). In particular, L. reuteri activated the Wnt/b-catenin
pathway, leading to increased expression of antimicrobial peptides

(AMPs), thus inhibiting the colonization of C. rodentium (31)

(Figure 1A). However, some studies have reported that L. reuteri

had no effect on the abundance of E. coli and Group B Streptococcus

(GBS) strains (32, 33).
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2.1.2 Metabolites
Tryptophan catabolites: Normal tryptophan (Try) metabolism

is an important process in maintaining intestinal mucosal

homeostasis. Notably, L. reuteri increased the levels of amino acid

metabolites by regulating the urea, tricarboxylic acid, and

methionine cycles, thus enhancing Try metabolism and in turn

the anti-inflammatory ability in mice (23). Studies have shown that

L. reuturi metabolizes dietary Try to produce indole-3-aldehyde

(IAld), which acts as a ligand for the activation of the aryl

hydrocarbon receptor (AHR) on the surface of CD4+ T-cells (34),

and induces group 3 innate lymphoid cells (ILC3s) to produce

interleukin-22 (IL-22) (35). This process enhanced host resistance

to Candida albicans (C. albicans) and protected against mucosal

inflammation (34) (Figure 1B). Similarly, through the activation of

Try metabolism and production of indoles that activate AHR and

downregulate the transcription factor Thpok, L. reuteri promoted

the differentiation of CD4+ T-cells into CD4+CD8aa+ double-

positive intraepithelial lymphocytes (DP IELs) (36) (Figure 1B).

Therefore, promoting Try catabolism might be one of the

mechanisms by which L.reuturi exerts its anti-inflammatory and

anti-infection properties.
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Cell-free supernatant (CFS): The L. reuturi AN417 strain has no

antibacterial action against oral pathogens, whereas its

carbohydrate and fatty acid metabolites in CFS do (37)

(Figure 1B). Similarly, L. reuturi I5007 exerts regulatory effects on

inflammatory factors and TJs (38). Binding of EPS, a possible CFS

component, to pattern recognition receptors (PRRs) (39), was

suggested to downregulate inflammatory factors and upregulate

TJs, such as claudin-1, occludin, and zonula occludens 1 (ZO-1),

thus enhancing intestinal barrier function (38) (Figure 1B). Of note,

the CFS of L.reuteri RC-14 alone or combined with

Lacticaseibacillus rhamnosus GR-1 (LGR-1) was not effective

against vulvovaginal candidiasis (VVC), whereas their combined

CFS inhibited the secretion of IL-8 and chemotactic factor

interferon-inducible protein-10 (IP-10) from human vaginal

epithelial VK2/E6E7 cells. Eventually, it was shown to inhibit the

colonization and growth of C. albicans and occurrence of VVC (40)

(Figure 1B). The CSF of L. reuteri includes some of its metabolites

and secreted bioactive factors, such as short-chain fatty acids

(SCFAs), organic acids (such as LAC), hydrogen peroxide,

bacteriocin compounds (such as reuterin), and EPS (Figure 1B).

Several recent studies have demonstrated the effectiveness of CFS.
A B

C

FIGURE 1

Changes in microbial structure, metabolites, and expression of functional genes. (A) L. reuteri regulated the relative abundance of microorganisms. The
antibacterial effect of L. reuteri is achieved through the production of LAC, which regulates the local pH and facilitates the growth of beneficial bacteria,
or through the production of PEROXs and bacteriocins. L. reuteri activated the Wnt/b-catenin pathway, leading to increased expression of AMPs, thus
inhibiting the colonization of C. rodentium. E.coli, Escherichia coli; LAC, lactic acid; PEROXs, peroxides; AMPs, antimicrobial peptides. (B) L. reuteri
increased the levels of amino acid metabolites by regulating the urea, TCA, and methionine cycles, thus enhancing Try metabolism and in turn the anti-
inflammatory ability. L. reuteri metabolized dietary Try to produce IAld, which acts as a ligand for the activation of the AHR on the surface of CD4+ T-
cells, and induces ILC3s to produce IL-22. This process enhanced host resistance to C. albicans and protected against mucosal inflammation. Similarly,
through the activation of Try metabolism and production of ILA that activate AHR and downregulate Thpok, L. reuteri promoted the differentiation of
CD4+ T-cells into CD4+CD8aa+ DP IELs. The CSF of L. reuteri includes some of its metabolites and secreted bioactive factors, such as SCFAs, organic
acids (such as LAC), hydrogen peroxide, bacteriocin compounds (such as reuterin), and EPS. The carbohydrate and fatty acid metabolites in CFS of L.
reuturi AN417 has antibacterial action against oral pathogens. Binding of EPS of L. reuteri I5007 to PRRs was suggested to downregulate inflammatory
factors and upregulate claudin-1, occludin, and ZO-1, thus enhancing intestinal barrier function. The CFS of L. reuteri RC-14 combined with that of LGR-
1 inhibited the secretion of IL-8 and IP-10. It was shown to inhibit the colonization and growth of C. albicans and occurrence of VVC. TCA, tricarboxylic
acid; Try, tryptophan; IAld, indole-3-aldehyde; AHR, aryl hydrocarbon receptor; ILC3s, group 3 innate lymphoid cells; IL-22, interleukin-22; C. albicans,
Candida albicans; ILA, indole lactic acid; DP IELs, double-positive intraepithelial lymphocytes; CFS, Cell-free supernatant; EPS, exopolysaccharide; PRRs,
pattern recognition receptors; ZO-1, zonula occludens 1; LGR-1, Lacticaseibacillus rhamnosus GR-1; IP-10, interferon-inducible protein-10; VVC,
vulvovaginal candidiasis; SCFAs, short-chain fatty acids; LAC, lactic acid. (C) L. reuteri 22 promoted the mRNA expression of LZM and enhanced
congenital immunity of intestinal mucosa. L. reuteri DSM 17938 increased the expression of skin epidermal AQP3 and lamininA/B, which strengthens skin
barrier function. It also upregulated the expression of genes of opioid peptide, OPRK1, and CD200, which are related to stress and pain in the brain and
are involved in anti-inflammatory signaling pathways. L. reuteri -LFCA improved oxidative stress-related indicators by activating Nrf2/HO-1 signaling
pathway. The level of MDA was reduced, whereas those of enzymes, such as SOD, GSH-Px, and catalase were increased. L. reuteri DSM 17938 had
similar effects. LZM, lysozyme; AQP3, aquaporin 3; kappa-opioid receptor 1, OPRK1; Nrf2/HO-1, nuclear factor E2-related factor 2/Heme oxygenase1;
MDA, malondialdehyde; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase.
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The specific active components and their mechanisms of action can

be further explored in the future, potentially enabling major

discoveries in the field of microbiome research.

2.1.3 Regulation of gene expression
A study found that L. reuteri 22 greatly promoted the mRNA

expression of lysozyme (LZM) and enhanced congenital immunity

of intestinal mucosa (41) (Figure 1C). In addition, a number of

differentially expressed microRNAs (miRNAs) were detected in

newborn piglets that were orally administered L. reuteri I5007.

These miRNAs were involved in the phosphatidylinositol-3-

hydroxykinase (PI3K)-protein kinaseB (AKT) and mitogen-

activated protein kinase (MAPK) pathways, playing an important

role in the probiotic-host crosstalk. In addition, the expression of

ssc-miR-196a/-196b-5p was significantly increased, downregulating

the mRNA expression of IL-1b and TNF-a in IPEC-J2 cells (42)

(Figure 2G). L. reuteri DSM 17938 was reported to significantly
Frontiers in Immunology 04
increase the expression of skin epidermal aquaporin 3 (AQP3) and

lamininA/B, which strengthens skin barrier function (43)

(Figure 1C), and upregulated the expression of genes of opioid

peptide, kappa-opioid receptor 1 (OPRK1), and CD200, which are

related to stress and pain in the brain and are involved in anti-

inflammatory signaling pathways (44) (Figure 1C). In vitro

experiments have shown that oral administration of L. reuteri

-LFCA improved oxidative stress-related indicators by activating

the nuclear factor E2-related factor 2 (Nrf2)/Heme oxygenase1

(HO-1) signaling pathway (45, 46). Moreover, the level of

malondialdehyde (MDA) was reduced, whereas those of enzymes,

such as superoxide dismutase (SOD), glutathione peroxidase (GSH-

Px), and catalase were increased (46) (Figure 1C), thus enhancing

the antioxidant capacity of cells. Similar effects of L. reuteri DSM

17938 (Figure 1C)—used as a new treatment for reducing intestinal

inflammation and repairing intestinal damage—have been

reported (47).
A

B

D

E
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C

FIGURE 2

Regulation of the differentiation and function of immune cells. (A) T-cells. L. reuteri 17938 and L. reuteri Fn041 stimulated the production of Foxp3+ Treg
cells. Similarly, h-L.reuteri increased the numbers of Treg cells in the spleen and joint drainage lymph nodes. L. reuteri has a structure similar to that of the
mouse MOG. It cooperated with erysipelas bacteria to activate CD4+ T-cells, which have the ability to attack MOG, leading to worsening of EAE. h-L.
reuteri, heat-killed L. reuteri; MOG, myelin oligodendrocyte glycoprotein; EAE, experimental autoimmune encephalomyelitis. (B) Dendritic cells. L. reuturi
ATTC PTA 6475 and its secreted factors induced the expression of CD83 and CD86 on the surface of iDCs and promoted the production of IL-10 by DCs.
L. reuteri CO21 inhibited the expression of CD40 and MHCII on the surface of DCs and the activation and proliferation of CD4 + T-cells induced by DCs,
thus achieving an anti-inflammatory effect. H-L.reuteri increased the numbers of CD103 + DCs, resulting in a reduction of the level of inflammation and
improvement of disease severity. iDCs, immature dendritic cells; IL-10, interleukin-10; DCs, dendritic cells. (C) ILC3s. L. reuteri ATCC PTA 6475 reduced the
number of ILC3s. L. reuteri CF48-3A promoted the production of ILC3s and induced the differentiation of IgA+ B–cells, leading to the generation of IgA.
However, whether the IgA play a protective role against infection and enhances mucosal immunity or induces autoimmune effects remains unclear. ILC3s,
Group 3 innate lymphoid cells. (D) Macrophages and NEs. L. reuteri increased production of NO by activated and increased numbers of macrophages,
enhancing their phagocytotic ability. Meanwhile, L. reuteri inhibited the inflammation induced by bacterial infection by regulating the levels of NO.
However, L. reuteri reduced the GBS-induced proliferation of NEs. NEs, neutrophils; NO, nitric oxide; GBS, Group B Streptococcus. (E) TLR2. L. reuteri
17938 is a bacterium that following recognition by TLR2 mediates anti-inflammatory immune response in the following ways: First, it led to an increase in
the number of Foxp3+ Treg cells and a decrease in that of CD4+CD44+ Teffs. Second, it induced the generation and activation of CD103+ DCs, which
were characterized by the expression of co-stimulative markers CD80 and CD86. This DC-induced production of Foxp3+ Treg cells is crucial for
maintaining intestinal immune tolerance. Finally, activation of TLR2 mediated the decrease in the levels of IL-1b and IFN-g.TLR2, Toll-like receptor 2; Teffs,
effector T-cells; IFN-g, interferon-g. (F) Promotion of synthesis and secretion of Ig. L. reuteri FN041 increased the synthesis of sIgA. L. reuteri CRL1324 not
only stimulated the production of IgA, but also that of IgG, which is related to anti-infection functions. An increase in the numbers of lactobacilli and
enterococci caused by administration of mixed strains of L. reuteri were correlated with increased levels of IgE. Ig, Immunoglobulin; sIgA, secreted IgA.
(G) Regulation of cytokines for improving intestinal mucosal barrier structure and permeability.
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2.2 Protection of the integrity of intestinal
mucosal barrier

The integrated intestinal barrier structure and its normal

function constitute a meaningful immune defense barrier against

pathogenic microbes. In addition to the above pathways, L. reuteri

can also directly enhance intestinal barrier function by acting on

intestinal stem cells (ISCs) and TJs of IECs. L. reuteri is known to

promote the development and differentiation of IECs, maintaining

the integrity of intestinal mucosa. For example, administration of

both L. reuteri D8 and L. reuteri 22 increased the number of ISCs,

Lgr5+ cells, and promoted the proliferation of IECs by activating the

Wnt/b-catenin pathway (31, 41). Of note, L. reuteri 22 inhibited

Notch signaling pathway and induced the differentiation of ISCs

into mucin-2 (Muc-2)-highly expressing goblet cells (41), whereas

L. reuteri D8 induced the differentiation of ISCs into Paneth cells

(31) (Figure 3), both of which are significant components of the

intestinal barrier. Similarly, L. reuteri I5007 upregulated the

expression of TJs, such as occludin, claudin, and ZO-1 of small

IECs in piglets, thereby enhancing the intestinal mucosal barrier

(38) (Figure 1B). Both L. reuteri DSM17938 and 1563F upregulated

the expression of E-cadherin and TJs in infected IECs and

competitively inhibited bacterial binding to TJs, thus inhibiting

the increased infection-induced intestinal permeability and

protecting intestinal barrier function (48) (Figure 3). Meanwhile,
Frontiers in Immunology 05
use of peptidoglycans on skin epidermis activated TLR2, resulting

in the increased expression of TJs and enhanced skin barrier

function (38, 39). However, whether peptidoglycans of probiotics

can enhance the intestinal mucosal barrier through a similar

mechanism of action remains to be clarified. Current animal

studies have shown that the upregulation of the expression of TJs

in intestinal epithelium can be achieved by inhibiting the TLR4/

myeloid differentiation factor 88 (MyD88) signal transduction

pathway and downregulating the myosin light chain kinase

(MLCK) pathway (46) (Figure 3).
2.3 Regulation of the differentiation and
function of immune cells

2.3.1 T-cells
Various studies have reported that L. reuteri not only promoted

the increase of DPIELs in mice (36) but also induced the generation

of regulatory T (Treg)-cells. For example, L. reuteri 17938 and L.

reuteri Fn041 stimulated the production of Foxp3+ Treg cells in the

intestinal mucosa (49–51) (Figure 2A), the reduction of crying in

infants with colic was thought to be the therapeutic effect of L.

reuteri 17938 (52). Similarly, heat-killed L. reuteri (h-L.reuteri) also

induced the generation and peripheral migration of Treg cells and

increased the numbers of a4b7+ Treg cells in the spleen and joint
FIGURE 3

Protection of the integrity of intestinal mucosal barrier. Administration of both L. reuteri D8 and L. reuteri 22 increased the number of ISCs, Lgr5+

cells, and promoted the proliferation of IECs by activating the Wnt/b-catenin pathway. L. reuteri 22 inhibited Notch signaling pathway and induced
the differentiation of ISCs into Muc-2-highly expressing goblet cells, whereas L. reuteri D8 induced the differentiation of ISCs into Paneth cells. Both
L. reuteri DSM17938 and 1563F upregulated the expression of E-cadherin and TJs in infected IECs and competitively inhibited bacterial binding to
TJs, thus inhibiting the increased infection-induced intestinal permeability and protecting intestinal barrier function. Upregulation of the expression
of TJs in intestinal epithelium can be achieved by inhibiting the TLR4/MyD88 signal transduction pathway and downregulating the MLCK pathway.
ISCs, intestinal stem cells; mucin-2, Muc-2; IECs, intestinal epithelial cells; TJs, tight junctions; TLR4, Toll-like receptor 4; MyD88, myeloid
differentiation factor 88; MLCK, myosin light chain kinase.
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drainage lymph nodes (Figure 2A). Notably, despite the

immunomodulatory effects reported on mice pretreated with h-

L.reuteri, no increase in the number of a4b7+ Tregs in the spleen or

symptom improvement was observed in mice with collagen-

induced-arthritis (CIA) (53). This might have implications for the

timing of clinical application of probiotics in the future. One study

hypothesized that miRNAs in breast milk may be involved in

immune regulation, based on which to explore whether L. reuteri

has a role in miRNA expression. The results showed that miRNA

did affect the number of resting Treg cells and activated Treg cells in

infants, but L. reuteri did not affect miRNAs expression (54).

Studies have shown that prenatal supplementation with L. reuteri

induced hypomethylation of CD4+T-cells DNA. Compared to the

placebo group, the probiotic group differentially methylated probes

(DMPs) were further mapped to genes. Genes associated with

chemotaxis, PI3K-Akt, MAPK and TGF-b signalling are activated,

which are associated with immune activation and maturation of the

baby at birth, and the occurrence of atopic disease (55).

Administration of L.reuteri ATCC 55730 didn’t change the CD3+

CD8+ T lymphocytes in the human ileum, but significantly

increased the CD4+ T lymphocytes (56). Studies have shown that

the activation of T cells promoted the growth of intestinal epithelial

cells in the lamina propria of human small intestine (57). The

mechanism of L. reuteri maintaining host intestinal health may be

related to this. A previous animal study was consistent with this.

Poultry colonized with Salmonella enterica serovar Typhimurium

showed a significant decrease in colonization after administration of

L. reuteri (poultry strain), and an increase in CD4/CD8 ratio was

observed in the ileum of poultry. However, in the rat model of

enterocolitis, L. reuteri increased both CD4+ cells and CD8+ cells.

This is related to the decrease of intestinal mucosal barrier

permeability and the enhancement of barrier function. Notably, L.

reuteri has a structure similar to that of the mouse myelin

oligodendrocyte glycoprotein (MOG) and was shown to

cooperate with erysipelas bacteria to activate small intestine CD4+

T-cells, which have the ability to attack MOG, leading to worsening

of experimental autoimmune encephalomyelitis (EAE)

(58) (Figure 2A).
2.3.2 Dendritic cells
Dendritic cells (DCs) are essential for the balance between

autoimmunity and immune tolerance. In vitro experiments have

shown that L. reuturi ATTC PTA 6475 and its secreted factors

induced the expression of DCs maturation markers CD83 and

CD86 on the surface of mouse bone marrow-derived immature

dendritic cells (iDCs) and promoted the production of anti-

inflammatory cytokine IL-10 by DCs. Mouse colonic organoids

and animal models of acute colitis showed similar results (59)

(Figure 2B). Similarly, L. reuteri induced the increased expression of

IL-10 by DCs in BWF1 mice in vitro experiments (60). In general, L.

reuteri and its metabolites have been shown to promote the

maturation of DCs and enable their differentiation into anti-

inflammatory phenotypes, which is of great significance for

maintaining intestinal immune homeostasis. L. reuteri ATCC

PTA 4659 also had a protective effect on colitis mice, but it
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significantly inhibited the growth of CD11b+CD11c+ DCs. It

secreted the main inflammatory cytokines of colitis and made the

distribution of immune cells tend to that of the control group (61).

CD103 (alpha integrin) expressing CD11c+ DCs are essential for

maintaining intestinal immune tolerance in mice (62). The lack of

these DCs led to a decline in the number of Tregs and is prone to

colitis (56). For mice not given L. reuteri 17938, about 20-30% of

intestinal DCs expressed CD103, whether or not during NEC. L.

reuteri 17938 significantly increased gut CD103+ DCs in WT mice,

but this change was not observed in TLR2-/- mice. Thus, L. reuteri

DSM 17938 stimulated expansion of CD103+ DCs dependent on

TLR2, thereby promoting immune tolerance (49). Oral

administration of L. reuteri CO21 (L. reuteri LFCA) in newborn

piglets infected with enterotoxigenic Escherichia coli (ETEC) not

only inhibited the expression of CD40 and MHCII on the surface of

DCs, but also the activation and proliferation of CD4+ T-cells

induced by monocyte-derived dendritic cells (moDCs), thus

achieving an anti-inflammatory effect (46) (Figure 2B). Moreover,

h-L.reuteri was also shown to exert a regulatory effect on DCs by

inducing an increase in the numbers of CD103+ DCs in mesenteric

lymph nodes (MLNs) in mice, resulting in a reduction of the level of

inflammation and improvement of disease severity (59) (Figure 2B).

Type I interferon (IFN-I) has been known as the important link of

SLE (63). Plasmacytoid dendritic cells (pDCs) produced a large

amount of IFN-I (64, 65). pDC has become a key therapeutic target

for SLE. Together with autoantibodies, pDCs promoted the

production of immunocomplexes. These immunocomplexes were

deposited in the kidneys and blood vessels, causing lupus nephritis,

vasculitis, and atherosclerosis (66). Increased lupus symptoms and

expression of IFN-I genes in spleen and ileum were observed after

colonization of L. reuteri in 6-week-old GF B6 mice. This may be

the result of increased pDCs in the spleen and mesenteric lymph

nodes (67).

2.3.3 Group 3 innate lymphoid cell
ILC3s are mainly found in the intestinal mucosa. Although they

can inhibit inflammation, protect intestinal barrier function, and

maintain intestinal homeostasis (68, 69), they might also drive

proinflammatory responses and cause immunopathological damage

under conditions of local biological disorders (70). Of note,

administration of L. reuteri ATCC PTA 6475 was reported to

reduce the number of ILC3s (Figure 2C), thus reducing tissue

damage; however, the specific molecular mechanism remains

unexplored (71). Another study found that L. reuteri CF48-3A

promoted the production of ILC3s in neonatal mice, and induced

the differentiation of IgA+ B–cells, eventually leading to the

generation of IgA (72). However, whether the IgA of neonatal

mice play a protective role against infection and enhances

mucosal immunity or induces autoimmune effects remains

unclear (Figure 2C).

2.3.4 Macrophages and neutrophils
Administration of L. reuteri led to an increased production of

nitric oxide (NO) by activated and increased numbers of

macrophages, enhancing their phagocytotic ability for pathogenic
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bacteria. Meanwhile, L. reuteri inhibited the inflammation induced

by bacterial infection by regulating the levels of NO (73)

(Figure 2D). However, L. reuteri reduced the GBS-induced

proliferation of NEs (74) (Figure 2D).

2.3.5 Toll-like receptor 2
Toll-like receptor 2 (TLR2) recognizes the cell wall of gram-

positive bacteria (75). L. reuteri 17938 is a gram-positive bacterium

that following recognition by TLR2 mediates anti-inflammatory

immune response in the following ways: First, it was demonstrated

to lead to an increase in the number of Foxp3+ Treg cells and a

decrease in that of CD4+CD44+ effector T-cells (Teffs) (49)

(Figure 2E). The expression of CD44 on CD4+ T-cells is known

to promote the occurrence of type 1 helper (Th1) responses and the

generation of inflammatory cytokines (76). Accordingly, the

activation and chemotaxis of lymphocytes to inflammatory sites

was also found to be closely related to its upregulated expression

(77, 78). Second, it induced the generation and activation of

CD103+ DCs, which were characterized by the expression of co-

stimulative markers CD80 and CD86 (49) that regulate the activity

of T-cells (79). Of note, this DC-induced production of Foxp3+ Treg

cells is crucial for maintaining intestinal immune tolerance (62)

(Figure 2E). Finally, activation of TLR2 was shown to mediate the

decrease in the levels of proinflammatory cytokines IL-1b and

interferon-g (IFN-g) in mice (49) (Figure 2E). Notably, although

L. reuteri 17938 has been confirmed to regulate immunity

through TLR2-mediated pathways in animal models (49), oral

administration of L. reuteri had no effects on the in vivo levels of

TLR2 in infants with colic (52). Hence, there is still a long way to go

before the mechanism of the interaction between L. reuturi and

TLR2 can be transformed from the laboratory to the clinic.
2.4 Regulation of cytokines for
improving intestinal mucosal barrier
structure and permeability

Several studies have demonstrated that L. reuteri inhibited the

production of proinflammatory cytokines, such as tumor necrosis

factor-a (TNF-a), IL-1b, IL-6, and IL-8 (42, 43, 48, 59, 71), and that
of CXCL10, CXCL1, and CCL2 chemokines, which recruit

inflammatory cells (80), while it promoted the production of the

anti-inflammatory cytokine IL-10 (53, 59), thus stabilizing the

expression of TJs and E-cadherin and reinforcing the intestinal

barrier function. Likewise, L. reuteri LFCA inhibited the expression

of nuclear factor kappa-B (NF-kB)-mediated p65 and

phosphorylation of inhibitor of NF-kB(IkB)a(IkBa) and nuclear

transfer of p65, thereby inhibiting the transcriptional activation of

inflammatory genes, as well as suppressing the production of

proinflammatory factors, such as TNF-a, IL-6, and IL-1b (46)

(Figure 2G). A significant decrease in the expression of LPS-

induced TNF-a and IL-6 was observed in IPEC-J2 porcine IECs

treated with L. reuteri I5007. However, this inhibition was

dependent on TLR4 and related to LPS and time (38)

(Figure 2G). Recent studies have shown that L. reuteri regulates

the levels of TNF-a in a strain-dependent manner. For instance, L.
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reuteri ATCC PTA 6475 inhibited the activation of human

monocyte MAPK, which in turn inhibited the activation of

transcription factor c-Jun and AP-1, ultimately restraining the

production of TNF-a (81) (Figure 2G). Similarly, L. reuteri

BM36301 showed a gender preference in regulating the levels of

TNF-a, as it significantly reduced the expression of TNF-a in

female mice compared with that in male mice (82) (Figure 2G).

Moreover, L.reuteri 5289 inhibited the generation of DCs and

associated production of IL-12, whereas induced the expression of

IL-10, which is associated with prolonged phosphorylation of

extracellular regulated protein kinases1/2 (ERK1/2) in the MAPK

pathway (83) (Figure 2G). A decrease in the levels of TGF-b in

breast milk was observed after mothers in late pregnancy were

provided a diet supplemented with L.reuteri. Notably, this might

have been related to the decrease in the prevalence of allergy and

IgE-related eczema in newborns in the first 2 years of their life (84)

(Figure 2G). An engineered L. reuteri strain induced the production

of IL-22 in the intestinal tract, hence mediating the expression of

lectin regenerating islet-derived 3 gamma (REG3G), which, in turn,

inhibited bacterial translocation, playing a protective role in liver

(85) (Figure 2G). Notably, gene editing of L. reuteri strains

produced better immune protection, providing novel ideas for the

application of L. reuteri. Finally, L. reuteri has also been reported to

regulate the expression of chemokines. For instance, CCL2 is known

to be involved in pathological damages induced by stressor-

enhanced infective colitis. Administration of L. reutri inhibited

the expression of CCL2, thus reducing the infiltration of

monocytes/macrophages in colon and secretion of inflammation-

related factors (86).
2.5 Promotion of synthesis and secretion
of immunoglobulin

Administration of L reuteri CF48-3A—derived from human

milk—to pregnant C57BL/6(B6) mice induced the synthesis of IgA

in mice offspring during their early life through vertical

transmission from the vagina and milk. The mechanism by which

this intestinal symbiotic microorganisms of maternal origin

increased the synthesis of IgA in pups remains unclear; however,

researchers found that both T-cells and RORgt+ ILC3s were

dispensable in newborn mice (72). Of note, this maternal

microbe-promoted synthesized IgA did not provide protection

against intestinal infection by common pathogens such as

Salmonella typhimurium (S. typhimurium) or enterohemorrhagic

E.coli (72), and its function in pups remains unknown. Another

study found that administration of L. reuteri FN041 increased the

synthesis of secreted IgA (sIgA) in the ileum of mice (Figure 2F),

especially in female mice (87). Vaccinating newborn mice with L.

reuteri CRL1324 prior to GBS infection not only stimulated the

production of IgA, but also that of IgG, which is related to anti-

infection functions (74) (Figure 2F). Changes in microbial structure

caused by L. reuteri have also been associated with the production of

Abs. For example, an increase in the numbers of lactobacilli and

enterococci caused by administration of mixed strains of L. reuteri

were correlated with increased levels of IgE (88) (Figure 2F). The
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function of the Abs that promoted by L. reuteri is uncertain. Further

studies are needed to determine whether it functions as a protective

or an autoimmune factor. Sialylation of IgE is a key pathogenic link

in allergies (89). Removal of sialic acid from IgE or de-sialic acid

glycoprotein reduced allergic reactions (90). Whether L. reuteri can

regulate glycosylation of IgE to improve allergy is the next

research direction.
3 Applications of L. reuteri in the
prevention and treatment of immune-
related diseases

3.1 Atopic dermatitis

Atopic dermatitis (AD) is associated with an impaired skin

barrier, skin microbial dysbiosis, and immune dysfunction (91–96).

Skin microorganisms have an important role in the pathogenesis of

AD, with increased colonization by Staphylococcus aureus

(S.aureus) triggering inflammation or worsening AD (91, 97–

100). The pathogenesis of AD has not only been related to skin

microorganisms, but also to gut microbiota. Notably, the gut

microbiome of infants with AD and their mothers differed

markedly from that of healthy mothers and infants in the

abundance of specific taxa (101). Accordingly, administration of

oral probiotics in infants and children over 1 year old of age

exhibited clear efficacy in reducing the incidence of AD and

improving AD symptoms (102). Similarly, oral administration of

probiotics in young patients with moderate AD significantly

decreased the Scoring Atopic Dermatitis Index (SCORAD) values,

an index assessing the severity of AD, and led to a reduction in the

use of topical glucocorticoids (GCs) (103). Animal studies have

shown that administration of probiotics to AD mice resulted in a

decrease in the levels of the intestinal inflammatory marker fecal

calprotectin (FC), reduced the levels of inflammatory factors, and

ameliorated the incidence of skin lesions (104). These findings were

also confirmed in clinical studies. After administration of a

probiotic mixture containing Lactobacillus and Bifidobacterium

for 4 weeks in probiotics group, both the SCORAD index and FC

levels were decreased, accompanied by a decrease in the number of

microbial species (105). Although a causal relationship between

alterations in the composition of the gut microbiome and AD

symptoms is not clear, the modulation of gut microbiota by oral or

topical skin probiotics was shown to ameliorate AD, thus providing

new ideas for probiotic intervention strategies against AD in

the future.

The role of L. reuteri in the treatment of AD has only been

recently noted. In an animal experiment, L. reuteri Fn041 derived

from breast milk was found to ameliorate symptoms, such as skin

swelling and inflammatory cell infiltration, in AD mice by

modulating the ratio of Th1 and Th2 secreted cytokines,

promoting the generation of Treg cells, and modulating the

intestinal flora to increase the abundance of Lactobacillus and

Akkermansia (50) (Table 1). Another study found that its anti-

inflammatory effect was achieved through the activation of retinol
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metabolism and PPAR signaling pathways in Peyer’s patches.

Notably, they argued that administration of late gestational dams

with L. reuteri Fn041 and continued supplementation until weaning

had better effect than that of supplementation after weaning

(Table 1). This result emphasized the role of L. reuteri

transmitted vertically by the mother in shaping the intestinal

microbiota and strengthening the intestinal barrier of the

offspring (107). AD is well-known to be an inflammation-induced

disorder mainly mediated by Th2 cells (121, 122). Thymus stromal

lymphopoietin (TSLP) is an important cytokine that mediates Th2

inflammatory responses (123, 124). L. reuteri DYNDL22M62

inhibited the production of TSLP and caused a decrease in the

levels of Th2 cytokines (108), thus hindering the occurrence and

progression of inflammation in AD. These studies showed that L.

reuteri DYNDL22M62 metabolized Try into indoles, resulting in an

increase in the proportion of intestinal flora that produce indole

LAC and increasing the expression of AHR (108), thereby

inhibiting intestinal inflammation and regulating immunity (125,

126). Furthermore, L. reuteri DYNDL22M62 reduced the

production of IgE and improved AD symptoms (108) (Table 1).

Oral administration of L. reuteri ATCC 55730 to children with AD

for 8 weeks reduced the production of IL-4 and regulated the levels

of cytokines in intestinal and extraintestinal tissues (106) (Table 1).

However, the study did not clarify the correlation between the

changes in the levels of related cytokines caused by L. reuteri ATCC

55730 and the improvement in AD symptoms. Administration of

an oral probiotic mixture significantly reduced SCORAD index and

steroid use in children with moderate AD (103). Besides, studies

have found that continuous administration of an oral probiotic

mixture in pregnant and lactating mothers and infants significantly

reduced the incidence of AD in children (127). These findings

suggest that the use of L. reuteri mixed with other strains might

greater benefit patients with AD. However, currently, no study has

compared the efficacy of mixed probiotics containing L. reuteri to

that of single probiotics in the prevention and treatment of AD. The

current view is that L. reuteri can improve AD, but only few

randomized controlled trials (RCTs) have been performed in

animals and the clinic, to date. In the future, large sample RCTs

should be conducted on the basis of selecting appropriate strains. As

the onset of AD is also correlated to imbalances in skin

microecology (91, 128), regulating skin microecology might also

be a way to prevent and treat AD. However, to date, no study has

explored the application of L. reuteri as a human skin probiotic. In

the future, the use of emollient cream or slow-release agent

containing single or mixed probiotics might be a potential way to

optimize the application of probiotics for the prevention and

treatment of AD.
3.2 Asthma

Asthma is a chronic airway inflammatory disease (129). Both

Th2 cytokine-mediated inflammation and increased levels of IgE

are important links in the pathogenesis of asthma (130, 131).

Notably, seasonal exacerbation of asthma has been reported to be
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TABLE 1 Applications of L. reuteri in diseases.

Disease Strains Participants Intervention Mechanism of action Outcomes Ref

AD ATCC 55730 Children aged
4–10 years (n
= 26)

108 CFU/d, 8
weeks

Increased levels of IFN-g and reduced levels of IL-4
in exhaled breath condensate

No changes in SCORD Index
mean values

(106)

Fn041 7-week-old
BALB/c mice
during late
gestation and
lactation (n =
6), 3-week-old
infant BALB/c
mice (n = 8)

109 CFU/d from
1 week before
parturition to
weaning

Reduced numbers of mast cells and eosinophils;
increased numbers of Tregs cells; increased levels of
IL-12; reduced levels of IL-4; reduced levels of IgE;
enrichment of Lactobacillus and Akkermansia species;
reduced numbers of Alloprevotella spp; increased
numbers of Limosilactobacillus reuteri in breast milk

Reduced redness, swelling,
and relative thickness of ear;
decreased incidence of AD

(50)

7-week-old
BALB/c mice
during late
gestation and
lactation,
infant (n = 6),
3-week-old
infant BALB/c
mice (n = 12)

Maternal mice
with 109 CFU/d
from day 3
before
parturition to
weaning, infant
mice with 109

CFU/d for 10
days

Reduced levels of plasma OVA-specific IgG1/IgG2a;
reduced levels of IL-4, IL-33, and TSLP; increased
numbers of splenic Tregs; decreased numbers of
eosinophils and mast cells; increased numbers of
Limosilactobacillus, Faecalibacterium, and
Akkermansia; activation of retinol metabolism and
PPAR signaling pathway; downregulation of
pathways associated with asthma, autoimmune
thyroid disease, and SLE.

Reduced swelling and relative
thickness of ear; increased
height of ileal villi and ratio
of ileal villus height to crypt
depth; decreased incidence of
AD

(107)

DYNDL22M62 6-week-old
C57bl/6 mice
(n = 6)

109 CFU/d, 3
weeks

Reduced levels of IgE; reduced expression of TSLP,
IL-4, and IL-5; reduced Th2 type responses; increase
generation of ILA and IPA; increased numbers of
Romboutsia and Ruminococcaceae NK4A214; reduced
numbers of Dubosiella

Elevated tryptophan
metabolism; reduced ear
swelling and skin lesions;
alleviated AD

(108)

Asthma Five-strain
mixture
including
CCFM1072
(FSDLZ13M6),
DYNDL2-16,
CCFM1040
(YN-DL-1-3),
GDLZ10-5, and
FZJTZ20M3

4–5-week-old
female BALB/c
mice (n = 6–7)

(109 CFU)/
strain/d, 1 week
before the first
sensitization
until the end of
the experiment,
6 weeks

Reduced levels of total IgE and HDM-IgG1; reduced
levels of IL-5 and IL-13; enrichment of Lactobacillus
and Enterococcus species; regulation of gut microbial
function toward butyrate generation

Decreased airway
inflammation score;
decreased incidence of
asthma

(88)

ATCC 23272 8–9-week-old
male BALB/c
and Toll-like
receptor 9–
deficient mice

109 CFU/d, 9
days

Reduced numbers of eosinophils; reduce levels of
TNF, MCP-1, IL-5, and IL-13; dependence on TLR9
and increased activity of indoleamine 2,3-dioxygenase

Reduced airway
hyperresponsiveness;
attenuated asthmatic
response

(109)

DSM 17938 Children and
adolescents
aged 6–17
years with mild
to moderate
asthma (n =
14)

108 CFU/d, 60
days

/ Increased ACT scores;
reduced number of
symptoms and wheezing

(110)

Adults with
mild allergic
asthma, 8
women and 7
men , mean
age of 27 years
(n = 15)

109 CFU/d, 4
weeks, followed
by a second
treatment period
with 109 CFU/d
for 4 weeks and
then by 4–5
weeks of
washout period

/ No differences in airway
nerves, smooth muscle,
sputum inflammatory cells,
skin responses, or T-cell
responses

(111)

CCFM1040 Adults aged
18–60 years
with at least a
1-year-long
history of

109 CFU/d , 8
weeks

Decreased numbers of Proteobacteria phylum,
Escherichia_Shigella genus, and Intestinibacter order;
promotion of mineral absorption and apoptosis;
inhibition of novobiocin biosynthesis; altered
biological pathways associated with the metabolism

Decreased TSS, RQLQ, 3
nasal scores in TSS (nasal
congestion,watery eyes, and
rhinorrhea) and mean
sneezing score; improved

(112)

(Continued)
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TABLE 1 Continued

Disease Strains Participants Intervention Mechanism of action Outcomes Ref

rhinitis or
asthma or both
(n = 4)

of carbohydrates, energy, lipids, cofactors, and
vitamins, xenobiotic biodegradation and metabolism,
and immune system

sleep and non-nose/eye
symptoms; increased ACT
score; enhanced control in
patients with asthma

NEC DSM 17938 5-day-old
newborn
C57BL/6J
(WT) mice
and B6.129-
TLR2tm1kir/J
(TLR2-/-) mice

NEC-induced
+LR 17938-fed
(WT: n = 21;
TLR2-/-: n = 12),
106 CFU/g body/
d/pup, 4 d

Reduced numbers of activated effector CD4+ T-cells;
increased numbers of Foxp3+ Tregs; activated
tolerogenic DCs by TLR2; decreased levels of IL-1b
and IFN-g

Decreased incidence and
severity of NEC

(49)

Preterm
infants of ≤32
weeks
gestational age
and birth
weight ≤1500 g
(n = 400)

108 CFU/d, from
first feeding to
discharge

/ No effect in incidence and
mortality of NEC; reduced
frequency of proven sepsis,
rates of feeding intolerance,
and duration of hospital stay

(113)

Infant
Sprague-
Dawley rats

NEC+17938 (n
= 38), NEC
+4659 (n = 36),
formula+17938
(n = 22),
formula+4659 (n
= 17), 106 CFU/
g body/d, 3 days

Downregulated levels of TLR1, TLR4, IL-1b, IL-6,
TNF-a, and nfrkb; upregulated levels of IL-10 and
Nfkbib; inhibited MAPK8IP3; inhibited LPS-induced
IkB phosphorylation

Increased survival rate;
decreased incidence and
severity of NEC

(114)

ATCC PTA
4659

Downregulated levels of TLR1, TLR4, IL-1b, IL-6,
TNF-a, and nfrkb; upregulated levels of IL-10 and
Nfkbib; inhibited production of myelin and
lymphocyte protein; inhibited LPS-induced IkB
phosphorylation

SLE Unknown TLR7.1 Tg
C57BL/6 mice
and WT B6
mice

Gavage daily Translocation depending on TLR7; increased
abundance and translocation of Lactobacilli; increased
numbers of pDCs and leukocyte recruitment;
increased IFN signaling

Increased splenomegaly and
hepatomegaly; worsened
IMQ-induced anemia and
gut permeability; increased
lupus-related pathogenesis
and systemic autoimmunity

(115)

GMNL-263 16-week-old
BWF1 mice (n
= 5)

108 cells/mL/d,
up to week 28

Reduced number of TUNEL-positive cells; decreased
levels of TNF-R1, FADD, MMP-9; increased levels of
p-AKT

Decreased cardiac apoptosis
and fibrosis

(116)

GMNL-89 6-week-old
BWF1 mice

109 CFU/d, 12
weeks

Reduced levels of hepatic MMP-9, CRP, and iNOS;
reduced levels of IL-1b, IL-6, and TNF-a; suppressed
MAPK and NF-kB; reduced hepatic lymphocyte
infiltration; reduced numbers of TUNEL-positive cells
and levels of cleaved caspase-3; Reduced ratios of p-
ERK:ERK, p-P38:P38, and p-JNK:JNK; reduced
expression of IKK and NF-kB

Decreased hepatic apoptosis
and inflammation

(117)

DSM 17509 4-week-old
female BWF1
mice (n = 6–
11)

108 CFU/biw, 10
months

Increased levels of IL-10 and IL-12 Delayed lupus onset;
increased survival

(60)

RA CCFM 8631
and CCFM 14

6-week-old
female Wistar
rats

2.5 × 108 CFU/
d, 2 weeks
before CIA
induction and
continued for
another 7 week

Reduced levels of serum anti-CII IgG and anti-CII
IgG2b; attenuated increase in the levels of IL-6 and
TNF-a; decreased levels of IL-1b, IFN-g, and IL-12;
downregulated levels of IL-10; enriched
Verrucomicrobia and Bifidobacterium species;
restored decrease in numbers of Clostridium species.
increased levels of SCFAs; enriched microbial
metabolic functions

Decreased ankle swelling;
attenuated arthritis

(118)

MM2-3 (ATCC
PTA 4659)

6–8-week-old
female DBA/1J
mice (n ≥ 6)

Gavage at days
7–21 or days
21–35, 14 days

Reduced levels of serum CII-specific IgG, IL-6, and
CXCL1; increased levels of IL-10; increased levels of
Tregs, CD4+IL-10+ cells, CD103+ dendritic cells, and
a4b7+ Tregs; promoted peripheral migration of Tregs

Decreased incidence, severity,
and progression of arthritis

(53)

(Continued)
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synchronous in time with changes in the composition of respiratory

tract microbiota (132). Further, Streptococcus, Haemophilus, and

Moraxella are believed to cause the deterioration of airway

inflammation (133–135). Inhaled GCs are commonly used for the

treatment of asthma. The application of these GCs leads to changes

in the composition of airway microbiota, which have been

correlated with the number of eosinophils and neutrophils in the

sputum (136). In recent years, the discovery of the gut-lung axis also

provides a possibility to explain the relationship between intestinal

flora and lung health and disease. Accordingly, a possible

mechanism is an intestinal ecological imbalance. Microorganisms

and their metabolites might be transferred from the damaged

intestinal barrier to the lung through blood or lymph circulation,

causing lung inflammation and asthma-related symptoms (137–

140). Additionally, intestinal microflora is crucial in the immune

development of infants (141). Of note, retardation in intestinal

microbial growth caused immune maturation disorder, affecting the

immune responses of the lung, causing intolerance or overreaction

to allergens (142). The lack of microbiota in the first year of life of

infants born to asthmatic mothers confirmed this finding, as

indicated by the increased risk of asthma in these children at the

age of 5 (142).

As a dietary supplement, probiotics reshape the composition of

intestinal microorganisms and might thus become potential

candidates for early intervention in patients with asthma.

Probiotics have been reported to not only have a positive impact

on the health of newborns, but also on tackling allergic diseases of

children over 14 years old (143). Although the conditions under

which probiotics play their ideal role remain unclear,

their administration has been shown to result in improvement of

asthma-related parameters and symptoms in patients participating

in clinical trials. For example, probiotics improved the anti-

inflammation lipid depletion in the placebo group (141),
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significantly reduced the alveolar NO concentration of patients (P

= 0.038), greatly relieved their symptoms (P = 0.001), and improved

their score in the asthma control test (ACT) (P = 0.023). In

addition, they increased the diversity of microorganisms,

gene expression in potentially beneficial bacteria, such as

Bifidobacteria, and the production of microbial active metabolites

(144). Animal studies showed that probiotics reduced the levels of

Th2-secreted cytokines IL-4, IL-5, IL-13, whereas increased those of

the Th1-secreted cytokine, IFN-g. They also inhibited the

aggregation and inflow of eosinophils in the lung, and reduced

the serum levels of IgE and airway hyper-responsiveness (145).

Apart from this, they inhibited the deposition of lung collagen and

proliferation of goblet cells, and reduced airway remodeling (146).

The role of probiotics in regulating the levels of serum cytokines,

lowering of the levels of IgE, and reducing eosinophil infiltration in

patients with asthma was also confirmed in another clinical study

(147). In this study, although probiotics had a positive effect on

asthma-related immune biomarkers, the clinical symptoms of

asthma were not improved (147). The inconsistent effect of

probiotics on asthma-related parameters and clinical symptoms

could be relevant to the dosage of probiotics. Hence, designing

experiments where different dosages will be tested are necessary to

clarify whether a correlation exists between dosage and effect. Thus,

at present, probiotics should be carefully used in the prevention and

treatment of asthma, especially in infants, considering all safety

precautions. A large number of samples and the selection of

appropriate strains and combinations are needed to further clarify

whether probiotics are efficacious in the prevention and treatment

of asthma and whether they can replace asthma drugs.

Owing to their great variety, some probiotics might become

harmful under certain conditions. Thus, selecting the appropriate

probiotic strains for targeting a specific disease is crucial. Some

studies have compared the effects of L. reuteri, L. rhamnosus, and
TABLE 1 Continued

Disease Strains Participants Intervention Mechanism of action Outcomes Ref

MS Unknown GFAP-AHR
deficient mice

/ Conversion of dietary Trp into AHR agonists via
TnAse dependent and independent pathways

Regulated astrocyte function (119)

Unknown 10-week-old
female WT
C57BL/6 mice

108 CFU/d, 20
days

Reduced numbers of CD3+ T-cells, CD68+

macrophages, Th1, and Th17 cells; reduced levels of
IL-17 and IFN-g; restored diversity of gut microbiota;
decreased splenocyte proliferation; reduced numbers
of Proteobacteria and Deferribacteres; reduced
numbers of Anaeroplasma and Rikenellaceae;
increased numbers of Bacteroidetes; increased
numbers of Prevotella and S24-7

Decreased severity of EAE.
regulated microbial dysbiosis

(120)

H4 and LMG
18238

5–7-week-old
female GF
C57BL/6 mice

Colonization Cooperation with OTU0002 (Erysipelotrichaceae);
upregulated expression of UvrA; cross-reaction with
and activation of Ki67+ proliferating CD4+ T-cells;
activation of antigen-specific Th17 cells

Aggravated inflammation in
spinal cord

(58)
frontier
"/" indicates that the study does not have information on the mechanism of action or Intervention. OVA, ovalbumin; TSLP, thymic stromal lymphopoietin; PPAR, Peroxisome Proliferator
Activated Receptor; ZO-1, zonula occludens-1; ILA, indole lactic acid; IPA, indole propionic acid; MCP-1, Monocyte Chemoattractant Protein-1; TLR9, Toll-like receptor 9; DCs, dendritic cells;
Tem, Effector memory T; nfrkb, nuclear factor related to kB-binding protein; Nfkbib, NF- kB inhibitor-b; MAPK8IP3, mitogen-activated protein kinase 8 interacting protein 3; IkB, inhibitor of
NF-kB; pDCs, Plasmacytoid Dendritic Cells; TNF-R1, tumor necrosis factor receptor 1; FADD, Fas-associated protein with death domain; MMP-9, matrix metalloprotein-9; p-AKT, phospho-
AKT; CRP, C reactive protein; iNOS, inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase; p-ERK, phosphorylated extracellular signal-regulated kinase; p-JNK,
phosphorylated c-Jun N-terminal kinase; p-P38, phosphorylated P38; IKK, IkB kinase; SCFAs, short chain fatty acids; Trp, Tryptophan; GFAP, glial fibrillary acidic protein; AHR, Aryl
Hydrocarbon Receptor; TnAse , tryptophanase; GM-CSF, granulocyte macrophagecolony stimulating factor; UvrA , UvrABC system protein A; ArAT, aromatic amino acid aminotransferases;
fldH, D-lactate dehydrogenase; AmiE, aliphatic amidase E; SCORAD, Severity scoring of atopic dermatitis; ACT, the Asthma Control and Test; FEV, Forced Expiratory Volume; TSS, total
symptom score; RQLQ, Rhinoconjunctivitis Quality of Life Questionnaire; IMQ, Imiquimod ; EAE, Experimental autoimmune encephakmyelitis ; CNS, Central Nervous System.
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other strains on mice with asthma induced by the house dust mite

(HDM), and observed that L. reuteri exhibited the best effect. This

confirmed the core position of L. reuteri in regulating intestinal

flora to affect lung immunity. Briefly, L. reuteri improved the airway

inflammation index and decreased the total serum levels of IgE,

HDM-IgG1, and Th2 cytokines, suppressing airway inflammation.

Apart from this, it increased the abundance of Lactobacillus and

Enterococci in the intestine and affected the production of total IgE

and IL-13. Moreover, it increased the production of butyric acid, a

microbial metabolite, by reshaping the intestinal microbial structure

(88) (Table 1). The findings of this study were consistent with those

in which oral L. reuteri inhibited eosinophil infiltration in the

respiratory tract of mice, reducing the levels of cytokines, such as

TNF, monocyte chemoattractant protein-1 (MCP-1), IL-5, and IL-

13 in the lung, as well as reducing airway hyper-responsiveness

(109) (Table 1). A clinical study of 30 patients aged 6–17 years—

where patients were divided into 2 groups, those that were

administered beclomethasone only, and those that were

administered beclomethasone and L. reuteri DSM 17938 108

colony forming units/day (CFU/d)—revealed that the asthma-

related symptoms in the probiotics group were improved and the

score of ACT and peak expiratory flow (PEF) were increased after 2

months (110) (Table 1). Similarly, L. reuteri CCFM1040 also

improved ACT and led to an improved control of asthma

symptoms (112) (Table 1). In contrast, a clinical study found that

the use of L. reuteri DSM 17938 109 CFU/d in adults with an

average age of 27 years did not improve respiratory inflammation

and symptoms, skin allergy, or T-cell responses (111) (Table 1). The

discrepant effects of L. reuteri DSM 17938 in these two clinical trials

might have been affected by age and dosage. Of note, the form of L.

reuteri also affected its effect on asthma. For example, live L. reuteri

exhibited an anti-inflammatory role and reduced airway hyper-

responsiveness, whereas inactivated L. reuteri did not have this

effect (109). In general, the administration of L. reuteri has shown

beneficial effects on relieving asthma symptoms, and thus might

become a potential candidate for the adjuvant treatment of asthma.

Identification of the ideal strain, dosage, duration, and specific

mechanism of action of L. reuteri in the prevention and treatment of

asthma is warranted in the future.
3.3 Necrotizing enterocolitis

Necrotizing enterocolitis (NEC) is a fatal acute inflammatory

disease of the intestine that tends to occur in newborns, especially

preterm infants (148), with a high incidence rate (149, 150). The

risk factors of NEC include premature delivery, no breastfeeding

(151), increased antibiotic exposure (152), and intestinal microbial

ecological imbalance (153). Notably, 16S rRNA gene sequencing

analysis found that the abundance of Proteus was increased in

infants with NEC, whereas that of Bacteroides and Firmicutes was

decreased (154). Some studies also found that the increase in the

numbers of Clostridium (155, 156) or Klebsiella (157, 158) occurred

before the diagnosis of NEC in premature infants. Changes in the

abundance of Lactobacillus, Staphylococcus (159), and Streptococcus

(160) have also been implicated in the occurrence and development
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of NEC. Although, these changes in the composition of intestinal

microorganisms among children with NEC exhibit individual

differences (159), their common feature is the low diversity of

microorganisms (156, 159). Therefore, identifying specific

microorganisms as biomarkers for the early diagnosis of NEC and

applying prompt therapeutic approaches to reduce the incidence

and severity of NEC, is imperative. Compared with the control

group, sterile mice receiving fecal flora transplantation from

patients with NEC showed more severe intestinal pathological

damage (154). Of note, in another study, premature and cesarean

piglets that received fecal filtrate transplantation from healthy

piglets did not develop NEC (161). These evidence revealed that

using intestinal microbiota as a therapeutic modality is of great

significance in the prevention and treatment of NEC, and

highlighted the potential use of probiotics as the next generation

of promising therapies for NEC.

There is evidence to support that administration of single

strains or combinations of multiple strains of Lactobacillus or

Bifidobacterium has more advantages than that of other strains or

combinations in reducing the incidence rate of NEC in preterm

infants, by improving severity and reducing mortality (162, 163).

However, it should be noted that the pathogenic or protective effect

of probiotics on NEC is strain-dependent. Different strains of the

same species might have distinct effects on NEC. For example,

Enterococcus faecalis (E. faecalis) 224 improved the intestinal

pathological damage of NEC rats, whereas BB70 and BB24

worsened NEC (164). Of note, the use of probiotics not only

inhibited the growth of pathogenic and opportunistic pathogens

(165), but also reduced the feeding intolerance of premature infants,

which is of great significance to the nutrition and subsequent

growth and development of the nervous system (163). In general,

oral probiotics prevented the occurrence of NEC and improved the

condition especially in terms of prevention in animal models and

clinical trials, albeit not without certain risks. Although probiotics

promote the health of the body, premature infants might be

sensitive to them as their immune system is not yet mature.

Further research is needed to evaluate the short-term and long-

term effects and potential safety risks of the administration of

probiotics to premature infants.

As a member of Lactobacillus, L. reuteri was studied for its

prophylactic and therapeutic effect in NEC. Notably, TLR4, TLR2,

and NF-kB are highly expressed in the intestine of experimental

NEC animal models, mediating intestinal injury, as confirmed in

many experiments (151, 166–168). Both L. reuteri DSM 17938 and

ATCC PTA 4659 downregulated the expression of TLR4 and NF-kB
and that of the pro-inflammatory cytokines IL-6, TNF-a, and IL-1

b, whereas upregulated the expression of the anti-inflammatory

cytokine IL-10, inhibiting the occurrence and severity of NEC in

neonatal rats. Among them, L. reuteri DSM 17938 was found to be

more effective (114) (Table 1). Mechanistically, the improvement of

experimental NEC by L. reuteri DSM 17938 involved the regulation

of immune cells. In particular, L. reuteri DSM 17938 reduced the

numbers of CD4+ effector T-cells, whereas increased those of

Foxp3+ Tregs (49, 51) and tolerogenic dendritic cells (tolDC) in

intestinal mucosa. These phenomena were observed in wild-type

(WT) mice, but not in TLR2-/- mice, suggesting that the anti-
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inflammatory protective effect of L. reuteri DSM 17938 might be

related to the TLR2 signaling pathway (49) (Table 1). Moreover, L.

reuteri DSM 17938 reduced intestinal inflammation by inhibiting

the oxidative stress reaction and enhancing the intestinal

antioxidant capacity of NEC mice (47) (Table 1). However, to

date, there have only been a few clinical studies in humans. A

retrospective cohort study analyzed the medical data of 311

extremely low-birth weight infants (ELBWI) with birth weight ≤

1000 g, 232 of whom did not use probiotics, and 79 of whom that

received 0.1 mL (108 CFU/0.18 mL) of probiotics containing L.

reuteri every day after birth. The incidence of NEC was decreased

from 15.1% (35/232) to 2.5% (2/79) (169) (Table 1). In another

RCT, L. reuteri DSM 17938 was administered to 400 very low-birth

weight infants (VLBWI) (≤ 1500 g) at 108 CFU/d. Although no

differences were detected in the incidence and mortality of NEC

between the intervention and placebo groups, probiotics

significantly reduced the incidence of delayed sepsis and feeding

intolerance, and shortened the length of hospital stay (Table 1).

However, this trial did not further randomize premature infants

with weight ≤ 1000 g (113). The lower weight group was more likely

to present positive results, which might be the reason for the

differences observed in the experimental results. Current evidence

has supported that the application of L. reuteri in animal models

reduced the incidence rate of NEC, suggesting its potential

protection against NEC in clinical trials. However, large sample,

multicenter RCTs need to be conducted in the future to verify the

preventive effect of L. reuteri on NEC pathogenesis in preterm

infants. As the combination of Lactobacillus and Bifidobacterium is

currently the recommended combination of probiotics for the

prevention and treatment of NEC, the experimental combination

of L. reuteri and Bifidobacterium can be tested in the future to verify

its efficacy against NEC. Further understanding of the pathogenesis

of NEC and exploration of whether L. reuteri can act on key targets

involved in its pathogenesis is the direction of our efforts.
3.4 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune

disease. Recent studies have observed changes in the composition of

the intestinal microbiome and its metabolic functions in SLE (170–

174). Sequencing analysis of intestinal microorganisms in patients

with SLE showed low diversity and unbalanced distribution of species

ratio. The metagenome-wide association study (MWAS) and the

genome-wide association study (GWAS) showed that the abundance

of Streptococcus intermedius and Streptococcus anginosus increased in

the gut of SLE patients (175). The abundance of certain species

increased in untreated SLE patients, including the Clostridium species

ATCC BAA-442 as well as Atopobium rimae, Shuttleworthia satelles,

Actinomyces massiliensis, Bacteroides fragilis, and Clostridium leptum.

After treatment, these microorganisms decreased. The

proinflammatory ability of some microbial peptide structures of

SLE-enriched species was also confirmed by functional validation

assays (176). An animal trial in 2020 found that the transfer of the gut

microbiota of triplecongenic (TC) lupus-prone mice to germfree

congenic C57BL/6(B6) mice reduced autoimmune severity.
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Metabolomics results showed that the distribution of tryptophan

metabolites in feces of TC mice changed. Further study showed that

high dietary tryptophan could aggravate the pathology of TC mice

and the reduction of dietary tryptophan changed the intestinal

microbiota of TC mice and B6 mice, suggesting that tryptophan

metabolism might lead to immune activation of SLE by changing the

microbiota structure (176). Another animal study in 2022 found

defective TCR signaling proliferation of segmented filamentous

bacteria in the gut of B6SKG mice, driving Th17 cell differentiation

and causing autoimmunity in SLE (177). The intestinal microecology

of patients with SLE is out of balance, and characterized by decreased

microbial diversity, which is particularly noticeable in active patients

(178). Changes in the content of specific species, such as increased

numbers of Streptococcus, Campylobacter, and Velocilla, promote the

arrival of the active phase of lupus, whereas increased numbers of

Bifidobacterium prolong the remission phase of SLE (179). Patients

with SLE can be distinguished from those with rheumatoid arthritis

(RA) and healthy people by analyzing the differences in the

composition and metabolic functions of intestinal microorganisms.

These criteria can also further distinguish the active from the

remission period of SLE (179). Transplantation of the fecal flora of

SLE mice or patients to sterile mice significantly increased the level of

anti-dsDNA, stimulated the inflammatory immune response, and

increased the expression of SLE susceptibility genes (171, 180). After

receiving Ruminococcus(RG) transplantation from patients with

lupus, C57BL/6 mice had increased levels of anti-RG antibodies

and intestinal permeability, especially female mice (157).In

addition, transplantation of fecal flora from SLE patients also

affected the metabolism of histidine in sterile mice, resulting in

increased production of histamine, which might also be involved in

the pathogenesis of SLE (171). In conclusion, the administration of

probiotics for the treatment of microbial ecological imbalance in

patients with SLE might be a new treatment direction that can bring

hope to patients with SLE.

The number of probiotics used in SLE-related experiments has

been limited, with Lactobacillus being the most commonly used

genus. Notably, SLE affects multiple systems, and is often associated

with cardiovascular and renal diseases (181–183). In the case of

SLE-related renal injury, the use of probiotics reduced the levels of

serum anti-dsDNA in female mice of a hypertensive lupus model.

In addition, the level of inflammation in renal tissues was decreased,

mainly manifested by the decrease in the numbers of Th1 and Th17

cells and levels of proinflammatory cytokines. Moreover, long-term

use of probiotics alleviated renal injury and improved renal

function, by inhibiting the activity of NADPH oxidases (NOX),

thereby reducing the level of oxidative stress (184). In the case of

SLE-related cardiomyopathy, administration of probiotics inhibited

cardiac fibrosis and anticardiomyocyte apoptosis, while led to the

significant thickening of the ventricular wall and the restoration of

the structure of mildly changed cardiomyocytes to a certain extent.

These findings were further confirmed by the decrease in the

number of apoptotic cardiomyocytes (185). Regarding SLE-related

vascular diseases, probiotics might play a role in preventing

endothelial dysfunction. For example, the sensitivity of mouse

aorta to acetylcholine, which depends on the levels of NO

produced by endothelial cells, was increased after administration
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of probiotic (186). The excess of reactive oxygen species (ROS) is a

pathogenic factor for cardiovascular diseases (187). Moreover, the

excessive production of ROS is also known to be combined with

increased levels of NO and inactivate vasodilator NO (188).

Probiotics inhibited the activity of nitrogen oxides and reduced

the production of ROS, thus maintaining the balance of ROS/NO

and restoring the normal function of vascular endothelium (186).

Based on their protective effect on endothelial dysfunction,

probiotics might also have potential effects on preventing

hypertension (186). Apart from their positive protective effect on

SLE-related multisystem complications, combinations of probiotics

and drugs were also reported to enhance the efficacy of drugs. A

study found that probiotics combined with prednisolone

pretreatment or -treatment reduced the serum levels of

antinuclear antibody (ANA), anti-dsDNA antibody, and anti-

RNP antibody in SLE mice (189). These autoantibodies are key

pathogenic factors of SLE-related organ or tissue damage (190–

193). In addition, a Th17/Treg imbalance is an important marker of

inflammation progression during the pathogenesis of SLE (194–

196). Hence, regulation of the Th17/Treg balance is of great

significance for the protection from SLE-related complications

(184, 197, 198). Tacrolimus (Tac) is an immunosuppressive agent

commonly used in the treatment of SLE (199–201), and also known

to inhibit Treg cells (202). A study found that compared with using

Tac or probiotics alone, the combination of Tac and probiotics

reduced the serum levels of autoimmune antibodies in MRL/lpr

mice. In addition, both in vivo and in vitro experiments revealed an

increase in the numbers of Treg cells and a decrease in those of

Th17 cells. Based on this, the authors of the study suggested that

probiotics could be used as the synergist of Tac for the regulation of

the Th17/Treg balance in the SLE mice model (198). Various animal

experiments have shown that probiotics might have anti-

inflammatory and potential immunomodulatory effects in the

prevention and treatment of SLE-related nephritis, cardiovascular

diseases, and other complications. Additionally, the synergistic

effect of probiotics combined with SLE therapeutic drugs was

observed in a lupus mouse model. Therefore, the use of probiotics

as an adjunct of drugs might become a promising therapeutic

approach in clinical practice.

Research on the effect of L. reuteri in SLE has been limited, and

showed contradictory results. Pretreatment with L. reuteri DSM

17509 prolonged the remission period of lupus, delayed its onset,

increased the survival rate of NZB/WF1 mice, while it increased the

production of IL-10 by DCs in lupus mice (60) (Table 1), indicating

the preventive and therapeutic effects of L. reuteri in SLE. L. reuteri

was also demonstrated to exert its protective effect on lupus-

associated cardiovascular disease. Administration of heat-

inactivated L. reuteri (h-L. reuteri) GMNL-263 prevented cardiac

remodeling and inhibited the apoptosis of myocardial cells in NZB/

WF1 mice, which were characterized by a decrease in the number of

TUNEL-positive cells, related components of the Fas death

receptor, and number of apoptotic cells in their heart tissues

(116) (Table 1). Moreover, supplementation with L. reuteri

GMNL-89 or L. reuteri GMNL-263 alleviated liver inflammation

and inhibited hepatocyte apoptosis in NZB/WF1 mice, as indicated

by the improvement in liver inflammation and apoptosis indicators.
Frontiers in Immunology 14
Lower levels of liver proinflammatory cytokines IL-1 b, IL-6, and
TNF-a were linked to the inhibition of the MAPK and NF-kB
signaling pathways by L. reuteri (117) (Table 1). However, Zegara-

Ruiz et al. put forward an opposing opinion in 2019. They used 2

models, one of a spontaneous lupus TLR7.1 Tg C57BL/6 mouse

model, and the other of an induced lupus model using the TLR

agonist imiquimod (IMQ); both of them were TLR7-dependent

lupus models (67). They found that the abundance of L. reuteri was

increased in the intestines of these 2 model mice, while the intestinal

mucosal barrier was damaged, allowing the translocation of L.

reuteri outside of the intestine. They also found that in specific

pathogen-free (SPF) and germ-free (GF) lupus mice, L. reuteri

stimulated the autoimmune reaction, which led to the damage of

intestinal barrier integrity, anemia, renal tissue pathological

damage, and multisystem involvement. The key features in these

processes were the accumulation of plasmacytoid dendritic cells

(pDCs) and the increased levels of type I IFN (67, 115) (Table 1).

First, comparing this with the previous studies, it is obvious that

different animal models were used. Second, the pathogenic effect of

L. reuteri in the latter study was under SPF or GF conditions, and

thus is not comparable to the effect of L. reuteri in the real complex

intestinal environment. Such genetic and environmental differences

affect the host-microorganism crosstalk, which have a complex

relationship from the onset of the disease. Finally, the authors did

not clarify the strain of L. reuteri used in the last study. As

mentioned, differences in treatment outcomes might be caused by

the different characteristics of L. reuteri strains. In the future, large

sample studies based on a unified SLE model need to be conducted

to clarify the role of L. reuteri in the pathogenesis of SLE.
3.5 Rheumatoid arthritis

Immune dysfunction and tissue inflammation are important

features of RA (203, 204). The pathogenesis of RA has been

correlated to imbalances in the content of oral and intestinal

microorganisms. Porphyromonas gingivalis (P. gingivalis) is the

pathogenic bacteria causing periodontitis. The pathological and

clinical symptoms of periodontitis and RA are similar to some

extent, and the risk of RA in patients with periodontitis was found

to be markedly increased (205). A significant decrease in microbial

diversity was observed in the non-diseased areas of periodontitis in

patients at high risk of RA (206). In addition, the oral microbial

composition of RA high-risk patients and patients with early RA was

found to be similar, with the proportion of Prevotella being

significantly higher than that in healthy people (207, 208). These

findings suggest that the change in the composition of the microbial

community might have preceded the occurrence of RA. The

involvement of intestinal microbiota in the occurrence and

progression of RA has also been confirmed in an animal

experiment. This study used broad-spectrum antibiotics to deplete

the microorganisms of collagen-induced arthritis (CIA) model mice,

and found that the severity of arthritis was significantly improved and

the production of intestinal proinflammatory cytokines was delayed,

whereas the serum levels of proinflammatory cytokines and anti-CII

antibodies were significantly decreased (209). Notably, the activity of
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RA was also correlated to the microbial composition (210). Although

changes in the composition of oral and intestinal microorganisms

might be involved in the pathogenesis of RA, their causal relationship

and whether these changes are related to the production of

autoantibodies remain unclear. Nevertheless, the association

between microbial ecological imbalance and disease severity

observed in RA animals and clinical trials has provides us with a

new direction for microbial interventions in RA.

Probiotics have the ability to reduce the level of inflammation

and oxidative stress in patients with RA. In a recent study, 21

patients received a probiotics mixture every day for 2 consecutive

months. The level of inflammation, white blood cell count, levels of

proinflammatory cytokines TNF-a and IL-6, and levels of NOx

were decreased, whereas the level of sulfhydryl (SH) and total

radiotrapping antioxidant parameters (TRAP) were increased in

the intervention group, indicating a decrease in the level of

oxidative stress and an increase in the level of antioxidant

parameters (211). This suggests that probiotics regulate the levels

of inflammatory and oxidative stress indicators. Further studies

should be conducted on the relationship between the probiotic-

induced improvement of these indicators and the incidence rate,

clinical symptoms, and prognosis of RA. A healthy diet might have

a protective effect on RA (212, 213). Based on this, researchers

combined probiotics with food ingredients with anti-inflammatory

and antioxidant properties to explore their combined efficacy

against RA. For example, a study investigated the effect of an

anti-inflammatory diet containing probiotics and some food

ingredients with anti-inflammatory effects in patients with RA

and found that the 28 joints-Erythrocyte Seduction Rate (DAS28-

ESR) and levels of 28 joints-C-reactive protein (DAS28-CRP),

which reflect the activity of RA, were significantly reduced and

the proportion of joint tenderness relief was higher than that of the

control group (115). In another study, 50 patients with RA

consumed an anti-inflammatory diet supplemented with

probiotics. After 10 weeks, the levels of triglycerides (TG), high

density lipoprotein cholesterol (HDL-C), apolipoprotein-B100/A1,

fatty acids, and other blood lipid indicators of patients exhibited a

trend towards the direction of improved prognosis (214). Based on

these two studies, and despite the inability to determine whether the

decline in RA activity and improvement of blood lipid status were

the result of specific dietary ingredients or probiotics, it was

concluded that the combination of probiotics and anti-

inflammatory foods might have synergistic effects, providing

potential reference significance for formulating a daily dietary

strategy for patients with RA.

As L. reuteri regulates immune function through a variety of

mechanisms, researchers have attempted to use it for the treatment of

RA. In one study, where mice were administered h-L. reuteriMM2-3

before and after CIA induction, it was observed that h-L. reuteri

pretreatment reduced the severity and incidence of CIA in mice. In

addition, they also observed that the serum levels of type II collagen-

specific immunoglobulin G (CII-IgG) and proinflammatory

cytokines IL-6 and CXCL1 were decreased, whereas those of the

anti-inflammatory cytokine IL-10 were increased. The improvement

of CIA by h-L. reuteri pretreatment might be related to the reduction

in the level of IL-6 and stimulation of production of CD103+ DCs,
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which, in turn, promote the production and peripheral migration of

Tregs. However, it is noteworthy that although CIA did not occur in

mice pretreated with h-L. reuteri, pretreatment had no effect on mice

with developing CIA (53) (Table 1). Another study found that

pretreatment with a probiotic mixture containing L. reuteri CCFM

8631 and L. reuteri CCFM 14 before the occurrence of CIA reduced

the swelling and pathological damage in the joints of rats, suggesting

its potential use for the prevention of CIA. In addition to the changes

in the levels of proinflammatory cytokines and collagen-specific

antibodies, this study also observed the levels of Th1-secreted

cytokine IFN-g and IL-12, which promotes Th1 cell differentiation,

were decreased. In addition, the proportion of SCFA-producing

microbial communities was increased. Notably, the authors found

that the levels of the anti-inflammatory cytokine IL-10 were

significantly decreased after treatment with L. reuteri, which was in

contradiction with the changes in the levels of IL-10 observed in the

former study. They hence assumed that IL-10 secreted by Tregs exerts

anti-inflammatory and immunosuppressive effects, whereas IL-10

secreted by non-T-cells might aggravate the production of

autoantibodies in patients with RA. In this study, the high levels of

IL-10 in CIA rats were mainly produced by non-T-cells, with L.

reuteri playing a protective role by regulating the number of non-T-

cells and reducing the levels of destructive IL-10 (118) (Table 1).

Recent research has suggested that L. reuteri can prevent CIA;

however, the treatment effect on CIA remains unclear. LrS235, a

genetically engineered L. reuteri secreting Kv1.3 potassium blocker

ShK-235, significantly reduced clinical symptoms and joint

inflammation in RA rats. This may be related to functional ShK-

235 inhibiting T effector memory (TEM) cells (215). Although the

functional substances produced by such bioengineering benefit the

body, we should also pay attention to its immunogenicity. As RA is a

chronic disease, the management of daily lifestyle and diet cannot be

ignored. Based on recent developments in this field, adding L. reuteri

to the daily diet might be a new strategy for the prevention of RA in

the future. However, these findings need to be further explored and

verified in the clinical setting.
3.6 Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease characterized

by central nervous system (CNS) demyelination, axonal injury, and

neurodegeneration as the main pathological changes (216, 217).

The participation of intestinal microbiota in the pathogenesis of MS

has been preliminarily verified in an animal model of experimental

autoimmune encephalopathy (EAE). The diversity of intestinal

microflora, number of Lactobacil lus , Bacteroides , and

Prevotellaceae, and antioxidant level of intestinal microflora were

increased in EAE mice fed an intermittent diet. Notably,

transplantation of their fecal matter to EAE mice fed a normal

diet resulted in the relief of symptoms (218). Some microorganisms

that mediate the intensification or protection of EAE have also been

observed in human intestines. For example, an increase in the

abundance of Anaerotruncus colihomis was reported to improve

EAE, and has been demonstrated to exert potential beneficial effects

on patients with MS, such as reducing the incidence of disability
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(219, 220). The clinical classification of MS includes relapsing

remitting (RR), secondary progressive (SP), primary progressive

(PP), and progressive relapsing (PR) disease. However, these

different phenotypes do not correlate with increasing imbalances

in the composition of microorganisms (221, 222). For instance,

compared with RRMS, the proportion of Enteroberiaceae and

Clostridium in progressive MS was increased, whereas that of

Blautia and Agathobaculum was decreased. Clostridium has been

associated with higher disability and fatigue rates (220). The

microflora of different types of MS have characteristic community

characteristics, and can thus serve as biomarkers for determining

the stage and severity of the disease (221). Clarifying the microbial

composition of several types of MS might have great guiding

significance for early clinical diagnosis and intervention. Specific

microorganism might also serve as indicators of MS activity. Studies

have shown that the presence of two of five microorganisms,

namely Odoribacter and Butyricicoccus, has been significantly

related to the risk of poor imaging performance of brain MRI

(223). The pathogenesis of microbial-mediated MS might be related

to the low level of butyrate and indolelactate (224), which is the

intermediate product of indole propionate in Try metabolism (225).

A decrease in the number of indolelactate-producing microbiota

might lead to a decrease in the serum levels of indolelactate and

indolepropionate (224). Indolepropionate is considered to be an

antioxidant with significant neuroprotective effects (226).

Accordingly, the inflammatory state in the body might be related

to the decline in the serum levels of these metabolites (224). In

general, we should focus not only on the microorganism itself that

might serve as a biomarker and intervention target of MS

pathogenicity, but also in its metabolites.

The outcomes of clinical trials on the use of probiotics in

patients with MS have been positive. A study found that oral

administration of 3600 billion CFU/d of a probiotics mixture

containing 8 strains for 2 consecutive months not only reduced

the number of intermediate monocytes (CD14highCD16low), but

also decreased the expression of human leukocyte antigen DR

(HLA-DR) in DCs of patients with RRMS. In addition, a

reduction in the number of inflammatory monocytes (CD14low

CD16high) and expression of costimulatory marker CD80 of

classical monocytes was observed in the healthy control group.

Conversely, after discontinuation of the use of probiotics, the

number of inflammatory monocytes was increased, whereas that

of Tregs was decreased (227). This showed that the probiotics

mixture regulated the innate immune cells of patients with MS and

healthy controls, and promoted anti-inflammatory reactions in vivo

(227). Another study found that the serum levels of the

proinflammatory cytokine IL-6 were decreased, whereas that of

the brain-derived neurotrophic factor (BDNF) were significantly

increased after the use of multiple probiotics (228). BDNF is a

neuroregulatory protein that plays an important role in maintaining

the survival and differentiation of neurons and can improve

psychological symptoms, such as depression and anxiety (229).

By using the mental health questionnaire to determine the

depression score, fatigue degree, and pain assessment, the mental

health of patients with MS was shown to be improved after the use
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of probiotics (228). Results from current clinical trials have

indicated that probiotics might be used as potential candidates for

the treatment of MS. In the future, more trials should be carried out

on patients with different MS types on the basis of acquiring unified

inclusion criteria to verify whether the use of probiotics can really

benefit patients with MS.

Trp metabolites combined with AHR have been reported to

exert immunoregulatory and anti-inflammatory effects and enhance

gastrointestinal barrier function (225). Ampicillin (Amp)-sensitive

vancomycin (Vanco)-resistant bacteria catalyze the binding of Trp

to AHR ligands (34). L. reuteri is an Amp-sensitive Vanco-resistant

bacterium, which metabolizes Trp to AHR agonists, acts on AHR of

astrocytes, reduces inflammation of the central nervous system, and

plays a protective role on EAE (119) (Table 1). Further supporting

evidence have suggested that L. reuteri DSM 17938 improved the

immune response of EAE by regulating the relative abundance of

“beneficial” bacteria, such as Bifidobacterium, Prevotella, and

Lactobacillus and that of harmful bacteria, such as Anaeroplasma,

Rikenellaceae, and Clostridium, and restoring the low diversity of

intestinal microorganisms. In another study, the numbers of Th1

and Th17 cells and levels of their cytokines were decreased in EAE

mice (120) (Table 1). With respect to the role of L. reuteri in EAE,

Miyauchi et al. reached a diametrically opposite conclusion in their

subsequent study. They assumed that L. reuteri as a host symbiotic

bacteria would aggravate the disease of genetically susceptible EAE

mice and change their systemic metabolism. They accordingly

found that L. reuteri and Erysipelaceae bacteria co-colonized and

synergistically induced pathogenicity in EAE mice. This might be

due to the similarity of L. reuteri to the myelin oligodendrocyte

glycoprotein (MOG), which activates the MOG-specific CD4+ T-

cells in the small intestine, causing an attack by autoimmune T-cells

and worsening of spinal inflammation (58) (Table 1). L. reuteri is

considered to be a strain that can interact with the genetically

susceptible host to aggravate the symptoms of EAE (230). However,

this contradictory conclusion might be related to difference among

L. reuteri strains. Concomitantly, we should also note that L. reuteri

can exert a synergistic effect with other microorganisms, potentially

either benefiting health or causing disease. Therefore, we cannot

ignore the “assistant” role of L. reuteri. Further research on MS-

related intestinal microorganisms might help to identify more

relevant species. At present, L. reuteri has only been applied to an

animal model of MS, and has not been tested in clinical trials.

Whether it can improve EAE remains undetermined and requires

further research in clinical trials. Hence, there is still a long way to

go before it becomes a new candidate for the future prevention and

treatment of MS.
4 Conclusion

With the development of multiomics, the integration of

metagenomics, macrotranscriptomics, metabolomics, and

immunological data provides great assistance to the study of the

mechanism of microbe-host crosstalk. The ability of probiotics to

adhere to and colonize the gut may underlie a variety of
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mechanisms. In the complex immune regulation mechanism, L.

reuteri and its metabolites play a central role in protecting intestinal

barrier function and regulating immune cells. Multiple results have

shown that L. reuteri affects the number and differentiation of DCs,

which in turn affects the differentiation of T cells and the proportion

of its subsets, playing a role in the regulation of the host immune

system. However, due to the influence of host genetics, epigenetics

and environment, especially diet, Probiotics have differentiated

immune regulation in individuals. These insights highlight the

importance of studying the level of probiotic strains and

differences in individual physiological characteristics. The analysis

of the molecular structure of probiotics and host cell surface

receptors will help us to further understand its mechanism of

action, and more meaningful conclusions will be achieved in the

future by unifying experimental models and standardized samples.

The results of some animal and clinical studies indicated the

encouraging application prospect of L. reuteri. It is undeniable that

the research on probiotics had obvious heterogeneity, including the

animals or people included in the study, the choice of the control

group, the type and combination of probiotics selected, the

intervention dose, the duration of the intervention or experiment,

the environment and diets. These are reasons for contradictory or

ambiguous conclusions. In addition, the efficacy of probiotics were

evaluated based on clinical data, which were collected and analyzed

differently. For example, many reports had obvious subjectivity in

the evaluation of emotional or social function. In the future, we

need to adopt high-quality research methods and carry out research

on the basis of unified evaluation criteria.

With the in-depth study of probiotics, more details of the

application of L. reuteri have been derived. No study has explored

its metabolism in vivo, which is closely related to its safety; The

biofilm state of L. reuteri optimizes the traditional form of drug

delivery, but also requires close monitoring and control to avoid the

excessive proliferation of L. reuteri; At present, there are two kinds

of understanding on the choice of single strain or multi-strain

combination, one is that microbiota have a complex network of

relationships, with interconnected components that interact with

each other to jointly maintain the microecological balance.

Therefore, the synergistic effect of multiple strains may be more

conducive to the inflammatory response and the stability of the

immune system. The other believes that a single strain exhibiting a

definite effect was more effective. This is because mixed strains

might get out of control due to the inconsistent reproduction speed

of each strain, thus disturbing the balance and hindering the control

of microecology.
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Generally speaking, we need to study further the metabolic

pathway of L. reuteri in human body, determine the precise efficacy

of different strains, comprehensively consider the safety and efficacy

of the strain, carefully select the best strain or its combination, adopt

the appropriate dose at the right time and maintain it for enough

time. This may provide guidance for the clinical application of L.

reuteri in the future.
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