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Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in

various immune cell types and perform multiple purposes and duties involved in

the induction of innate and adaptive immunity. Their capability to propagate

immunity makes them attractive targets for the expansion of numerous

immunotherapeutic approaches targeting cancer. These immunotherapeutic

strategies include using TLR ligands/agonists as monotherapy or combined

therapeutic strategies. Several TLR agonists have demonstrated significant

efficacy in advanced clinical trials. In recent years, multiple reports established

the applicability of TLR agonists as adjuvants to chemotherapeutic drugs,

radiation, and immunotherapies, including cancer vaccines. Cancer vaccines

are a relatively novel approach in the field of cancer immunotherapy and are

currently under extensive evaluation for treating different cancers. In the present

review, we tried to deliver an inclusive discussion of the significant TLR agonists

and discussed their application and challenges to their incorporation into cancer

immunotherapy approaches, particularly highlighting the usage of TLR agonists

as functional adjuvants to cancer vaccines. Finally, we present the translational

potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed

with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40

agonisticAntibody], an autologous cancer vaccine leveraging membrane-

bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a

probable immunotherapy in multiple cancer types.
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Introduction

Emerging strategies in cancer immunotherapy, including

immune checkpoint inhibitors (ICIs), cancer vaccines, and

chimeric antigen receptor-T cells (CAR-T), have shown

exceptional promise in clinical trials, giving rise to a plethora of

ongoing research and development in this field (1). ICIs, including

antibodies targeting anti-CTLA4 and anti-PD-1/PDL-1, have

significantly progressed in various clinical trials to treat diverse

cancer types (1). Meanwhile, adoptive cell therapies like CAR-T

have shown promising results in treating multiple hematopoietic

malignancies (2). Additionally, regulatory agencies have approved

several preventive and therapeutic cancer vaccines for treating

different cancers with numerous other vaccines in various

development stages (3–7). These immunotherapies have

underscored the importance of stimulating a robust anti-tumor

immune response in cancer patients as a potential avenue for

combating cancer. Exploring and harnessing appropriate

immunostimulatory mechanisms is crucial in developing new

cancer immunotherapy approaches. Toll-like receptors (TLRs) are

a particular group of membrane receptor molecules that play the

above-mentioned immunostimulatory functions in several innate

immunity pathways (8). Consequently, TLRs are some of the most

sought-after molecules used as vaccine adjuvants and in several

immunotherapeutic approaches related to preventing and treating

several infectious diseases, including cancer (8).

The inception of cancer immunotherapy dates back over a

century, with the initial attempts involving using bacteria or

bacterial products to activate the immune system (9–11). In 1891,

William Coley pioneered the field of immunotherapy by

administering a blend of heat-inactivated Streptococcus pyogenes

(a Gram-positive bacteria) and Serratia marcescens (a Gram-

negative bacteria) through intratumoral injections (9–11). This

bacterial mixture became known as Coley’s toxin later (11, 12).

This approach by Coley achieved a robust immune response against

sarcomas, resulting in reduced tumor growth and, in some cases,

tumor elimination even though the inherent mechanism remained

unclear at that time (10–12). Subsequent research elucidated this

therapeutic response, unveiling the significance of unique signaling

molecules like pattern recognition receptors (PRRs) and pathogen-

associated molecular patterns (PAMPs), which serve as ligands or

activators for PRRs (11, 13–15).

TLRs are a subclass of receptors from the PRR family and serve

as central players in innate immune responses (16). TLRs are

transmembrane domain proteins (type I) with tripartite motifs

(16, 17). TLRs feature three distinct functional domains: an

leucine-rich repeats (LRRs) containing amino (N)-terminal

responsible for ligand binding (folded into a typical horseshoe-

like structure), a transmembrane spanning region, and a carboxyl

(C)-terminal cytoplasmic domain resembling the cytoplasmic

region of globular Toll/interleukin-1 (IL-1) receptor (TIR) (16,

17). To date, ten human and thirteen murine TLRs have been

identified (18). Based on their subcellular localization, TLRs are

categorized into extracellular and intracellular groups (16, 19).

TLRs such as TLR1, TLR2, TLR5, TLR6, and TLR10 are
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exclusively expressed on the plasma membrane and belong to the

extracellular group; while TLR3, TLR7, TLR8, and TLR9 fall within

the intracellular group, are expressed on the endosome and

endoplasmic reticulum (16, 19). Only TLR4 is present in both

intracellular components and the plasma membrane (16, 19). For

each of the TLRs, there is a specific ligand(s) (Figure 1, Table 1).

Every TLR with its ligand activates specific downstream signaling

pathways either through myeloid differentiation primary response

protein 88 (MyD88) and/or TIR-domain-containing adapter-

inducing IFNb (TRIF) (16, 20, 39–41). TLR-mediated signaling

initiates the secretion of multiple cytokines that enhance the

immune system’s ability to combat external pathogens and

infectious agents (16, 17, 39). Moreover, TLRs play a crucial role

in activating and maturing various immune cells involved in innate

and adaptive immune responses (16–18). We have listed the

location of all the TLRs and their agonists in Figure 1. Moreover,

we have provided a detailed classification, localization, and involved

ligands of the TLRs in Table 1.

This review aims to consolidate the current strategies involving

TLR agonists as potential therapeutics for cancer, either as

standalone treatments, in combination therapies or as adjuvants

for cancer vaccines. We also explore the supporting evidence for

TLR agonists as adjuvants in cancer vaccines, promoting innate and

adaptive immune responses against cancer cells, specifically

focusing on the rWTC-MBTA autologous vaccine developed by

our research group.
The roles of TLRs in various immune
cell types and their impact on the
regulation of cancer

It’s crucial to note that TLRs are present in various types of cells,

encompassing innate immune system components such as

macrophages, neutrophils, dendritic cells (DCs), natural killer

(NK) cells, and mast cells. They are also found in adaptive

immune system elements like T and B lymphocytes, stromal cells,

and various tumor cells. When TLRs engage with a ligand, they can

significantly boost the expression of multiple costimulatory

molecules on the cell membranes, activating cytokines and T-cell

activation (16, 17). The following section briefly discusses how

TLRs stimulate different immune cells and their role in regulating

cancer immunity.
Dendritic cells

Dendritic cells (DCs) are widely recognized as the immune

system’s most efficient professional antigen-presenting cells (APCs)

(42). DCs are also the most studied cells among all the TLR-

expressing immune cells in the milieu of instigation of adaptive

immunity (42). When faced with an infection or inflammation,

immature DCs undergo a process of activation and transformation

into mature DCs. These mature DCs are responsible for activating

adaptive immune cells such as B and T lymphocytes (43). The
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FIGURE 1

Location and agonists of different TLRs. TLRs 1/2, 2, 2/6, 4, and 5 are present in the extracellular region of the plasma membrane. In contrast, TLRs 3,
7, 8(only in humans), and 9 are localized on the endosomal membrane. The TLRs are stimulated by their specific ligand or agonists. The extracellular
TLRs are mainly activated by exogenous agonists of bacterial, viral or pathogenic origin. The major exogenous ligands or microbial agonists are
flagellin protein from bacterial flagella, lipoteichoic acid (LTA) and peptidoglycan (PGN) from Gram-positive bacteria, LPS from Gram-negative
bacteria, lipoarabinomannan (LAM), lipopeptides, lipoglycans, and lipomannans from mycobacteria, zymosan from yeast (20, 21). There are synthetic
TLR agonists like Pam3CSK4 or recombinant flagellin to stimulate the extracellular TLRs (20, 21). In contrast, nucleic acid ligands stimulate the
endosomal TLRs 3, 7, 8, and 9. For example, TLR3 is stimulated by viral double-stranded RNA (dsRNA); TLR7 and 8 are triggered by viral and bacterial
single-stranded RNA (ssRNA), and TLR9 recognizes CpG DNA from viruses and bacteria (20–25). There are also some endogenous ligands resulting
from cellular injury, cell death, extracellular matrix components (e.g., hyaluronan, fibronectin, and fibrinogen), plasma membrane constituents,
nuclear and cytosolic proteins and heat shock proteins, and elements of damaged/fragmented organelles such as mitochondrial DNA (mtDNA) (26,
27). TLRs 2 and 4 bind to most of the endogenous ligands resulting from cellular injury, cell death, and extracellular matrix components (27). The
endogenous nucleic acid ligands like RNA or mtDNA bind with the endosomal ligands TLRs 3, 7, 8, and 9 (26, 27).
TABLE 1 Expression, localization, agonists/ligands of different TLRs.

TLR Species Localization Microbial
ligands

Microbes expressing TLR
ligands

Endogenous
ligands

Synthetic
agonists

Ref.

TLR1 Human
and mouse

Plasma
membrane

Triacyl lipopeptides
Bacterial
lipoprotein

Mycobacterium tuberculosis Unknown Pam3CSK4 (20,
28)

TLR2 Human
and mouse

Plasma
membrane

Lipoproteins,
zymosan,

lipoarabinomannan,
peptidoglycan,
lipoteichoic acid

Mycoplasma, Neisseria meningitides,
Haemophilus influenzae, Leishmania
major, Staphylococcus aureus, Herpes

simplex virus, Measles virus

Versican Pam2CSK4,
Pam3CSK4

(20,
28–
32)

(Continued)
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maturation of DCs involves a series of complex stages, including

changes in the composition of receptors involved in endocytosis

and phagocytosis, increased expression of co-stimulatory molecules

like CD40, CD58, and CD86, alterations in morphology, and

reorganization of lysosomal and MHC compartments (44). It’s

important to note that the DC population is highly diverse,

consisting of various subtypes that exhibit differences in their

functions, phenotypes, and distribution within the body (45). The

two central populations of DCs found in the human immune

system are lymphoid‐derived plasmacytoid dendritic cells (pDCs)

and myeloid‐derived dendritic cells (mDCs) (45). Both pDCs and

mDCs can activate the CD4+ and CD8+ T cells as well as facilitate

the process of antigen cross-presentation to initiate the proliferation

of CD8+ T cells (46–48). Other phenotypes of DCs are monocyte-

derived DCs (moDCs) and CD34+ cell–derived DCs (49). The
Frontiers in Immunology 04
activation status of dendritic cells is critical in determining how the

immune system responds to a particular threat. All the subsets of

DCs express distinctive TLRs, permitting themselves to generate a

dedicated response against different pathogens (44). The major

TLRs involved in DCmaturation and function are TLR2, 3, 4, 5, 7/8,

and 9 (50). TLR signaling is the key to DC-mediated cytotoxic T-cell

activation (50). Previous studies demonstrated that TLR-mediated

stimulation augments maturation and antigen presentation of

murine DCs followed by induction of cytotoxic T cells (51, 52).

Maturation of DC sub-populations and onset of cytotoxic CD8+ T

cells through IL-27-mediated signaling were reported after ligand

mediated activation of TLR3 and TLR7 (51, 52). As suggested by the

distinct Toll-like receptor (TLR) expression profiles in different DC

subsets, the pDCs are primarily activated by viral pathogens, while

mDCs primarily respond to fungal and bacterial antigens, and these
TABLE 1 Continued

TLR Species Localization Microbial
ligands

Microbes expressing TLR
ligands

Endogenous
ligands

Synthetic
agonists

Ref.

TLR3 Human
and mouse

Endosome Viral dsRNA Reovirus mRNA Poly(I:C), poly-ICLC,
poly(I:C12U) poly(A:

U)

(20,
21,
33)

TLR4 Human
and mouse

Plasma
membrane and
Endosome

LPS Escherichia coli, Pseudomonas
aeruginosa

Oxidized low-
density

lipoprotein,
Amyloid-beta

protein

Monophosphoryl
lipid-A (MPL)
derivatives

(20,
21,
33,
34)

TLR5 Human
and mouse

Plasma
membrane

Flagellin Salmonella sp. Unknown Recombinant flagellin
derivatives

(20,
21,
33)

TLR6 Human
and mouse

Plasma
membrane

Diacyl lipopeptides,
lipoteichoic

acid, zymosan

Mycoplasma, Hepatitis C virus (HCV),
Cytomegalovirus

Oxidized low-
density

lipoprotein,
Amyloid-beta

protein, versican

Macrophage-activating
lipopeptide 2,

synthetic diacylated
lipoproteins,
Pam2CSK4

(20,
21,
29)

TLR7 Human
and mouse

Endosome Viral and bacterial
ssRNA

Human immunodeficiency virus (HIV),
HCV

Immune
complexes, self-

RNA

Thiazoquinoline and
imidazoquinoline
derivatives (e.g.,
resiquimod,
imiquimod)

(20,
21,
33)
(35,
36),

TLR8 Human
and mouse

Endosome Viral and bacterial
ssRNA

Human immunodeficiency virus (HIV),
HCV

Immune
complexes, self-

RNA

Thiazoquinoline and
imidazoquinoline
derivatives (e.g.,
resiquimod,
imiquimod)

(20,
21,
33)
(35,
36),

TLR9 Human
and mouse

Endosome Viral and bacterial
CpG DNA,

DNA: RNA hybrids

Human papilloma virus (HPV),
Hepatitis B virus (HBV), Epstein-Barr

virus (EBV), Polyomavirus

Chromatin-IgG-
immune

complexes, self-
DNA

CpG
Oligodeoxynucleotides

(CpG ODNs)

(20,
33,
37)

TLR10 Human Plasma
membrane

Unknown Unknown Unknown (20)

TLR11 Mouse Endosome Profilin and
flagellin

Toxoplasma gondii Unknown Unknown (38)

TLR12 Mouse Endosome Profilin Unknown Unknown (20)

TLR13 Mouse Endosome Bacterial 23S
ribosomal RNA

(rRNA)

Unknown 23S rRNA-derived
oligoribonucleotide

(20)
frontie
Adapted from “Toll-like receptors: Activation, signalling and transcriptional modulation.” by De Nardo D. 2015, Cytokine. 74(2):181-9.
rsin.org

https://doi.org/10.3389/fimmu.2023.1227833
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chakraborty et al. 10.3389/fimmu.2023.1227833
functional characteristics are exploited in DC-mediated vaccination

and immunotherapy (53, 54). Similarly, the anti-tumor outcome of

TLR7 activation was evident in central nervous system tumors,

increasing maturation of DCs and activating tumor specific

cytotoxic CD8+ T cells (55). Another report demonstrated TLR

mediated enrichment of the Th1 microenvironment and promoted

activation of cytotoxic T-cells via IFN-l-induced IL-12 released by

breast cancer-associated dendritic cells (56). TLR4 activation also

induced anti-colorectal cancer T cell response in vitro through DC

maturation (57). Likewise, activation of TLR-4 and processing of

tumor antigens stimulate DC maturation to markedly increasing in

vivo CD8+IFNg+ cytotoxic T cells (58). Interestingly, activating

TLR7 and 8 was a crucial step in promoting the maturation of

DCs isolated from AML patients and subsequently activating

cytotoxic T cells in vitro (59). Interestingly, TLR7 signaling

activated plasmacytoid dendritic cells (pDCs) leading to killing of

murine melanoma cells through stimulation of NK cells and

activating CD8+ cytotoxic T-cells (60). Similarly, in ALL patients,

activation of pDCs vial TLR9 molecules led to increased IFN

production, which stimulated NK cells through TRAIL and

CD69-mediated signaling (61). An earlier report about DC-

targeted vaccines, demonstrated CD8+ T cell response and better

therapeutic efficacy after the activation of DCs through TLR7/8 and

TLR3 mediated signaling (62). The immunosuppression present in

the tumor microenvironment (TME) impedes the success of cancer

immunotherapy, and DCs are extremely important in generating

anti-tumor immunity inside the TME (42). Research has shown

that the tumor microenvironment (TME) can hinder the growth

and differentiation of mDCs (63). However, multiple studies

demonstrated that TLR-mediated signaling has the potential to

reactivate the immune functions of these inhibited dendritic cells,

and this method could be beneficial to effectively counteract

immunosuppression in the TME, offering a new arrow in the

quiver of immunotherapy (64, 65).
Macrophages

Macrophages were the first immune cells identified to uphold

tissue homeostasis, facilitate tissue repair, orchestrate immune

responses, and combat pathogens (66, 67). Subsequently, it

became evident that they also infiltrate and inhabit tumor sites

and influence tumor development (66, 67). In addition,

macrophages can alter their transcriptional profile, display

remarkable cellular plasticity, and modify their functions in

response to various inflammatory, tissue-specific, external

pathogenic, and environmental stimuli, leading to anti-tumor and

pro-tumor effects (67). In inflammatory conditions, classifying the

tumor-associated macrophages (TAM) is still a complex task (66,

67). Classically, the macrophages were mainly categorized into two

polarization states: M1, with pro-inflammatory traits, and M2, with

anti-inflammatory characteristics (66, 67). M2 macrophages were

considered to support tissue remodeling, tumor growth, and

cancer-related processes, including cell proliferation, invasion,

metastasis, and immune suppression; whereas, M1 macrophages

were designated to drive immune responses, cause tissue damage,
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and inhibit tumor growth by enhancing anti-tumor responses of T

cells and natural killer cells (66, 67). Macrophages are one of the

most influential players in the TME, rendering them as a vital point

for cancer immunotherapy (68). The anti-inflammatory M2

subtype of macrophages supports tumor growth and

maintenance, but the pro-inflammatory M1 subtype promotes

inflammation and tumoricidal properties (68). Switching the M2

subtypes to M1 in the tumor microenvironment by stimulants can

promote tumoricidal activity (69). Regrettably, this simplified

classification of macrophages into just the M1 or M2 category

failed to define the diverse range of macrophage polarization states

present within tumors or the TME (70), leading to a modern

classification of TAMs where M1 and M2 represent the extremes

of a spectrum with numerous intermediate subsets (66, 67). In

relation to the complex interactions between different cell types

within the TME, the TAMs are now considered into two main

subtypes, M1-like (pro-inflammatory macrophages) and M2-like

(anti-inflammatory macrophages) (67). Stimulation of Toll-like

receptors (TLRs) in macrophages has been long recognized as a

mechanism that drives macrophages toward a pro-inflammatory

phenotype, and this renders TLR agonists particularly attractive in

the context of cancer immunotherapy (71). It’s noteworthy that

since 2015, over 60 clinical trials have been initiated to assess the

therapeutic potential of TLR agonists in treating various cancers (4).

Activation of TLR3, recruits in vitro and in vivo IFN signaling

cascade resulting in switching to M1 phenotype from M2

phenotype (69). The switching of M2 to M1 involves signaling

associated with CD86, CD80, CD40, IL-12, IL-6, and TNF-a
ensuing in enhanced antigen uptake by the macrophages and

activation of T cells-mediated mice tumor growth regulation (72).

Comparable anti-tumor results were detected in mice models of

Lewis lung carcinoma and sarcoma following induction of TLR3

and TLR4 mediated signaling, respectively (73, 74). TLR4 was also

suspected to promote the migration of macrophages through the

upregulation of proinflammatory molecules like TNF-a, NF-kB,
and VEGF (75). In a similar study, TLR-mediated signaling

promoted the antitumor M1 phenotypes along with the

upregulation of immunostimulatory cytokines like IL-18 (76).

These immunostimulatory cytokines directed an antitumor

collaboration between macrophages and NK cells ex vivo in

ovarian cancer to stimulate IFN-g secretion and Th1-type

immune responses via NK cells (76). It is worth noting that

TLR7/8 activation has been found to influence the differentiation

of myeloid-derived suppressor cells (MDSCs) towards M1

phenotype within the tumor microenvironment, ultimately

resulting in a regression of colorectal tumors in mice and a

decrease in resistance to oxaliplatin (77). Oxaliplatin hindered the

transformation of MDSCs into M1-like macrophages, but in

combination with TLRs 7/8 agonist R-848, this hindrance was

overcome (77). The addition of R-848 augmented the polarization

of MDSCs to M1-like pro-inflammatory macrophages leading to

increased apoptosis of the colorectal tumor cells (77). Furthermore,

the stimulation of macrophages by TLR2/6 led to the activation of

the NK cells and cytotoxic CD8+-T cells in several tumors,

including metastasis mice models and pancreatic cancer (78, 79).

This was accompanied by increased immune surveillance in tumors
frontiersin.org
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with concomitant increase of COX-2 expression in macrophages

(78). COX-2 is the rate limiting enzyme of Prostaglandin E2 (PGE2)

biosynthesis, and PGE2 is a strong suppressor of NK cells in the

TME (78). Macrophage-activating lipopeptide-2 (MALP-2), a

TLR2/6 agonist, enhances NK cell cytotoxicity towards the tumor

cells, while the PGE2 mediated immunosuppression was blocked by

COX-2 inhibitor (78).
NK cells

NK or natural killer cells are a group of lymphocyte, an

indispensable component of the innate immune system, and they

are best recognized for killing pathogen or virus infected cells and

also responsible to detect and regulating initial signs of cancerous

tissues (80). NK cells are termed as the first rank of defense against

cancer cells, with the capability to kill the cancer cells without any

prior activation or priming. That is why they are named “natural

killers” (80). Multiple reports documented that depending upon

originating population, NK cells express almost all types of TLRs

(81). Amid all the TLR ligands TLR3, 7, 8, and 9 mediated signaling

demonstrated a significant role in cancer biology. Human NK cell

lines for instance YTC12, YTS, and NK92 expressed high amounts

of activated TLR3, causing cytotoxic killing effects on K562 cancer

cells (82). Furthermore, head and neck squamous cell carcinoma

(HNSCC) cells are killed via IFNg secreting NK cells activated

through TLR3 (82, 83). TLRs like TLR7, 8, and 9 can sense foreign

nucleic acids, and their subsequent activation on NK cells

empowers anti-tumor immune responses (84, 85). Though the

activation of this nucleic acid-sensing, NK cell-associated TLRs

are mostly dependent on the signaling induced by other cells

present in the associated tumor microenvironment (84, 85).

While there is some argument concerning the expression of TLR7

and 8 on NK cells (84, 85), several reports depicted the activation

and proliferation of NK cells by the cytokines secreted from

neighboring cells of the tumor microenvironment (84, 85). In

addition to TLR9 stimulated cytotoxicity of NK cells on B16

melanoma cells, the secretion of inflammatory cytokines as IFNg
and IL-12 was promoted via TLR7/8 activation, which in order

aided the NK cells to eliminate the HNSCC cells and B16-F10

melanoma cancer cells (86–88). Interestingly, another report

showed an acceleration of antitumor activity of HER2(human

epidermal growth factor receptor 2)-targeting monoclonal

antibodies both in vivo and in vitro after TLR2-mediated

activation of NK cells (89).
B cells

B cells are the production house of antigen-specific antibodies

and considered as the epicenter of the adaptive immune system (90).

To date, several distinct B-cell subsets have been identified

performing diverse functions in both adaptive and innate immune

responses (90). B cells express an array of TLRs, whose signaling is

collaborated with the B cell receptor signaling (91). Signaling from

TLRs like TLR7 and TLR8 are well documented to augment the
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antibody and cytokine production from B cells (90). This TLR-

mediated stimulation of B cells depicted increased expression of B7

costimulatory molecules and amplified survival as like B cell

activation by CD40 (90). Activated B cells were reported to secrete

multiple chemokines and cytokines after stimulation of TLR1/2,

TLR7, and TLR9 (92). TLR-mediated signaling enhances cytokine

secretion, promotes better antigen presentation from B cells along

with overexpression of the costimulatory molecules, and, which

sequentially augments the activation of helper T cells (91).

Moreover, multiple reports demonstrated the activation of effector

functions of B cells by TLR signaling, e.g., proliferation, antibody

production, and immunoglobulin class switching (93–95). While B

cells are known for their ample Toll-like receptor (TLR) expression

and their critical role in humoral immunity and the adaptive immune

response, their potential for TLR-mediated utilization in cancer

immunotherapy remains relatively unexplored (91–93).

Nevertheless, there have been a few instances where TLR-mediated

activation of B cells has been applied in the context of cancer

immunotherapy. B cells use TLRs to coordinate antibody responses

during infection and autoimmune diseases, where the B cell receptors

(BCR) and TLR7 or 9 are activated in response to self-antigens

complexed with nucleic acids, such as RNA or DNA-containing

immune complexes (96). This TLR-mediated stimulation can also be

harnessed to generate tumor-specific antigen (TSA)-specific

responses (44, 50). When high levels of antibodies are required for

protection, be it infection or anti-tumor immunity, targeting TLRs on

B cells can prove to be an effective strategy to enhance antibody

production (97). The presence of tumor-specific antigens (TSAs) is

essential for activating T cell and B cell immunity (98). Notably, B

cells are the sole immune cells that consistently express TLR9 (97).

Several studies have demonstrated that TLR9 agonists can induce

significant anti-tumor immunity by activating B cells. TLR9 agonists

endorse the differentiation of B cells into plasma cells and enhance

antibody-dependent cellular cytotoxicity (ADCC) (99, 100). Brody

et al. (101) reported clinically significant anti-B cell lymphoma

responses following in-situ tumor vaccination with a TLR9 agonist.

These studies underscore the efficacy and advantages of

administering TLR agonists directly at the tumor site rather than

systemically. TLR9 ligands like CpG-ODNs have shown great

potential in stimulating B cell-mediated adaptive immunity (102–

104). CpG-ODNs strongly induce B cell proliferation, activate

plasmacytoid dendritic cells (pDCs) and monocyte maturation,

stimulate natural killer (NK) cell activation, and trigger the

production of inflammatory cytokines (102). B cell stimulation by

CpG-ODNs increases their sensitivity to antigen stimulation and

promotes their differentiation into antibody-secreting plasma cells,

resulting in increased production of antigen-specific antibodies (103).

TAC-001, an antibody-ODN conjugate consisting of a specialized

TLR9 agonist (T-CpG) linked to an antibody against CD22 (a

receptor restricted to B cells), is designed to deliver potent and

targeted immune activation through systemic administration (104).

In vitro stimulation of B cells with TAC-001 leads to increased

expression of co-stimulatory molecules, immunoglobulin secretion,

and cross-presentation, ultimately leading to T cell proliferation

(104). TAC-001 has demonstrated efficient and durable single-

agent anti-tumor activity in checkpoint inhibitor-resistant and
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refractory murine tumor models (104). Systemic administration of

TAC-001 in mice has resulted in increased B cell infiltration,

enhanced T cell effector functions, modulation of myeloid-derived

suppressor cells (MDSCs), and a significant decrease in IL-10+

regulatory B cells within the tumor microenvironment (104).

Intravenous administration of TAC-001 in monkeys has shown

favorable tolerability, pharmacokinetics, and pharmacodynamic

profiles (104). Additionally, TLR9 activation in B cells leads to the

expression of co-stimulatory molecules, enhancing cross-

presentation, and allowing for the activation and proliferation of T

cells, as well as the secretion of chemokines, cytokines, and

immunoglobulins (3). Among other TLR9 ligands, Lefitolimod

(MGN1703) has been utilized in several preclinical studies to assess

B cell-mediated immunity. Multiple studies have demonstrated that

MGN1703 significantly activates both innate and adaptive immune

cells, including B cells, and induces the secretion of various

inflammatory cytokines (IL-6, IL-8, IFN-a, and IFN-g) and

chemokines (CD40, CD69, CD86, CD169, and IP-10) from

activated immune cells (105, 106). The combination therapy of

TLR3 agonist with a TLR9 agonist (CpG: 5’-cytosine-phosphate-

guanine-3’) along with adoptive T cell transfer (ACT) has shown

promise in increasing the abundance of various immune cell types,

including B cells with CD4+ and CD8+ T cells, macrophages,

neutrophils, and NK cells in tumor-draining lymph nodes (107).

This combination therapy has augmented the elimination of murine

melanoma cells and improved the survival of tumor-bearing mice,

doubling their survival compared to untreated mice (107).

Combination therapy involving TLR9 agonists and immune

checkpoint inhibitors (ICIs) has also shown promising effects in

clinical studies (108). For instance, Ribas et al. evaluated the safety

and anti-tumor activity of co-treatment with intratumoral SD-101, a

synthetic CpG oligonucleotide ligand for TLR9, and pembrolizumab

in patients with melanoma (108). This combination therapy was well

tolerated and improved overall survival, accompanied by a significant

increase in B cells within the tumor microenvironment (TME), as

well as other immune cell populations (108). These results indicate

that combining SD-101 administration with PD-1 blockade

potentially enhances clinical efficacy and reduces PD-1 blockade-

related toxicity (108). Apart from TLR9, monophosphoryl lipid A

(MPLA), a TLR4 ligand derived from the lipopolysaccharide (LPS) of

Salmonella Minnesota, is used as an adjuvant in a prophylactic

vaccine against human papillomavirus types 16 and 18, which are

common causes of cervical cancer (109). As an adjuvant, MPLA

enhances the antigen-presenting capabilities of macrophages and B

cells, primes naive T cells, induces the maturation of dendritic cells,

and stimulates antibody production (109).
Effector T cells

The effector T cells carry out multiple functions of the immune

responses, like cytotoxicity, helper, and regulatory (110). Diverse

types of effector T-cells express different TLRs, which can

consequently regulate associated T-cell functions and antitumor

immune activities (111). TLR1, 2, 5, 7, and 8 mediated signaling is

identified to activate the proliferation of CD4+ memory T-cells and
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upregulate accompanying cytokine secretion (112). For example,

the presence of a higher amount of TLR5 agonists amplified CD4+

T-cell population and concomitant expression of the cytokine IL2

(112). Activation of multiple TLRs like TLR2, 3, and 9 in purified B6

expressing CD4+ T cells provides costimulatory signals aimed at T

cell receptor (TCR) activation. NF-kB signaling through TLR2-

mediated signaling in CD8+ T cells and TLR9 activation in CD4+ T

cells inhibits apoptosis and promotes survival (113). In a similar

study, activation of TLR7 along with TLR8 on CD4+ T-cells

enhanced the secretion of IFNg, IL-2, and IL-10; in addition to

proliferation of T cells (114). Interestingly, the antitumor

commotion of CD8+ T-cells was promoted via glucose-uptake-

dependent MyD88 and AKT-mTOR pathway through activation of

TLR7 (115). It is well established that stimulation of immune cells

like NK cells, DCs, and Tregs can control the CD8+ effector T cell

functions (51, 52, 82); similarly, multiple TLRs can control multiple

functional characteristics of CD8+ T-cells directly inside the tumor

microenvironment (116). Activation of TLR1/2 promotes the

effector activity of CD8+ T cells in B16 melanoma cells both in

vivo and in vitro through upregulation of perforin, Granzyme B,

IFNg and TNF-a (116). In addition, effector CD8+ T cell functions

along with increased IFNg expression as a functional coactivator

was also reported to be regulated by activation of TLR3 (117).

Besides, transgenic OT-1 (CD8+) T cells were stimulated through an

antigen-independent manner after activation of TLR3, as measured

by in vitro assays, leading to increased expression and robust

expansion of immune-activation markers in vivo (118).
Regulatory T cells

The immunosuppressive activity of both human and murine

regulatory T-cells (Tregs) can be modulated by some of the TLRs,

and it is documented in multiple reports. TLR4 activation on Tregs

enhanced their viability and immunosuppressive commotion (112).

Also, a slight ligand-mediated activation of TLR5 increased the Treg

marker FOXP3 on CD4+CD25+ Treg cells and increases their

immunosuppressive aptitude slightly (112). There is also a

contrasting report of reverting Treg’s suppressive properties in

vivo through the TLR8-MyD88-IRAK4 signaling cascade (119).

There are some controversies regarding the reversion of

suppressive activity of Tregs after TLR2 activation even though

multiple reports depicted an increase in Treg proliferation after

TLR2 activation (120, 121). For instance, activation of TLR2,

inhibited the immunosuppressive activity of Tregs though it

increased proliferation of Treg cells in vivo (122). In the tumor

microenvironment (TME), activation of immunosuppressive cells

like tolerogenic dendritic cells (DCs) and Treg cells is vital for

establishing immunosuppression (123). Using antibodies to inhibit

Treg cell function is an initial approach to enhance the effectiveness

of cancer vaccines by reducing TME’s immunosuppressive effects

and boosting effector T cell function (124). Consistently,

administering a DC vaccine with the TLR4 agonist LPS resulted

in a notable increase in NK cells and a significant reduction in Treg

cells within the tumor microenvironment in an ovarian cancer

mouse model (125). TLR ligands can also trigger Th1 inflammatory
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cytokines like IL-12, which facilitate the transition of CD4+ T cells

from Th2 to Th1 subtype, boost CD8+ T cell responses, and

suppress Treg cell function (126). TLR3 ligands were also

reported to overturn the immunosuppressive TME towards anti-

tumor immunity through modulation of the Treg cells (127, 128).

TLR3 ligand poly A:U shifts the immunosuppressive tumor

microenvironment towards anti-tumor immunity by altering the

composition in favor of antigen-specific CD8+ granzyme B+ T cells,

resulting in a lower Treg/CD8+ cell ratio (127). Salazar et al.

reported that administration of poly-ICLC induced in situ

vaccination in a rhabdomyosarcoma patient induced local tumor

inflammation and a systemic immune response, leading to a

significant reduction in a facial tumor (128). Their research

revealed that tumor regression was a result of the activation of

both local and systemic anti-cancer immunity triggered by

intratumoral and intramuscular poly-ICLC injections. Their

findings suggest that intramuscular poly-ICLC maintenance

therapy contributes to a systemic anti-tumor immune response

through the induction of chemokines, co-stimulatory molecules,

inflammasome formation, and an increase in the Teff/Treg cell ratio

(128). In addition to TLR3, TLR7 agonists also inhibit Treg cell

function, and activate NK cells, promoting anti-cancer immune

responses (87, 129). Topical imiquimod application in a melanoma

mouse model reduces Treg cell-related chemokine mRNA

expression and increases cytotoxic molecules like granzyme B and

perforin within tumors (130). Imiquimod also decreases Tregs and

boosts CD8+ cells in the tumor microenvironment (TME) (130).

Intratumoral administration of SZU101(another TLR7 agonist)

triggers a systemic anti-tumor response and alters the TME by

increasing CD4+ and CD8+ cells while reducing Treg cells in a

murine breast tumor model (131). Intraperitoneal injection of the

TLR7 agonist resiquimod in mice with pancreatic ductal

adenocarcinoma (PDAC) tumors reduces Tregs in the TME,

enhances activation, infiltration, and cytotoxicity of CD8+ T cells,

suppressing tumor growth and improving survival (65).

Combination therapy of radiation and imiquimod decreases Treg

cells and MDSCs while increasing CD4+ and CD8+ T cell

recruitment in the TME, commencing systemic anti-cancer

responses and potentially limiting metastasis ultimately leading to

increased survival (132). Administrating imiquimod as adjuvant

preceding HPV vaccination enhances intratumoral CD4+ and CD8+

T cell infiltration while reducing Treg cells in the TME (133).

Importantly, the effectiveness of the vaccination correlates with pre-

existing and post-treatment (with imiquimod) Treg cell levels (133).

Combining PD-L1 blockade with resiquimod reduces tumor size,

activates DCs, diminishes Treg cells, and boosts the CD8+ T cell/

Treg cell ratio in the TME in mice tumor models (134).

Furthermore, in the case of mice PDAC derived tumors,

resiquimod elicited a robust immune response characterized by

heightened immune complexity, reduced growth, enhanced

infiltration of CD8+ T cells, and a lowered frequency of

intratumoral CD4+CD25+FOXP3+ Treg cells (135). TLR9 ligands

were also reported to modulate the TME via the suppression of Treg

cells. CpG-A, the TLR9 ligand, induces IFNa and IFNb production,

promoting effector CD4+ T cell proliferation by counteracting Treg

cell suppression (119). In a mouse tumor model, adoptive transfer
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of Treg cells after pretreatment with poly-G10 (a TLR8 ligand)

enhances antitumor activity and reduces Treg cell suppression

(119). Remarkably, this study also suggests that Treg cells express

TLR9 and can recognize CpG DNA molecules (119). Furthermore,

CpG ODNs reduce Treg cell population in the draining lymph node

(136). Local administration of CpG enhances OX40 expression, a

TNF receptor, on both effector T and Treg cells in the tumor

microenvironment (TME) (137). PF-3512676, one of the earlier

synthetic TLR9 agonists to treat melanoma patients, increases pDC

and mDC frequency, along with the release of inflammatory

cytokines, while markedly reducing Treg cell population in the

sentinel lymph nodes (SLN) (138). In addition, SD-101 (TLR9

agonist) treatment also reduces numbers of Treg cells and T

follicular helper cells within tumors (139).
Application of TLR ligands/agonists in
Cancer immunotherapy

With their ability to activate several innate immunity

pathways, TLR ligands or agonists are considered compelling

immunomodulators (44, 140, 141). Upon stimulation of TLRs by

agonists, the downstream signaling also initiates enduring adaptive

immune responses including cytotoxic NK cells, T-cells and

maturation of DCs (140). Several TLR agonists demonstrated

significant therapeutic efficacy against multiple ailments,

including cancer (44, 141). Recent reports depicted improved

efficacy of current immunotherapy approaches in cancer patients,

such as cell-based immunotherapy combined with TLR agonists

(19). TLR agonists are also known to sensitize cancer cells to

conventional cancer therapies like radiation and chemotherapy (4,

140). Apart from combined therapy, TLR agonists are also

administered as monotherapy in several malignancies (19). With

growing information about several TLRs and involved TLR-

agonists along with their downstream signaling pathways, several

natural (resourced from microbes) or chemically synthesized TLR

agonists, are being involved in cancer immunotherapy approaches

(4, 140). But there are some early clinical setbacks in using TLR

agonists as cancer therapeutics (142) because of the pro-

tumorigenic nature of some TLRs in certain cancer types (44),

and the activation of some of the TLRs led to an increase in tumor

growth and metastasis (143). For this reason, it is necessary to

determine the right tumor type and appropriate TLRs to be targeted

and involved combinatorial approaches before treating any tumor

with TLR-based immunotherapy. For the last two decades, TLR

agonists have been used to stimulate and activate DCs in cancer

immunotherapy (123). Moreover, in multiple vaccination strategies

and immunotherapy approaches, TLRs can modify T-cell

responses, which is revealed to be an excellent means to control

and direct adaptive immunity (144, 145). One of the reasons for the

growing popularity of TLR agonists for treating tumors is their

aptitude to reinstate the activity of immunosuppressed DCs, which

can be extremely useful for reversing the immunosuppressive

atmosphere inside the TME (64, 65). TLR ligands have been

widely utilized as adjuvants of anti-cancer vaccines, or in

combination with other traditional standard of cares for cancer
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(19, 44). Some TLR agonists have shown great promise at the

clinical scenarios (19, 44). In recent years, against poorly

immunogenic tumors, synthetic TLR agonists performed

markedly better as adjuvants of cancer vaccines by enhancing the

Th1 or Th2-mediated immune response (146). In Table 2, we have

listed all the current clinical trials where TLR agonists are used as

adjuvant(s) to cancer vaccines (3, 4, 6, 7, 90).

At the next section of this review, we are trying to present and

discuss multiple clinical and preclinical pieces of evidence which

demonstrates that TLR agonists can significantly improve the

therapeutic outcome in different types of cancer, either in

combined immunotherapy or as a cancer vaccine adjuvant.
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Application of TLR agonists as
adjuvants of cancer vaccine

TLR2/TLR4

Bacillus Calmette-Guerin (BCG) is the first successful TLR

ligand/agonist approved for cancer treatment (147, 148). More

than 40 years ago, BCG was first approved by the US Food and

Drug Administration (FDA) to treat bladder cancer (147, 148).

BCG wields its anti-cancer effect by the dual activation of TLR2, and

TLR4 (147, 148). BCG as an adjuvant with whole cell vaccines also

has been widely assessed in melanoma and colorectal cancer (CRC)
TABLE 2 Clinical Trials that are testing TLR agonists as adjuvants of cancer vaccines.

Target Molecule Indication Status Vaccine or co-therapy Phase NCT
number

TLR2 BCG Melanoma Unknown In combination with cyclophosphamide, IL-2 and a
melanoma specific
vaccine

II NCT00477906

TLR3 Ampligen Colorectal carcinoma Withdrawn In combination with DC-based vaccination, interferon-
a2b and
celecoxib

II NCT02615574

TLR3 Hiltonol (poly
(I:C))

Breast carcinoma Active, not
recruiting

In combination with a peptide vaccine and durvalumab I NCT02826434

TLR3 Hiltonol Breast carcinoma Active, not
recruiting

In combination with a peptide vaccine and
pembrolizumab

I NCT03362060

TLR3 Hiltonol Gynecological tumors Active, not
recruiting

In combination with a DC-based vaccine, guadecitabine
and
atezolizumab

I/IIb NCT03206047

TLR3 Hiltonol Lung cancer Active, not
recruiting

In combination with a MUC1-vaccine I NCT03300817

TLR3 Hiltonol Solid tumors Completed In combination with a personalized vaccine I NCT02721043

TLR3 Hiltonol Solid tumors Withdrawn In combination with bevacizumab and a peptide vaccine I NCT02754362

TLR3 Hiltonol Multiple myeloma Active, not
recruiting

In combination with a peptide vaccine and durvalumab
± lenalidomide

I NCT02886065

TLR3 Hiltonol Glioma Active, not
recruiting

In combination with a cancer cell lysate vaccine before
and after or
only after surgery

I NCT02549833

TLR3 Hiltonol Glioma Active, not
recruiting

In combination with a peptide vaccine ± varlilumab I NCT02924038

TLR3 Hiltonol Glioma Active, not
recruiting

In combination with a peptide vaccine I NCT02960230

TLR4 G100 Solid tumors Terminated In combination with a NY-ESO-1-targeting vaccine I NCT02387125

TLR8 Imiquimod Cervical intraepithelial
lesions

Unknown In combination with a DNA-based vaccine n.a. NCT03206138

TLR8 Imiquimod Cervical intraepithelial
lesions

Active, not
recruiting

Alone or in combination with HPV vaccination II NCT02864147

TLR8 Imiquimod Genital warts Completed In combination with a DNA-based vaccine II NCT03180684

TLR8 Imiquimod Chronic lymphocytic
lymphoma

Completed In combination with a peptide-based vaccine and
lenalidomide

II NCT02802943

TLR8 Imiquimod NSCLC Unknown In combination with a DRibble-based vaccine, DC/CIK
cells and GMCSF

I NCT03057340

(Continued)
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(149, 150). In a randomized Phase III trial, Canvaxin, an allogeneic

melanoma vaccine utilizing BCG as an adjuvant, failed to improve

both overall and disease-free survival, despite showing promise in

phase II (149). Interestingly, in the same trial with resected stage-III

and stage-IV melanoma, monotherapy of BCG in patients

demonstrated improved efficacy (149, 150). OncoVAX, an

autologous colon cancer vaccine with BCG as an adjuvant, in a

phase II study showed significant improvement in disease-free and

overall survival (150, 151). Similarly, anti-tumor effect generated

through activation of TLR2 and 4, by OM-174 (CXR-526), a lipid A

(Escherichia coli origin) derivative, is currently being evaluated as a

vaccine adjuvant for the treatment of melanoma in phase I/II trials,

in addition to a phase I trial against solid tumors (152). The

observed results from a few preclinical studies depict the increase

of TNF-a, IFN-g, and iNOS behind the therapeutic activity of OM-

174 administration (152, 153). Another lipid A derivative,

monophosphoryl lipid A (MPL), also an activator of TLR4, is also

used in several vaccines as an adjuvant (153, 154). Stimuvax, the

liposomal cancer vaccine against the MUC1 tumor antigen, uses

MPL as an adjuvant (153). Stimuvax underwent phase III

evaluation against advanced NSCLC but failed to add any marked

therapeutic advantage (153). A cancer vaccine targeting the MAGE

A3 tumor antigen utilizes a MPL containing special mixed adjuvant

system (AS15, AS02b) (155). Other TLR4 activators like AS04

(MPL derivative, cervical cancer) and GLA-SE (lymphoma

Merkel cell carcinoma) are also studied via preclinical and clinical

studies (156–158). Meanwhile, lipoteichoic acids (LTA) from

Gram-negative bacterial cell walls, responsible for the “endotoxin”

of bacteria, can also act as an agonist of TLR2 receptors and trigger

anti-tumor immune responses (11, 14).
Frontiers in Immunology 10
TLR3

The activation of TLR3-mediated signaling by sense double-

stranded RNA was first discovered by Alexopoulou et al. (159).

Currently, the synthetic polynucleotide polyinosinic-polycytidylic

acid or poly(I:C) is being used as a TLR3 agonist, and is known as a

powerful activator of the innate immune responses (160). Poly(I:C)

promoted the activation of DCs and subsequently enhanced antigen

presentation for CD8+ cytotoxic T cells (161). Additionally, after

stimulation via poly(I:C), DCs can indirectly activate NK cells and

T-cells, generating robust antitumor immune responses, and for

this reason poly(I:C) is often employed in cancer vaccines (162).

Because of the associated toxic effects and hasty degradation of poly

(I:C) in the body, several stable derivatives or variants of poly(I:C)

are established through experimental studies (163, 164). For

example, Hiltonol or poly-ICLC is stabilized through the addition

of poly-lysine and was assessed in several clinical trials involving

different types of solid tumors (165, 166). Though these clinical

studies didn’t demonstrate significant anti-tumor efficacy but still it

managed to be physiologically safe without any adverse side effects

(165, 166). Additionally, rintatolimod or poly(I:C12U) (Ampligen),

another poly(I:C) derivative, is stabilized by the substitution of

cytidine with uridine and is approved for the treatment of

pancreatic, triple-negative breast cancer, and brain tumors in

combinatorial therapy with some vaccines demonstrated

substantial efficacy (167–169). Poly(I:C) and all of its derivatives

induce maturation of DCs, as well as intensify the expression of

Th1-related cytokine, and currently evaluated in multiple clinical

trials as potent vaccine adjuvants (170). In addition, poly-ICLC was

moderately successful as combinatorial therapy with peptide or DC
TABLE 2 Continued

Target Molecule Indication Status Vaccine or co-therapy Phase NCT
number

TLR7/8 Resiquimod Melanoma Completed Combined with a peptide-based vaccine I NCT01748747

TLR7/8 Resiquimod Melanoma Completed Combined with a peptide-based vaccine I NCT00470379

TLR7/8 Resiquimod Melanoma Unknown Combined with a peptide-based vaccine ± poly-ICLC I/II NCT02126579

TLR7/8 Resiquimod Melanoma Completed Combined with a peptide-based vaccine II NCT00960752

TLR7/8 Resiquimod NY-ESO-1+ tumors Completed Combined with a peptide-based vaccine I NCT00821652

TLR7/8 CV8102 Hepatocellular
carcinoma

Completed Combined with cyclophosphamide and a peptide-based
vaccine

I/II NCT03203005

TLR9 DUK-CPG-
001

Hematological
neoplasms

Withdrawn In combination with a DC vaccine II NCT02115126

TLR9 Vidutolimod Chronic lymphocytic
leukemia

Recruiting Multipeptide vaccine, XS15 I NCT04688385
Adapted from.
1. “Trial watch: Toll-like receptor ligands in cancer therapy”. By Le Naour J, and Kroemer G. 2023, Oncoimmunology. 12(1):2180237.
2. “Trial Watch: Toll-like receptor agonists in cancer immunotherapy”. By Smith M, Garcıá-Martıńez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, et al., 2018, Oncoimmunology. 7(12):
e1526250.
3. “Trial watch: intratumoral immunotherapy”. By Humeau J, Le Naour J, Galluzzi L, Kroemer G, and Pol JG. 2021, OncoImmunology. 10(1):1984677.
4. “Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy”. By Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, FridmanWH, et al., 2016, Oncoimmunology. 5
(3):e1088631.
5. “Trial Watch: experimental TLR7/TLR8 agonists for oncological indications”. By Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, et al., 2020,OncoImmunology. 9(1):1796002.
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vaccines in various advanced malignancies, including malignant

glioma (136).
TLR5

TLR5 is activated by bacterial flagellum protein flagellin, and

flagellin derivatives are evaluated for anticancer efficacy (171–173).

The clinical efficacy of CBLB502 (natural flagellin/entolimod

derived from natural Salmonella flagellin) is evaluated against

squamous cell head and neck cancer and solid tumors in phase I

clinical trials (174). Mobilan, a recombinant nonreplicating

adenovirus encoding flagellin which is commercially available as

M-VM3 is also has been studied for anti-cancer effects in prostate

cancer (175). Treatment of breast cancer cells with the TLR5 agonist

flagellin also reported to suppress cell proliferation and inhibiting

anchorage-independent tumor growth (171). In another interesting

in vivo study, the researcher demonstrated contrasting effects on

tumor growth after TLR5 activation by flagellin. Activation of TLR5

by flagellin reduces the growth of strongly immunogenic tumors,

but it failed to do the same for weakly immunogenic variants (172).

These conflicting results were caused by the disproportionation

between IFN-g:IL-4 ratio and the concomitant number of

CD4+CD25+ T regulatory cells (172). Also in the same study,

early combinatory treatment of flagellin and CpG-containing

oligodeoxynucleotides (CpG ODNs) completely inhibited tumor

growth (172).
TLR 7/8

Among all the TLRs, ligands or agonists of TLR7 and 8 have

shown the most promising immunomodulatory and anticancer

effects, and many of them transitioned to the clinic (176). TLR7

and 8, both recognize ssRNA as ligands, and this property has been

exploited to synthesize several types of TLR7/8 agonists that could

achieve stimulation of these receptors simultaneously (176). Based

on chemical structures, TLR7/8 agonists are organized into

guanosine and adenosine analogs or imidazoquinoline derivatives

with modified RNA sequences (176, 177). Dual agonists of TLR7/

TLR8, resiquimod (R-848), and loxoribine (178) failed to enter

phase III trials because they lacked significant efficacies (179). Initial

studies attributed the lack of local immune activation by resiquimod

to its property of solubility in body fluid and subsequent dispersion

from the injection site (178). Resiquimod was thereafter

administered as a dermal cream to counteract this problem (180).

Resiquimod induces the expression of TNF-a, IFN-a, and other

proinflammatory cytokines, via the initiation of the TLR7-MyD88-

dependent pathway (22). Imiquimod, another imidazoquinoline

marketed as Aldara (5% imiquimod cream), was approved by the

European Medicines Agency and FDA in 1997 for treating human

papillomavirus (HPV) induced genital warts (181). Later in 2004,

imiquimod was also approved as therapeutics of primary skin

malignancies like superficial basal cell carcinoma and

premalignant actinic keratosis (182). Topical ointment of

imiquimod is also used for the treatment of other local cutaneous
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tumors, including melanoma, and interestingly imiquimod exerts

an impressive over 85% success rate while treating lentigo maligna

melanoma (183, 184). Imiquimod also demonstrated significant

efficacy in combinatorial therapies with other traditional anticancer

therapies like chemotherapy or radiotherapy in multiple cancer

types (180). Imiquimod has also shown promise in developing DC-

based vaccines (6, 185). Imiquimod promoted the stimulation and

maturation of immature DCs and their consequent migration to

draining lymph nodes in cancer patients (185). Topical imiquimod

ointment amplified the immunogenicity of the peptide vaccine for

melanoma (185). In patients with resected melanoma, imiquimod

as an adjuvant also augmented the immunogenicity of the NY-ESO-

1 peptide vaccine, recruiting and activating pDCs and mDCs

subcutaneously and in inflammatory infiltrates (6). In contrast to

imiquimod’s topical application, 852A (a TLR7 agonist) and VTX-

2337 (a TLR8 agonist) are dispensed systemically, and their efficacy

are under evaluation through multiple phase I/II clinical trials

involving malignant breast, ovarian, endometrial, cervical, and

head and neck cancers (186). 852A activates APCs and stimulate

NK cells with increased secretion of IFN-a from plasmacytoid DCs

in cancer patients (179, 187). In a phase II trial, 852A demonstrated

safety and systemic immune activation in metastatic melanoma

patients who had failed chemotherapy, leading to prolonged disease

stabilization (188). While treating patients suffering from chronic

hepatitis C virus (HCV) infection and cancer, ANA773- the orally

administered TLR7/8 agonist, induced IFN-a, activated NK cells,

and reduced serum HCV RNA levels (189). Lastly, 3M-052 (a lipid-

modified imidazoquinoline derivative), was assessed as a cancer

vaccine adjuvant demonstrating marked synergistic efficacy in

tandem with checkpoint-blocking antibodies for CTLA4 and

PDL-1 (190). This result highlighted the potential on the aspect

of utilizing TLR7/8 agonists in combinatorial therapies with other

immunotherapeut i c agent s l ike immune-checkpo in t

inhibitors (ICIs).
TLR9

Unmethylated cytidine phosphate guanosine (CpG) and

oligonucleotides (CpG ODNs) are the main ligands or agonists

for TLR9 receptors (191). Several CpG oligodeoxynucleotides are

verified for their anticancer effects both in vitro and in vivo models

of multiple cancers (192–194) and clinical trials (195). Some of the

significant examples of TLR9 agonists undergoing clinical trials are

IMO2055 (a CpG ODN-based oligonucleotide tested in advanced

NSCLC), dSLIM (two single-stranded oligodeoxynucleotide loops

connected with double-stranded oligodeoxynucleotide stem,

currently tested in advanced colorectal cancer), MGN1703 (a

natural DNA molecule assessed in small cell lung cancer and

advanced solid tumors), CpG-7909 (a single-stranded CpG ODN,

currently evaluated in melanoma, renal cell carcinoma, non-

Hodgkin’s lymphoma, glioblastoma, cutaneous T cell lymphoma,

and NSCLC), KSK-CpG (phosphorothioated derivative of CpG

ODNs, being evaluated in melanoma), SD-101 (tested in follicular

lymphoma), ODN M362 (tested in hepatocarcinoma), and CpG-

1826 (demonstrated amplified antitumor effect in glioma
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xenografts) (106, 191, 196, 197). Even after promising preclinical

studies, the administration of IMO2055 in combination with

platinum-based drugs against recurrent and metastatic head and

neck cancer, raised some safety issues in a phase II trial (142).

Similar safety concerns were raised against CPG7909, in a phase III

trial involving NSCLC (142). CpG ODNs blended (emulsified) with

Montanide ISA 51, being used as an adjuvant with vaccines

targeting cancer-testis antigens, demonstrated promising results

by promoting pDC-mediated infiltration of lymphocytes at the

site of vaccination (198). Therefore, the application of CpG ODN

as an adjuvant of cancer vaccines or intratumoral injection could be

a potential opportunity to direct effector lymphocyte-

mediated response.
TLR ligands as adjuvants in autologous
MBTA vaccine immunotherapy

Till now in the previous sections, we discussed the classification,

the immunomodulatory functions of TLRs, and the administration

of TLR agonists in immunotherapeutic strategies and cancer

vaccines. We concisely described how different TLR agonists are

employed as adjuvants to cancer vaccines in several preclinical and

clinical studies. Most of the current immunotherapy trends are

heavily oriented toward the onset of adaptive immunity via

immunomodulators like TLR agonists. Here we present a new

immunotherapeutic approach developed by our research group

based on autologous tumor neoantigens and TLR agonists that

are proficient in triggering both the innate and adaptive immune

responses (199, 200). It’s an autologous vaccine strategy that

leverages the PRR assets of TLRs as wel l as fungal

polysaccharides, and it has been tested in diverse types of mouse

tumor models (11, 14, 199–201).

This vaccine is called rWTC-MBTA, comprising of irradiated

autologous tumor cells (rWTC) mixed with mannan-BAM, TLR

agonists, and anti-CD40 antibody (MBTA) (199–202). This

vaccination strategy was initiated with the utilization of TLR

agonists accompanied by concurrent labeling of tumor cells with

phagocytosis-inducing ligands leading to enhanced recognition of

the tumor cells by the different immune cells (203, 204). Mannan, a

branched polysaccharide from the yeast Saccharomyces cerevisiae, is

affixed to the cancer cell membranes through linkage with the

hydrophobic BAM (Biocompatible Anchor for Membrane) anchor

and serves as a PAMP, which in turn is recognized by the mannan-

binding lectin complex (MBL) (11, 14) (Figure 2). Recognition of

mannan-BAM by MBL activates the lectin pathway of complement

activation and ultimately leading to iC3b-mediated opsonization

and phagocytosis of tumor cells (11, 14, 201). To augment the

vaccine-induced innate immune responses through the initiation of

multiple inflammatory pathways, along with mannan-BAM, we use

TLR ligands lipoteichoic acid (LTA)(agonist of TLR2),

polyinosinic-polycytidylic acid (poly(I:C))(agonist of TLR3), and

resiquimod (R-848)(agonist of TLR7/8) (11, 199–201) (Figure 2).

Several previous reports from our group demonstrated the

applicability of TLR ligands as adjuvants in rWTC-MBTA

vaccines (11, 199–201). This vaccine strategy plays on stimulating
Frontiers in Immunology 12
the immune system on various stages, starting from primary

activation of innate immunity trailed by concomitant activation

of adaptive immunity (11, 14, 201). Each TLR ligands as adjuvants

in the vaccine as unique function. The strongly immunogenic LTA,

which is sourced from the Gram-Positive bacteria Bacillus subtilis,

stimulates the TLR2-mediated inflammatory pathway, resulting in

elevated secretion of TNF-alpha and heightened inflammatory

response (205, 206). Poly(I:C) triggers TLR3-mediated signaling,

leading to activation of antigen-presenting cells (APCs) and

activates tumor associated macrophages (206–208). R-848 or

resiquimod induces the activation of innate immune cells and the

promotes Th1 cell-mediated immune responses (209, 210). In

addition, anti-CD40 monoclonal antibodies in the vaccine

preparation binds with the CD40L ligand to activate the CD4+ T

lymphocytes, permitting the dendritic cells to mediate the adaptive

immune responses (199, 200) (Figure 2). To prepare rWTC-MBTA-

Vax, (i) autologous or syngeneic cancer cells are irradiated so that it

remains alive but non-replicative, (ii) irradiated cells are combined

with mannan-BAM and TLR agonists, along with anti-CD40

antibody, to produce the effective vaccine, and (iii) the prepared

rWTC-MBTA is injected peripherally over four weeks to propagate

a tumor-specific immune response to inhibit tumor or cancerous

growth, metastasis, and prevent recurrence (199, 200).

One of the foremost advantages of the MBTA vaccines or

rWTC-MBTA is that it can affect the immunogenic status of the

TME to facilitate the outcome of the immunotherapy. The “cold”

TME of some solid tumors is a major barrier to cancer

immunotherapy (211–213). The immunogenically cold TME

status is associated with a lack of inflammatory T-cell infiltration

and lower neoantigen presentation (214). TLR agonists can

promote Th1(T helper) mediated inflammatory responses and

activate APCs in the TME, facilitating tumor infiltration as well

as improved functioning of the effector immune cells, like CD8+ T

cells and NK cells (212). When used as adjuvants, the TLR agonists

augment the antigen presentation capacity of APCs and initiate the

expressions of Th1 inflammatory cytokines along with increasing

the expression of several co-stimulatory factors (126, 212, 215). The

Th1 family of inflammatory cytokines endorse the switching of

CD4+ T cells from Th2 subtype to Th1 subtype, increase CD8+

effector T-cell responses, and impede the immunosuppressive

activity of Treg cells (126). The MBTA vaccine approach

manipulates the TME, by the application of TLR agonists to turn

the cold TME to hot, and it was evident by the efficacy of rWTC-

MBTA on curbing immunogenically cold tumors like glioblastoma

multiforme (GBM) (200) or triple-negative breast cancer (202).

Previous investigations involving intratumoral MBTA

injections sustained a profound antitumor response, but patients

are prone to secondary inflammatory damage or mass effect due to

the in situ delivery of the vaccine (151, 216). Earlier studies of the

MBTA anti-cancer therapeutics involved a unique combination of

two different types of PAMPs, mannan-BAM serving as a tag for

phagocytosis and soluble TLR agonist ligands as triggers of innate

immunity (11, 14). This unique amalgamation of mannan-BAM

and TLR agonists generates a robust infiltration of inflammatory

cells toward the tumor. This led to reduction of tumor burden and

even, in some experimental mice models, complete remission of the
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tumor (11, 14, 203, 204). In our preceding study, in a colon

carcinoma preclinical mouse model, compared to control or

injecting irradiated whole tumor cells alone, we found that

subcutaneous injection of the rWTC-MBTA vaccine (irradiated

whole tumor cells mixed with MBTA) caused a substantial decrease

in tumor volumes and improved overall survival (199). In one of

our recently published manuscripts, we demonstrated that the

rWTC-MBTA vaccine effectively inhibited the metastasis and

impeded the growth of tumors in animal models of both breast

cancer and melanoma (202). Additionally, in a therapeutically

mimicking postoperative model of breast cancer, it prevented the

metastasis of residual tumors and extended the survival (202). Our

results also demonstrated that the rWTC-MBTA vaccine effectively

prevented the growth of autologous tumors but rendered ineffective

against allogeneic tumors (202). Mechanistic studies regarding the

rWTC-MBTA vaccination revealed enhanced activation of APCs,

heightened CD4+ and CD8+ T-cell mediated response, generation

of immune memory along with tumor specific cytotoxicity (202).

Moreover, we also proved rWTC-MBTA vaccine efficacy was T-cell

dependent through T-cell depletion assay (202). With the
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surmounting preclinical evidence, we want to translate rWTC-

MBTA to the clinic for further investigations, and altogether the

efficacy of rWTC-MBTA is dependent on TLR agonists, and this

can direct toward a new track of cancer immunotherapy.
Conclusions and future perspectives

TLR activation sparks immune responses against pathogens,

making TLR agonists promising cancer immunotherapy. Targeting

TLRs, alone or combined with other methods, offers a potential

pathway to enhance the immune system and eradicate cancer cells.

TLRs are crucial components of the immune system, playing a

significant role in both innate and adaptive immunity. It’s exciting

to know that there are currently various TLR agonists being

evaluated in both preclinical and clinical settings worldwide.

However, there are some foremost expected roadblocks with the

implementation of TLR agonists as therapeutic options. Toll-like

receptors in cancer have a dual role; on one side, they activate innate

immunity, recruiting immune cells to eliminate invasive pathogens
A

B

FIGURE 2

Mechanism of action for MBTA vaccine therapy. (A). The MBTA vaccine consists of mannan-BAM tagged irradiated cancer cells mixed with TLR
ligands resiquimod, poly(I:C), and LTA along with anti-CD40 antibody. The polysaccharide mannan is chemically linked with the hydrophobic lipid
tail biocompatible anchor for membrane (BAM). The hydrophobic lipid tail enables the attachment of mannan to the plasma membrane of irradiated
tumor cells. Mannan-BAM acts as a PAMP and exploits the pattern recognition properties of Mannose-binding lectin (MBL). This recognition of
Mannan-BAM by MBL culminates into the activation of the lectin pathway of complement activation through the proteolytic cleavage of
complement protein C3, and iC3b, the inactive cleaved form of C3 initiate the opsonization of the tumor cells. Concurrently, the three TLR ligands
(resiquimod/R-848, poly(I:C), LTA) and anti-CD40-antibody act as adjuvants facilitate recruitment of the innate immune cells like macrophages,
dendritic cells, neutrophils, and monocytes into the tumor (199–202). (B). The TLR agonists activate the innate immune cells with augmented
expression of inflammatory cytokines and chemokines that endorse maturation of APCs. The activated APCs opsonize and phagocytose the tumor
cells and process tumor neoantigens. These activated APCs further internalize tumor antigens and display them to T cells in lymph nodes. This leads
to the initiation of adaptive immune cells like effector T cells along with generation of immunologic memory through memory T cells (199–202).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1227833
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chakraborty et al. 10.3389/fimmu.2023.1227833
like tumor cells, but they can also contribute to chronic

inflammation, driven by TLRs, resulting in anti-apoptotic effects

through NF-kB and promoting tumor growth (217, 218). As TLRs

regulate the stimulation of several immune cells of the human body,

any improper tuning of the TLR agonists can trigger autoimmune

diseases. There are also chances of the onset of chronic

inflammatory side effects through uncalled activation of

cytokines. Multiple examples of inflammatory side effects exist

while using TLR ligands in immunotherapy (142, 217, 219, 220).

Therefore, choosing the right TLR agonist for the treatment of a

specific type of cancer is a vital issue to diminish the chances of

post-therapeutic complications.

Both pre-clinical and clinical findings suggest that combining

TLR agonists with antigens, immune modulators, or other

treatments can enhance their effectiveness (19, 221). Therapies

like chemotherapy or phototherapy release tumor antigens and

cellular factors from dying cells, further activating dendritic cells

and promoting cross-presentation to T cells (221). Current research

highlights the potential of TLR-targeted drugs in cancer treatment.

However, it’s crucial to acknowledge that factors like tumor

characteristics and the microenvironment can impact the clinical

success of TLR-targeting immunotherapies. These variables should

be carefully addressed, especially in preclinical animal studies.

Recent data suggests that combining TLR antagonists with other

immunotherapy approaches, like checkpoint inhibitors and cell-

based treatments, could improve overall immunotherapy

effectiveness (19). Current trends of using TLR agonists in clinical

trials project them as a compelling booster of immune responses in

combination with cancer vaccines or other therapeutic approaches,

suggesting a more promising strategy (Table 2). Another challenge

is the difficulty of translating many TLR agonists from animal

studies to human applications due to significant species-specific

differences in TLRs (97). For instance, murine TLR8 reacts

differently to imiquimod and R848 compared to human TLR8

(97). This highlights the importance of assessing potential TLR

agonists in appropriate animal models and considering species-

specific variations when interpreting results. Despite the potential of

TLR agonists to activate the immune system for anti-tumor effects,

they face persistent limitations. For instance, small molecule TLR

ligands often fail to accumulate adequately in lymph nodes to

activate immune cells effectively, leading to drug resistance. Rapid

dispersion of TLR ligands can also trigger the production of

immunosuppressive factors and undesirable immune responses.

Additionally, these agonists/ligands have a short in vivo lifespan,

especially endosomal TLR ligands, which are vulnerable to

nucleases (222). As a result, innovative and efficient delivery

platforms like dendrimers, stimuli‐responsive polymeric particles,

liposomes, hydrogels, lipoprotein‐based scaffolds, and complexes

have been devised to address these challenges (222).

Here in this review article, we presented the immense

therapeutic potential, background aspects, and key investigations
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of using TLR ligands or agonists as an emerging component of

immunotherapy. We also review the current landscape of using

TLR agonists in cancer immunotherapy, including ongoing clinical

trials and their drawbacks. Moreover, we explored how TLR

agonists can induce diverse components of the immune system

and how they are or could be applied as adjuvants of cancer

vaccines. Last but not the least, our research group implemented

TLR agonists as adjuvants augmented the immunogenicity of the

rWTC-MBTA whole-cell autologous cancer vaccine. By continuing

further studies, we have confidence in TLR agonist-based

immunotherapy, in combination with other conventional

therapies like surgery, chemotherapy, and radiotherapy, can shift

the much-needed paradigm in the treatment of cancer and confirm

an improved quality of life (QoL) for cancer patients.
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