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Bacterial infections still impose a significant burden on humanity, even though

antimicrobial agents have long since been developed. In addition to individual severe

infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-

resistant bacteria grows with time, putting us at inferiority. Although tremendous

resources have been devoted to the development of antimicrobial agents, we have

yet to recover from the lost ground we have been driven into. Looking back at the

evolution of treatment for cancer, which, like infectious diseases, has the similarity that

host immunity eliminates the lesion, the development of drugs to eliminate the tumor

itself has shifted from a single-minded focus on drug development to the establishment

of a treatment strategy in which the de-suppression of host immunity is another pillar of

treatment. In infectious diseases, on the other hand, the development of therapies that

strengthen and support the immune system has only just begun. Among innate

immunity, the first line of defense that bacteria encounter after invading the host, the

molecular mechanisms of the phagolysosome pathway, which begins with

phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a

large number of strategies to escape and survive the pathway. Although the full picture is

still unfathomable, the molecular mechanisms have been elucidated for some of them,

providing sufficient clues for intervention. In this article, we review the host defense

mechanisms and bacterial evasion mechanisms and discuss the possibility of host-

directed therapy for bacterial infection by intervening in the phagolysosome pathway.

KEYWORDS
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1 Introduction: infection and
drug development
1.1 Sepsis

The treatment of bacterial infections has changed dramatically with the development of

antibiotics, and many lives have been saved; in the era of the COVID-19 pandemic,

tuberculosis, a widespread and deadly disease, has not been conquered, but it has been set

aside as an infectious disease. On the other hand, bacterial infections are still strictly a major
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threat to people’s lives and a major treatment target, one of which is

sepsis caused by a rapid and massive bacterial load (1) and another is

the emergence of antimicrobial resistance bacteria spurred by antibiotic

overuse (2). Infectious diseases other than sepsis, such as tuberculosis,

infectious gastroenteritis, bacterial pneumonia, and food poisoning, are

limited to localized areas, and dysfunction of the tissues of the infected

foci comes to the fore. Sepsis is defined as organ damage due to an

inadequate host response to infection (3). In addition to the classic

treatment of infusion, removal of infected lesions, and respiratory

circulatory support, treatment is aimed at normalizing coagulation

abnormalities to maintain organ microcirculation (4). Nevertheless,

more than 11 million lives are lost annually to sepsis, making it the

cause of nearly 20% of deaths worldwide (5). One of the reasons that

current medical treatment for sepsis has been so hampered is that the

host’s immune system forms a troublesome response to sepsis. That

response is the coexistence of an excessive inflammatory response and

a prolonged state of immunosuppression (6). The former, also called a

cytokine storm, is characterized by an overproduction of inflammatory

cytokines as the predominant phenotype (7). Much of the pathology of

sepsis is associated with this unhelpfully exuberant reaction of the host,

which is thought to be a common end pathway that occurs with viral

infections as well as bacterial infections, and suppression of excess

cytokines and regulation of their receptors is thought to reduce the

disease state (8). However, the major proinflammatory cytokines IL-1

(9) and TNF-a (10) which are major inflammatory cytokines in sepsis,

have failed to improve the survival of sepsis. In addition, inhibitors of

Toll-like receptor (TLR) 4, which detects many bacteria and transduces

intracellular signals that trigger inflammation, have also failed to

improve sepsis survival (8). Despite such disappointment,

transcriptome analysis of leukocytes from patient blood in sepsis

revealed that up to 80% of the pathways of cellular function are

altered and that inflammatory and regulatory mechanisms are

simultaneously driven in the first few hours after onset (11). The

setbacks in these clinical trials and the genetic approach to

pathophysiology have led to a major shift in our current

understanding of the pathogenesis of sepsis, in which host immunity

to sepsis is a conflict between attack and suppression, far from its

original goal of eliminating pathogens (12). This understanding of the

pathogenesis has led to a search for therapeutic strategies that achieve

homeostasis of host immune function.
1.2 Antimicrobial resistant bacteria

For antibiotics, the invention of new drugs in the nearly 30 years

since the 1940s, a golden age, has been a wonderful scientific

breakthrough that has led to an overly optimistic fantasy that

bacterial infections will cease to be a threat to humanity (2).

However, in the half-century since the 1970s, only a few new

classes of antibiotics have been invented, and in addition, we have

been handicapped by the disastrous situation with multidrug-

resistant bacteria. Despite advances in understanding the life

cycles of bacteria and long-awaited advances in molecular biology

and genetics, biology and medicine today are far behind the good

old days of the past 30 years in terms of progress in the field of
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infectious disease treatment. In the past half century, mankind has

not only used invented antibiotics in large quantities in medicine

but also abused them in livestock in search of economic rewards

(13). The result has been a situation in which bacteria that have

acquired multidrug resistance, also known as superbugs, have

become rampant. Tuberculosis remains an uncontrolled infectious

disease worldwide, and is the leading cause of mortality among

mono infectious diseases, with 1.4 million deaths per year (14).

Currently, it is estimated that 1/4 of the earth’s population is

infected with Mycobacterium tuberculosis, the majority of which

is considered to be in the latent stage, but reactivation is a common

occurrence (15). Although the current standard of care is to

continue the four-drug combination for at least six months (16),

reinfection cannon be completely prevented, and 18% of these

infections are caused by multidrug-resistant organisms (14, 17).

Modern medicine has devoted many resources, and with the

struggles of the field, has managed to prevent the global spread of

antibiotic-resistant bacteria from becoming a pandemic threat like

COVID-19. Given that the doubling time of bacteria is in hours, the

speed of their molecular evolution is tremendous. Considering that

even if a new drug is invented, it takes a certain amount of time for

its clinical development, this weasel-word is extremely at

disadvantage for humans. Nevertheless, new antibiotics are being

developed to win the battle, and in addition, methods to attenuate

bacterial toxins and phage-based methods (18, 19).
1.3 Current microbicidal strategy

Understanding the pathogenesis of sepsis is directly linked to

drug development, which is moving toward therapies that can

eliminate pathogens while balancing the active and regulatory

systems of the immune system (6). One of the molecular basis of

sepsis is the transformation of the energy supply system of immune

cells, and various compounds related to PGC1a, which activates

mitochondrial biosynthesis, are being investigated for their efficacy

in the treatment of sepsis (20). In the treatment of antibiotic-

resistant bacteria, the use of immune checkpoint inhibitors that

block inhibitory signals in T cells, TGF-b to activate T cells, M1-like

macrophage adaptive transfer, and strategies such as the

administration of gelsolin, an endogenous protein, to enhance the

pathogen clearance of macrophages are beginning to be explored

(5). Methodologies to intervene in host immunity and promote

pathogen elimination are beginning to emerge in the form of

specific methods and compounds.

In this review, we focus on therapeutic strategies for infectious

diseases through intervention in the host rather than approaches to

the pathogens themselves. In the field of cancer therapy, the

development of drugs aimed at killing the cancer cells themselves

and the intervention of host immunity have made remarkable

progress (21). Although immunity plays a major role in infectious

diseases, the host approach has been neglected to date. Defense

against microorganisms is mediated by the effector mechanisms of

innate and adaptive immunity. Innate immunity is mainly

responsible for defense in the early stages of infection, whereas
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adaptive immunity, together with innate immunity, provides a

stronger and more specific response, and establishes a sustained

defense posture with immune memory (22). The balance between

these host immune responses and the acquisition of microbial

resistance determines whether infection is established (23). The

initial response of the host to bacterial infection is recognition of the

bacteria by cells possessing pattern recognition receptors, release of

inflammatory cytokines such as IL-1b, TNF-a, and IL-6,

vasodilation, and increased vascular permeability (24). This leads

to the accumulation of leukocytes, mainly neutrophils, which are

non-specialized phagocytes, and more phagocytes in the infected

foci. These cells phagocytose extracellular bacteria and infected cells

and serve as the first line of defense in bacterial clearance (25).

Inflammatory cytokines activate adaptive immunity, leading to

enhanced antibody production by B cells, and opsonized bacteria

are subject to phagocytosis by phagocytes, while T cells produce a

variety of cytokines, including IFN-g, to enhance bacterial killing by
phagocytosis (26). Antibodies, together with activated complement,

cause bacterial neutralization and lysis and play a role in the host

defense system. In the early stages of infection, phagocytosis plays a

central role in bacterial killing. On the other hand, bacteria that

cause intracellular infection ensure their survival and replication by

disabling the phagolysosomal system, which is the executor of

intracellular disinfection.

Mycobacterium tuberculosis, which causes intracellular infection,

can cause delayed-type hypersensitivity and tissue damage. Slow-

growing Mycobacterium tuberculosis evades the killing of the

phagolysosomal system and survives intracellularly, resulting in

persistent stimulation of T cells and macrophages and the formation

of granulomas (27). This granuloma and the solid tumor

microenvironment share common features of immunosuppressive

conditions such as lymphocyte exhaustion/elimination, macrophage

polarization to M2-like phenotype, hypoxia, immunomodulatory

cytokines such as TGF-b/IL-10, and infiltration of myeloid-derived

suppressor cells (5). This similarity reminds us that host-directed

therapy, which has been successful in anticancer therapy, could bear

great fruit in infectious diseases. Among host immunemechanisms, the

phagolysosomal system is considered to be at the center of pathogen

control and an appropriate target for infection control. In order to

examine the possibility of intervention in the phagolysosome system in

host-directed therapy, the molecular mechanism of the pathway from

phagocytosis to phagosomes reaching lysosomes is discussed from the

perspective of host-pathogen interaction. Finally, the current status and

future potential of drug discovery targeting the phagolysosome

pathway will be discussed.
2 Phagocyte-pathogen interaction

2.1 Intracellular and extracellular microbes

When considering host-directed therapy for bacterial

infections, it is important to divide bacteria into those that cause

extracellular infections and those that cause intracellular infections.
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Bacteria that cause extracellular infections include Staphylococcus

aureus, Streptococcus pyogenes, Streptococcus pneumoniae,

Escherichia coli, Vibrio cholerae, Clostridium tetani, Neisseria

meningitidis, and Corynebacterium diphtheriae. On the other

hand, bacteria that cause intracellular infections include

Mycobacterium, Listeria monocytogenes, and Legionella

pneumophila (22). Microorganisms can be classified into three

types: 1) obligate extracellular growth parasites, which cannot

grow inside the cell but only outside, 2) facultative intracellular

growth parasites, which can grow both inside and outside the cell,

and 3) obligate intracellular growth parasites, which can grow only

inside the cell. Obligate extracellular growth parasites are eliminated

by phagocytes and have developed resistance mechanisms against

phagocytosis (22). S. aureus is classically recognized as a bacterium

that causes only extracellular infections such as furuncles,

carbuncles, impetigo, abscesses, septicemia, necrotizing

pneumonia, and biofilm formation (28). Recent studies have

shown that S. aureus can survive and proliferate intracellularly,

which is a major factor in pathogenesis, making it a second category

of bacteria (29) (Horn). Bacteria belonging to this category have

evolved the ability to neutralize the phagolysosome. The third

category of bacteria includes rickettsia and chlamydia, which are

dependent on the host in terms of membrane structure and

metabolism, respectively, but the immune mechanisms against

them are beyond the scope of this review and should be referred

to the cited review (30).

Innate immunity to extracellular infections is centered on

complement activation, phagocyte activation, and inflammatory

responses, and the final execution mechanism of bacterial

elimination depends on the phagolysosomal system. Phagocytes

directly recognize bacteria via mannose and scavenger receptors

and enhance phagocytosis (25). In addition, both peptidoglycan, a

major membrane component of Gram-positive bacteria, and LPS, an

endotoxin of Gram-negative bacteria, activate the alternative

complement pathway to opsonize bacteria. Like complement,

bacteria opsonized by antibodies enhance phagocytosis (26).

Extracellular bacterial protein antigens cause activation of CD4+ T

cells, also assisting phagocytosis. Although neutralization and lysis of

bacteria by antibodies are important defense systems,

phagolysosomes as the final executor of bacterial elimination are

central to bactericidal activity. Bacteria that produce intracellular

infections have found a microenvironment (niche) within the

phagocyte that is isolated from strong adaptive immunity and have

acquired mechanisms that allow them to survive and replicate there.

These bacteria have evolved mechanisms to disable the

phagolysosomal system within the phagocyte and hijack the

phagosome to survive (27). Adaptive immunity attempts to execute

bacterial clearance through activation of the phagolysosomal system

by recruiting phagocytes with the CD40 ligand signal and INFg by
CD4+ T cells. In the process of escape from the phagosome, the host

can trigger a mechanism by which CD8+ T cells, upon receiving the

signal, eliminate the infected cell itself (22). This section on host-

pathogen interactions describes the general effector function of the

host’s phagolysosomal system on pathogens.
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2.2 From recognition to capture:
phagocytosis

The immune system quickly detects invading bacteria in the

body and timely initiates phagocytosis as the appropriate response

to eliminate the threat (Figure 1) (25). Phagocytes are estimated to

make up less than 1% of all cells in the body (31). The ability of

these cells to adequately patrol and scavenge throughout the body is

critical for defense against foreign enemies (32). Although

phagocytes form a constant protrusion (33), and signals from the

calcium-sensing receptor (CaSR), a G protein coupled receptor,

regulate phosphatidylinositide phosphorylation plasma membrane

remodeling (34), and polymerization of the branched actin network
Frontiers in Immunology 04
just below the plasma membrane (35). Pathogen-sensing receptors

include the pattern recognition receptors (PRRs) such as TLR4 that

directly bind to pathogen surface structures (24), Fcg receptors, and
complement receptors interact with antibodies or complement that

opsonize pathogens, and their interactions play a role in signaling to

phagosome formation (25). The pattern recognition receptors

(PRRs) involved in bacterial infections are Toll-like receptors

(TLRs), nucleotide oligomerization domain (NOD)-like receptors

(NLRs), C- and C- type lectin receptors (CLRs), and absent in

melanoma-2 (AIM2)-like receptors (ALRs). Ten TLRs have been

identified in humans and are present in dimeric form at the plasma

membrane or phagosomal membrane (36). In the plasma

membrane, TLRs exist as homodimers or heterodimers and
FIGURE 1

Pathways of bacterial eradication by phagocytes and immune evasion strategies by bacteria. A: The encounter between the bacteria and the host
phagocyte is the initial site of rivalry that determines whether infection is established or not, and begins with the sensing of the bacteria by the host.
Bacteria LPS is sensed by PPRs, and if opsonized by immunoglobulin and complement, by Fc or complement receptors, respectively. In the case of
opsonization by complement, some bacteria evade detection by the complement receptor by mimicking the regulatory mechanism of complement.
In the case of opsonization by antibodies, some bacteria prevent binding to the Fc receptor by secreting an enzyme that digests the antibody. Some
bacteria alter the structure recognized by PRRs by phosphorylation or other means to escape from the PRRs. B: The process from phagocytic ruffle
through cup closure and scission to phagosome formation requires dramatic changes in the cytoskeleton and in membrane phosphatidylinositides,
which are regulated by many signals such as phosphorylation. Bacteria prevent phagocytosis formation by disrupting these signals through the
secretion of dephosphorylases. On the other hand, there are viruses that produce substances that mimic the “Don’t eat me” signal as phagocytosis
checkpoints. C: Phagolysosome pathway (Middle): Nascent phagosomes undergo fusion with early/late endosomes, hydrolase increases toward full
set and V-ATPase also increases. As a result, the phagosome lumen becomes acidified and moves along the cytoskeleton toward the site of
lysosome presence, where it fuses with the lysosome. The resulting phagolysosome reaches a pH near 4.6, the optimum pH for many hydrolases, to
carry out complete bacterial degradation. D: Xenophagy (Left): When the phagosome is damaged by a bacterial escape mechanism, galectin, which
is only exposed in the lumen, is exposed in the cytoplasm, which triggers autophagy initiation. If the cargo is a pathogen such as a bacterium, the
autophagy is called xenophagy. The vesicles also eventually fuse with the lysosomes, resulting in complete digestion of the pathogen. E: LAP (Right):
LAPosomes, in which LC3, which plays an important role in autophagy, engages the nascent phagosome, recruits NOX2 and produces reactive
oxygen species. Reactive oxygen species are formed most efficiently in a neutral environment, and they damage pathogen-forming lipids, proteins,
and nucleic acids more rapidly than phagolysosomes. The final disposition of the inclusions of this pathway is also completed by fusion with
lysosomes. Created in BioRender.
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recognize lipids, proteins, lipoproteins, and other components of

microorganisms. On the other hand, in phagosome membranes,

they exist as homodimers and recognize microbial nucleic acids

(37). TLR1- TLR2 and TLR2-TLR6 are expressed in monocytes,

dendritic cells, and are involved in the recognition of triacyl

lipopeptide, lipoprotein, lipopeptide, lipoteichoic acid,

arabinomannan, peptidoglycan. TLR4 homodimer is expressed in

macrophages and dendritic cells and binds to lipopolysaccharide.

TLR4 homodimer is expressed in macrophage and dendritic cells

and recognizes lipopolysaccharide. TLR5 homodimer is expressed

in intestinal epithelial cells and senses flagellin (24). NOD1 in the

cytoplasm of intestinal epithelial cells and macrophages recognizes

g-D-glu-meso-diaminopimelic acid in the cell wall of gram-negative

bacteria, while NOD2 recognizes muramyl depeptide in the cell wall

of all bacteria (38). CLRs are expressed on macrophages and

dendritic cells and play a critical role in anti-fungal immunity.

They include the mannose receptor, which recognizes mannose

units repeated on the surface of bacteria such as mycobacterium and

induces phagocytosis, and the Asian glycoprotein receptor family,

which includes Dectin-2, which recognizes mannose-capped

lipoarabinomannan (39). ALRs are PRRs that recognize

intracellular double strand DNA and do not participate in innate

immunity but are involved in apoptosis (40).

The protrusion-captured target induce clustering of phagocytic

receptors, and the immunoreceptor tyrosine-based activation motif

(ITAM) in their intracellular domain (41) is productively

phosphorylated by Src-family tyrosine kinases (SFKs), spleen

tyrosine kinases (Syk) (42). As soon as the phagocytosis signal

begins to amplify and a transient increase in PI (4, 5)P2 occurs,

conversion occurs from PI (4, 5)P2 to PI (3–5)P3 by PI3K recruited

to adaptor proteins (43). PI (3–5)P3 surges recruits phospholipase
Frontiers in Immunology 05
Cg which breaks down PI (3–5)P3 to produce diacylglycerol (DAG)

and inositol (1, 4, 5)-triphosphate (IP3) (44). DAG acts as a second

messenger for signaling between phagocytic receptors (45), while

IP3 provides calcium spike from the endoplasmic reticulum (ER)

into the cytoplasm (46). These two 2nd messengers cooperate to

activate small G protein Rap1, which mediates the “inside-out”

response of integrin (47). PI3K activates Rho family GTPases that

facilitate cytoskeletal remodeling directly and through the GEF.

This activation dynamically alters the cytoskeleton to form

phagocytic cups. NADPH oxidase 2 (NOX2), which is responsible

for the generation of reactive oxygen species (ROS) that cause

oxidative bursts, engages in the newly formed phagocytic cups (48).

On the other hand, there are systems that prevent phagocytosis,

which phagocytoses pathogens and apoptotic cells, from running

amok and eliminating normal cells. In cancer research, immune

checkpoints have been identified as entities of T cell regulatory

mechanisms (49). Immune checkpoint inhibitors such as anti-

programmed cell death protein 1 (PD-1; pembrolizumab and

nivolumab) (50), anti-cytotoxic T lymphocyte-associated protein

4 (CTLA-4; ipilimumab and tremelimumab) (51), anti-PD-1 ligand

1 (PD-L1: atezolizumab, avelumab and durvalumab) (52) have

developed, and demonstrated to significantly improve outcome in

patients suffered from devastating cancers (Figure 2A). In innate

immunity, phagocytosis checkpoints recognize “Don’t eat me”

signals during the phagocytosis process, and are beginning to be

recognized as important new targets for cancer immunotherapy

(53). The discovery was signal-regulatory protein a (SIRPa)
expressed in the myeloid lineage (54). Upon the interaction of

SIRPa and CD47, the intracellular domain of SIRPa, an

immunoreceptor tyrosine-based inhibitory motif (ITIM) recruits

SH2-containing protein tyrosine phosphatase 1 (SHP1) or SHP2,
BA

FIGURE 2

Checkpoint Inhibition (A) Immune checkpoint: T cells exercise T cell activation, clonal expansion, and effector function by transmitting signals via the
TCR and signals from CD28 through binding to CD80/86 as costimulatory signals. On the other hand, inhibitory signals from CTLA-4 through
binding to CD80/86 result in T cell deactivation. T cells expressing PD-1, which is also recognized as a T cell exhaustion marker, transmit inhibitory
signals by engaging its ligand PD-L1, causing T cell deactivation similar to that of CTLA-4. Antibodies against molecules that comprise this immune
checkpoint (immune checkpoint inhibitors: ICIs) shield the target antigen and cause T cell activation by releasing the T cell brake. Host-directed
therapy with ICIs for cancer is an important anti-tumor strategy that works in tandem with anticancer drugs that kill the cancer cells themselves.
(B) Phagocytosis checkpoint: Phagocytes, like T cells, have receptors with intracellular domains that transmit inhibitory signals to control their
activity. The lignads, also called “Don’t eat me” signals, include CD47 and PD-L1, whose receptors are SIRPa and PD-1, respectively. Cells infected
with pathogens show enhanced expression of CD47 as the main inducer of INF-g, while cells in apoptosis express PD-L1 and escape clearance by
phagocytes. These phagocytosis checkpoint inhibitors may promote phagosytosis and, in the case of bacterial infection, may promote bacterial
killing. Created in BioRender.
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preventing myosin IIA dephosphorylation, subsequent

rearrangement of the cytoskeleton, and the phagocytosis they

form (55) (Figure 2B). Although PD-1 expression is an important

marker of T cell exhaustion (56), it also is expressed on various

immune cells, including macrophages. The interaction with PD-1

and PD-L1 provides a suppressive signal for the phagocytosis of

tumor-associated macrophages (TAMs) (57). Cancer cells can

escape macrophage-induced phagocytosis by expressing PD-L1.

Sialic acid-binding immunoglobulin-like lectin (SIGLEC), which

contains inhibitory receptor motifs (ITIMs) in its intracellular

domain, is induced at the surface of macrophages and its

expression confers a poor prognosis in cancer patients (58). The

ligand for SIGLEC is CD24, and this interaction serves as an entity

for anti-phagocytic action (59).
2.3 Non-professional phagocytes

Non-specialized phagocytes involved in bacterial infections

include epithelial cells, endothelial cells, osteoblasts, and

fibroblasts. Epithelial cells, which play another major role among

non-specialized phagocytes, cover the outer and luminal surfaces of

the body and organs. Depending on where they are present,

epithelial cell functions include absorption in the lungs and

intestinal tract, secretion in the kidneys and stomach, and

material transport in the trachea and oral-nasal cavity. Regardless

of their location, the basic function of epithelial cells is to interact

closely with the external environment and, in particular, to serve as

the first line of defense in the immune system (60). Epithelial cells

possess pattern recognition receptors to detect external hazards, but

do not express receptors to capture opsonized pathogens as do

specialized phagocytes. Therefore, phagocytosis of pathogens by

epithelial cells is initiated by two following main methods. One is a

trigger mechanism in which the cytoskeleton is restructured by

effector molecules secreted by the bacteria, forming ruffles on the

plasma membrane, and the other is a zipper mechanism in which

the bacteria attach to proteins involved in cell adhesion, such as

integrins and cadherins (61). After internalization, the

phagolysosome system takes over for clearance.
2.4 To destination via 3 routes

Bacterial degradation in first line innate immunity is carried out

through three main pathways (Figure 1): phagolysosome,

xenophagy, and LAP (Microtubule-associated proteins 1A/1B

light chain 3B (LC3)-associated phagocytoisis), each of which is

followed by a vesicle: phagosome, autophagosomes, and

LAPosomes, respectively, through fusion with lysosomes (60). In

case of the first pathway, it begins with internalization by

phagosomes after pathogen recognition, during which signaling

occurs in the cell, leading to phagosome maturation (25) The

phagosomes are then translocated to the lysosomes. Subsequently,

the pathogen is degraded by phagolysosomes that are generated by

fusion with lysosomes (60). On the other hand, autophagy is

triggered when the imported bacterium attempts to escape from
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the phagosome, causing vesicle damage (62). Autophagy to enclose

pathogens is called xenophagy, whose efficacy largely depends upon

lysosomal function. In the third pathway, LC3, which plays a major

role in autophagy, is embedded in the phagosome membrane in the

form of LC3 modified by phosphatidylethanolamine (referred to as

LC3-II), resulting in the formation of the LAPosome. The

LAPosome is partitioned by a single membrane like the

phogosome, unlike autophagy, which has a double membrane

beginning in the phagophore (63). Its major feature is the quick

recruitment of NADPH and the burst of reactive oxygen species

that its enzymatic activity leads to, and the maturation of the

LAPosome is faster than that of conventional phagocytosis.

Review of bacterial killing in LAP and xenophagy are beyond the

scope of this review; see other reviews (62, 63).

2.4.1 Phagolysosome pathway:
phagosome maturation

Inactivation and decay of phagocytosed pathogens leading to

acquired immunity requires dramatic transformation of the formed

phagosomes, a process termed phagosome maturation. It is a

process that many pathogens target for survival (64). This process

leads to two intermediate states: early phagosome and late

phagosome, and eventually to the formation of phagolysosomes.

Nascent phagosome fuse with early endosomes and are responsible

for sorting phagocytosed prey for reusability. The late phagosomes

fused with the late endosomes create a more acidic environment in

the lumen and migrate along the microtubules toward the

lysosomes. The elaborate molecular mechanisms of this process

have been detailed, with Rab GTPase and phosphatidylinositide

playing major roles.

The newly formed phagosome has a PI (3–5)P3-rich membrane

composition, and the recruitment of Rab5 GTPase to it promotes

membrane fusion with early endosomes through several pathways

(65) Vps34, type III PI3K, is recruited by Rab5 (66) and converts PI

to PI3P, which becomes a major component of the membrane and

attracts multiple effectors (67). One of them is early endosome

antigen 1 (EEA1) (68), which interact with Soluble N-

ethylmaleimide-Sensitive Factor Attachment Proteins (SNAPs),

Syntaxin 6 (69) and Syntaxin 13 (70), to promote membrane

fusion of nascent phagosomes and early endosomes (71).

The conversion to the late phagosome begins when the positive

feedback loop of Rab5 is severed and replaced by Rab7 (72) PIs that

make up the membrane are transformed from PI3P to PI4P by

recruitment of 3- phosphatases of the myotubularin family and

PtdIns4P kinase 2A (PI4K2A) (73). Rab7 forms homotypic fusion

and vacuole protein sorting (HOPS), which mediate a tether

between membrane with binding to Rab7, by replacing some of

the components of class C core vacuole/endosome tether

(CORVET) that mediate Rab5-mediated inter-vesicular tethering

(74). GTP-bound active Rab7 recruits two Rab7 effectors: the Rab7-

interacting lysosomal protein (RILP) and the long splice variant of

the oxysterol-binding protein (OSBP)-related protein 1 (ORP1L) to

move toward the microtubule-organizing center (MTOC) for a

complete fusion with lysosome (75). They form a scaffold for

dynein-dynactin to bridge the microtubule and are transported to

the minus end along microtubules (76).
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Centripetal movement brings the late phagosome and lysosome

into close proximity, and Syntaxin 7 is involved, causing the

phagolysosome (77). The two organelles undergo a process of

tethering, docking, consolidation, and fusion, in which actin

polymerization and calmodulin are involved in the tethering

process, protein-protein interaction regulates docking, and Ca

spiking leads to consolidation (78). In this stage, the composition

of membrane PIs changes dramatically, with PI (3, 5)P2 joining the

major PIs components. V-ATPase, which is responsible for

intraluminal acidification, is completely incorporated in the

phagolysosome membrane (79). Analysis of the immune escape

mechanism of Mycobacterium tuberculosis revealed that V-ATPase

also acts as a major player in membrane fusion and associates with

HOPS (80).

2.4.2 Decay
Lysosomes are the defeaters that break down phagocytosed

materials into their constituent parts and squeeze out the substances

necessary for the host, and they have an arsenal of various weapons

for this purpose. Against bacteria, the lysosome attempts to destroy

them with reactive radicals, various digestive hydrolases, acidic

milieu, and nutrient segregation as its main weapons. However,

their regulation differs greatly among cell types, even among

professional phagocytes (81). The control of these factors seems

to depend on the roles of bactericidal action by reactive oxygen

species and nitrogen, followed by complete digestion of the

structure and transmission to the acquired immune system by

antigen presentation to T cells. Macrophages are highly plastic

cells and are classified into two activation states, M1 or classic and

M2 or alternative, and the process leading to this state is defined as

polarization (82). M1 M2 macrophages are induced by Th1

cytokines such as IFN-g and TNF-a or LPS and secrete high

levels of pro-inflammatory cytokines such as IL-1a, IL-1b, IL-6
and TNF-a. -13 and secrete abundant levels of anti-inflammatory

cytokines such as IL-10 and TGF-b (82). Macrophages have been

shown to regulate V-ATPase and NOX2 very oppositely by

polarization (83). M1 macrophages and neutrophils have low V-

ATPase activity and a near-neutral lysosomal lumen but abundant

production of reactive oxygen species (ROS). In contrast, M2

macrophages have high V-ATPase activity, the lysosome lumen is

strongly acidic, and reactive oxygen species are not so high.

However, the classification of M1/M2 macrophages is an

oversimplification, as the two states are flexible and dynamically

plastic, with intermediate rather than binary states, and there is a

subset of regulatory macrophages in addition to activated and

healing macrophages (84). It remains to be seen how polarization

and its shift are regulated in infection, when the regulatory subset is

committed during infection in vivo, and what are the keys that

control these processes.

2.4.2.1 V-ATPase

In lysosomes and endosomes, V-ATPase is the only machinery

that consumes energy to transfer protons into the lumen, but the

acidic milieu produced by V-ATPase provides an optimal pH for

the intraluminal hydrolase to perform bacterial killing (Figure 3).

V-ATPase also plays an extremely multifaceted role in the
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phagolysosomal pathway (85). For example, recycling of plasma

membrane receptors taken up into the lumen (86), recovery of the

mannose 6-phosphate receptor into the trans-Golgi network (87),

loading of external antigens into the major histocompatibility

complex (88), and endosome tethering in phagosome maturation

(80). In addition, acidic milieu plays an essential role in the

following processes: neurotransmitter uptake (89), maturation by

degradation of prohormone (90), nutrient sensing in association

with mTORC1 (91), amino acid supply to the cytoplasm (92), and

macroautophagy (93, 94). In signal transduction, WNT and Notch

signals require an acidic milieu in the vesicle. In the WNT pathway,

the Frizzled/LRP6 complex is in close proximity to V-ATPase via

prorenin receptors on the signaling endosome. LRP6

phosphorylation required for the b-catenin destruction inhibition

signal is dependent on V-ATPase activity (95). In Notch signaling,

the Notch receptor is internalized by ligand binding and transferred

onto the signaling endosome, and the acidic environment of the

vesicle causes the Notch intracellular domain to be released into the

cytoplasm through S3 cleavage by the g-secretase (96).
Various hydrolases encapsulated in the lysosome have pH-

dependent enzymatic activities and their acidity is precisely

regulated. The methods reported for its regulation include 1.

nutrition, 2. signaling, 3. cofactors, and 4. modification by

enzymes. Nutrition was first reported as reversible disassembly in

yeast during glucose starvation, and its biological significance is

thought to be the limitation of ATP consumption under nutrient-

depleted conditions (97). On the other hand, in mammals, V-

ATPase assembly was shown to occur at an excess glucose

concentration of 25 mM (98). Excess glucose increases glycolysis

which leads to acidic environment in the cytoplasm, whereas the

promotion of V-ATPase assembly is thought to be responsible for

keeping the cytoplasm neutral by accumulating protons in the

lysosome. It was reported that reversible disassembly in yeast is

mediated by PKA, while regulated assembly in mammals is

mediated by PI3K. Initially, the response of V-ATPase to glucose

availability in yeast and mammalian cells appeared to be consistent,

but the report that glucose starvation also promotes regulated

assembly in mammalian cells showed the diversity of the

regulatory mechanism (99). Glucose starvation activates AMPK,

which is further enhanced by a complex with Regulator and

assembled V-ATPase that provides a binding site for AMPK

through AXIN (100). This AMPK activation may be directed

toward improving energy supply and demand by shifting

metabolism toward catabolism, one of which may be autophagy

(101). Amino acids also have a significant effect on V-ATPase. In

amino acid starvation, Regulator forms a tight complex with V1A of

V-ATPase and eliminates mTORC1 while assembling V-ATPase

(91). V-ATPase assembly leads to increased activity, and autophagy

enhanced by amino acid starvation leads to amino acid acquisition

by degradation of proteins brought to the lysosomes, resulting in

release of amino acids into the cytoplasm to maintain homeostasis

(101). With respect to signals, PI3K and its downstream AKT bring

about regulated assembly (102). PI3K inhibitors do not prevent

assembly (103), while AKT inhibitors prevent assembly (104). This

suggests direct binding of AKT to V-ATPase (105). On the other

hand, mTORC1 activity, which is downstream of PI3K/AKT, does
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not participate in V-ATPase assembly in the absence of amino acids

(103). The AKT-mediated increase in the regulated assembly of V-

ATPase, which results in decreased intraluminal pH, enhanced

proteolysis, and increased cytoplasmic amino acid content, is also

the mechanism by which EGF activates mTORC1 (106).

Cofactors and assembly chaperones such as Rabconnectin3

(Rbc3), TRiC, and mEAK7 and enzymes such as ATM have been

reported. In yeast, RAVE (Regulator of H+-ATPase of Vacuolar and

Endosomal membranes) regulates luminal acidity of lysosomes and

endosomes via V-ATPase assembly, and in mammals Rbc3 is

functionally equivalent to RAVE (107). Rbc3 is a heterodimer

composed of Rbc3a and Rbcb (108). The former is composed of

either of two isoforms, DMXL1, or DMXL2 (109), and the latter is

formed by WDR7. The combination varies among tissues and

intracellular organelles (107). Rav1, which is a subunit of the yeast

RAVE, recruits free V1C in the cytoplasm and contributes to V-

ATPase assembly (110). DMXL1 and DMXL2 are homologs of Rav1,

and the amino acid sequence in which Rav1 interacts with V1C is also

conserved in DMXL (111). Functionally, silencing of any of the

components of Rbc3 reduced the acidity in the vesicles (112).

Knockout of WDR7 attenuated V-ATPase assembly (113). The

regulation of Rbc3 is still to be elucidated, but one clue is calcium

dynamics. CAB2.2, a transmembrane calcium channel, binds to

DMXL (114), and CAPS1, which is involved in endoplasmic

reticulum acidification through calcium dynamics, also binds to

Rbc3 (115). TRiC holds the V1 component in the amino acid-

replete cytoplasm, while releasing it for V-ATPase assembly in the
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presence of amino acid deprivation (116). A regulatory mechanism of

TRiC could the phosphorylation of a subunit constituting TRiC.

Phosphorylation of CCT2, a component of TRiC, modulates its

function (117). mTORC1 signal may modify TRiC components to

stabilize the TRiC/V1 component complex. mEAK7 engages V1A, B,

and E in the N-terminal domain and binds to V1D in the C-terminal

domain, but does not contribute to luminal acidification and affects

mTOR signaling (118). Although ataxia telangiectasia mutated

(ATM) was initially identified as a protein involved in the DNA

damage response, it was recently reported to phosphorylate V1G and

prevent the interaction with V1E, resulting in inhibition of the

formation of a peripheral stalk (119).

2.4.2.2 Reactive radicals

Among the microbicidal effects induced by bacterial

phagocytosis, the production of reactive radicals in the lumen is

mainly mediated by NOX2 of the NADPH oxidase (NOX) family

and inducible nitric oxide synthase (iNOS), which are triggered

most rapidly after pathogen entry. The former produces reactive

oxygen species (ROS) most prominently in neutrophils, while the

latter produces reactive nitrogen species (RNS) mainly in

macrophages (64). The superoxide anion (O2
-.) produced by

NOX2 leads to the production of ROS represented by hydrogen

peroxide (H2O2), hydroxyl radical (OH*), and hypochlorous acid

(HOCl). This process is called a respiratory or oxidative burst

because of the surge in oxygen uptake and glucose consumption

unresponsive to cyanide (120).
FIGURE 3

Regulated assembly/Reversible disassembly of V-ATPase. V-ATPase is composed of a membrane-integrated V0 complex and a V1 complex that can
exist free in the cytoplasm. PI3K/AKT, EGF signal, and in mammals, glucose starvation and high glucose induce regulated assembly. On the other
hand, glucose starvation induces reversible disassembly in yeast. In the case of amino acid deficiency, TRiC, which holds the V1 complex in the
cytoplasm, releases the V1 complex and leans toward V-ATPase assembly. Rbc3 recruits V1 to V0 as a chaperone molecule. The dimer formation of
V1E and V1G, which form the peripheral stalk of the V1 complex, is inhibited by the phosphorylation of V1G by ATM, resulting in inhibition of V-
ATPase assembly. KU-60019, which inhibits ATM, promotes V-ATPase assembly. Created in BioRender.
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The activated NOX2 complex transfers electrons from the

cytoplasmic NADPH into the lumen of the phagosome, and the

resulting charge imbalance is resolved by the voltage-gated proton

channel Hv1, indicating that the activity of the NOX2 complex

requires this channel to be activated (121). Since this ion channel

does not consume energy, it is thought to function only when the

pH of the phagosome lumen is near neutral, indicating that the

respiratory burst of phagocytes induced by NOX2 complex

activation occurs only in a very narrow range near neutral (122).

The superoxide anion (O2
-) generated by the NOX2 complex can

utilize electrons from further NOX2 complexes and hydrogen from

the phagosome lumen and Hv1 to induce superoxide reductase

(SOR) or three types of superoxide dismutases (SODs) to produce

hydrogen peroxide, leading to the formation of additional hydroxy

radicals (123). These reactive radicals carry out their microbicidal

action by disrupting structures containing DNA, Fe-S clusters,

hemes, sulfhydryls, thioethers, and alkenes (124). ROS from the

NOX2 complex are not prominent in macrophages, but in

macrophages that swallowed the pathogen in defense against S.

aureus infection, mitochondria-derived vesicles, which contain

abundant hydrogen peroxide, fuse with phagosomes to provide

reactive radicals, which are lacking in bacterial killing (125).

It is mainly the inducible nitric oxide synthase (iNOS) that

produces reactive nitrogen species (RNS) that cooperate with ROS

in pathogen killing (64). Nitrogen oxide is made of cytoplasmic L-

arginine and oxygen, which undergo various catalytic reactions to

produce nitrogen dioxide, peroxynitrite, dinitrogen trioxide, and

dinitrosyl iron. Unlike NOX2, the regulatory mechanism occurs at

the transcriptional regulation, and de novo protein synthesis is

required for RNS production (126). Activation signals for iNOS

include the extracellular proinflammatory cytokine interferon

gamma (IFNg) and the intracellular signaling molecule NF-kB
(127).. It had been thought that iNOS is not recruited to the

phagosome and remains in the cytoplasm; therefore, the RNS

produced reaches the phagosome lumen by diffusion (128). In

research on Mycobacterium spp., it was revealed that iNOS is

recruited to phagosomes through binding with the scaffolding

protein EBP50, while the bacillus attenuates the recruitment (129).

2.4.2.3 Nutrients

Iron, alone or incorporated into Fe-S clusters or heme, is essential

for respiration, amino acid metabolism, and nucleic acid synthesis,

not only in eukaryotes but also in prokaryotes. Excess iron leads to

the ROS formation, while catalases and peroxidases that relieve

oxidative stress require heme as a cofactor (130). The innate

immune system has acquired the tactic of making iron unavailable

to pathogens so that they can feed on the pathogens they have taken

in (131). Lactoferrin is structurally very similar to transferrin, and it

strongly binds to divalent iron ions even in the highly acidic

environment of the lumen of the lysosome and exhibits

antimicrobial action as an iron chelating agent (132). Iron is

absorbed by bacteria via siderophore from the environment.

Siderocalin (neutrophil gelatinase-associated lipocalin (GAL)),
Frontiers in Immunology 09
which inhibits siderophores, has been shown to effectively function,

especially in sepsis caused by E. coli (133) and Mycobacterium spp

(134).. Natural resistance-associated macrophage protein-1

(Nramp1/Slc11a1), in the membrane of phagosomes and functions

as a divalent metal-proton symporter, has been implicated in the

defense of intravesicular pathogens (IPs). Nramp1 starves IPs such as

Mycobacteria, Salmonella typhimurium, and Leishmania domovanii

by removing Fe2+, Co2+, and Mn2+ from the phagosome (135).
3 Phagocyte-pathogen interaction:
evasion

Pathogens have various strategies to evade immunity and

survive. In particular, the pathway from phagocytosis to digestion

in the phagocyte, the first line of defense of innate immunity that

the pathogen encounters, is the most important site that must be

neutralized (64). Numerous molecular mechanisms have been

described that allow pathogens to disarm the phagosome pathway

and thereby acquire the microenvironment in which to survive and

proliferate (Figure 4; Tables 1–3) (136).
3.1 Camouflage/veil

Salmonella typhimurium interferes with TLR4 recognition and

signaling through deacylation and palmitoylation of lipid A present

on their surfaces (137).Helicobacter pylori dephosphorylates lipid A

to escape TLR4 (138). Haemophilus influenzae, H. aegyptius,

Streptococcus peumonie, and Neisseria gonorrhoeae secrete

proteases that selectively cleave immunoglobulin A, which is

responsible for opsonization (139, 140). Complement also plays a

role in opsonization, but some bacteria exploit the elaborate

activation pathway of complement. Neisseria mengitidis is a

bacterium that avoids phagocytosis by mimicking the host

complement factor H (fH), the regulatory substance of

complement, on its own surface (141). Staphylococcus aureus also

recruits fH to its surface by secreting a substance called SdrE (142).

YopH, a protein tyrosine phosphatase produced by Yersinia spp.,

dephosphorylates host phosphotyrosine proteins and prevents

phagocytosis (143). Vibrio parahaemolyticus secretes an inositol

polyphosphate 5-phosphatase, VPA0450, which disrupts host cell

membrane integrity and causes blebbing (144). This tactic is also

used by Shigella flexneri, which secretes IpgD, an inositol 4-

phosphatase, as its virulence factor, causing plasma membrane

blebbing by converting PI (4, 5)P2 to PI (5)P (145). Although not

a bacterium, m128L encoded byMyxoma virus has a high homology

to CD47, which is known to inhibit host phagocytosis as a “don’t eat

me” signal (53). The “don’t eat me” signal is essential for

establishing the lethal infection through inhibition of host

phagocytosis (146). Although there are no reports of cases in

which the bacteria themselves encode CD47 mimic, enhanced
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expression of CD47 in cells infected with S. typhi and Borrelia

burgdorferi has been reported (147). The upregulation of CD47

expression occurs through signaling from PRRs and is also

enhanced by inflammatory cytokines, suggesting that the CD47-

SIRPa axis may work to suppress excessive inflammatory
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responses. Bacteria make good use of this host regulation

mechanism to aid immune evasion. On the other hand, M.

tuberculosis, a phagocytosis-dependent intracellular parasite, is

unique in that it does not enhance CD47 expression, unlike

other bacteria.
TABLE 1 Immune evasion strategies for processes from sensing to internalization.

Host process Pathogen Effectors Mechanism

Sensing

Salmonella typhimurium Lipid A: Deacylation/Palmitoylation Escape from TLR4

Helicobactor pylori Lipid A: Dephosphorylation Escape from TLR4

Haemophilus influenzae Proteinase for IgA Inhibit the binding to FcgR

Haemophilus. aegyptius Proteinase for IgA Inhibit the binding to FcgR

Streptococcous peumonie Proteinase for IgA Inhibit the binding to FcgR

Neisseria gonorrhoeae Proteinase for IgA Inhibit the binding to FcgR

Neisseria mengitidis Recruit complement factor H (fH) Inhibit the binding to CR

Staphylococcus aureus SdrE to recruit fH Inhibit the binding to CR

Phagocytosis

Yersinia spp. protein tyrosin phosphatase: YopH Inhibit the capturing

Vibrio parahaemolyticus VPA0450: inositol polyphosphate 5-phosphatase Blebbing

Shigella flexneri IpgD: inositol 4-phosphatase Blebbing
B

C

D

A

FIGURE 4

Rpresentative mechanisms by which pathogens evade from the host phagolysosomal system. (A) Representative mechanisms by which the host
senses pathogens include TLRs, FcgRs, and complement receptors, and we show bacteria that possess mechanisms that counteract this sensing. (B).
It shows bacteria with an evade mechanism by inhibiting the process of phagocytosis, phagosome maturation, and fusion with lysosomes. (C). The
point of action at which the function of V-ATPase is attacked and the bacteria that carry it out. Four typical mechanisms are shown. Direct inhibition
of pump function, elimination of the pump from the membrane, loss of proton concentration differences by generating pores, and production of
enzymes that alkalinize acidified intralumens. (D). The point of action at which the function of NOX2 is attacked and the bacteria that carry it out.
Three typical mechanisms are shown: direct inhibition of the mechanism that produces superoxide, elimination of the complex from the membrane,
and detoxification of the produced reactive oxygen species.
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3.2 Neutralization of intracellular microbial
killing machineries

Although we are far from having a complete picture of the diverse

strategies by which bacteria neutralize host immune attack within the

cell, learning the molecular mechanisms is the first thing we must do

to win the war against bacteria. The strategy of bacteria that acquire

permissive niches intracellularly as intracellular pathogens (IPs) (148)

provides a great clue for the construction of host-directed

therapeutics (HDTs) (27). M. tuberculosis, a leading IP, has long

been a major scourge to mankind due to its high prevalence and high

mortality rate on a global scale (149), and is one of the most carefully

investigated (150).M. tuberculosis is thought to have evolved in such

a way to struggle with the host immune system that an exhaustive list

of protein and lipid effectors produced by the bacillus has been

compiled (151). In addition to M. tuberculosis, other potential IPs

include Rickettsia rickettsia, Chlamydia trachomatis, Legionella

peumophila, Coxiella burnetiid, Brucella abortus, and Salmonella

enterica; Cryptococcus neoformans and Aspergillus fumigatus among

fungi. Candida albicans uses other intracellular organelles such as

mitochondria as a habitat. The mechanisms by which they evade the

phagosome pathway have been intensively studied, and detailed

molecular mechanisms have been elucidated (152).
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3.2.1 Abortions of phagosome
M. tuberculosis has spun out more than a dozen

countermeasures in the phagosome maturation stage alone. First,

it secretes NdkA to repress the small GTPases RAB5 and RAB7,

which are central regulatory molecules in phagosome maturation

(153). In addition, SapM produced by the bacillus acts as a PI3P

phosphatase and inhibits the formation of PI3P, which is essential

for the maturation of membrane composition (154). Glycolipids on

the surface of the bacillus also greatly influence this phagosome

maturation. Mannose-capped lipoarabinomannane (ManLAM)

suppresses PI3P generation via the calcium-dependent calmodulin

pathway and prevents phagosome maturation (155). In addition,

phosphatidylinositol mannoside (PIM) present in the envelope

supports the retention of early endosome RAB proteins such as

RAB5, RAB22A, and RAB14 and prevents the recruitment of late

endosome RAB proteins such as RAB7 (156). With respect to fusion

with the lysosome, trehalose dimycolate (TDM) (157) and

sulfoglycolipid-1 (SL-1) (158) as lipid effectors prevent the fusion

process between the lysosome and the phagosome. Furthermore,M.

tuberculosis secretes toxins that inhibit the Ca/Calmodulin-PI3K

cascade and attempts to survive as IP through a strategy of

inhibiting the fusion of phagosomes and lysosomes (159). In

phagosomes harboring M. tuberculosis, protein tyrosine
TABLE 2 Immune evasion strategies to prevent phagosome maturation.

Mycobacterium tuberculosis

NdkA as small GTPase inhibitor Inhibit RAB5 and RAB7

SapM as PI3P phosphatase Inhibit PI3P generation

MptpB as PI3P, PI4P and PI5P
phosphatase

Arrest phagosome maturation

ManLAM to activate calcium-dependent
calmodulin

Inhibit PI3P generation

phosphatidylinositol mannoside(PIM) Inhibit RAB7

trehalose dimycolate (TDM) Inhibit lysosomal fusion

sulfoglycolipid-1(SL-1) Inhibit lysosomal fusion

protein tyrosine phosphatase A (PtpA) Inhibit lysosomal fusion

Yersinia pestis
Recruit RAB4a and RAB11b Deviate the recycle

Recruit RAB1b Inhibit maturation

Legionella pneumophil
Dot/Icm type IV secretion system Over 330 biological process affected

SidM/DrrA: recrut RABa Inhibit endosome fusion

Escherichia. coli
K1 capsule (a-2,8-kinked polysialic acid) Inhibit lysosomal fusion

Tir as a scaffold to SHIP2 Induce actin pedestal formation

Salmonella typhimurium SopB as PI (4,5)P2 phosphatase Inhibit lysosomal fusion

Chlamydia trachomatis Not determined Deviate to the secretary path

Listeria monocytogenes

Listeriolysin O
Generate pores in phogosomal membrane, leading to escape to
cytosol

Phospholipase (PlcA) Purturb phagosomal membrane

Phospholipase (PlcB) Purturb phagosomal membrane

Coxiella burnetii
Ank as a type IV secretion system
protein

Delayed maturation
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1227467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Taya et al. 10.3389/fimmu.2023.1227467
phosphatase A (PtpA) secreted by the bacillus binds to V-ATPase

V1H and inhibits the association of V-ATPase and HOPS, as well as

dephosphorylates vacuolar protein sorting 33B (VPS33B), which

forms HOPS, and thus loses its function as a fusion machinery (80).

Yersinia pestis targets organelle trafficking and recruits Rab4a

early in infection and Rab11b late in infection to prevent

phagosome maturation and inhibit acidification in the lumen

(160). These small GTPases are involved in endosome recycling,

and the Yersinia-containing vacuole mimics this process. In

addition, Y. pestis recruits Rab1b to phagosomes to inhibit

phagosome acidification by suppressing lysosome fusion (161).

Legionella pneumophila has evolved a defect in organelle

trafficking: intracellular multiplication (Dot/Icm) type IV

secretion system to make the phagosome of alveolar

macrophages a proliferative niche (162). This system provides

more than 330 effector proteins that interfere with host biological

processes to assist in bacterial replication and survival (163).

Among them, the system is involved in the recruitment of Rab1

like Y. pestis (164) and provides Sid1/DrrA, which is involved in

the regulation of Rab1 (165). E.coli K1 has a K1 capsule composed

of a-2,8-kinked polysialic acid on its surface that inhibits the

fusion of phagosomes and lysosomes. Salmonella-containing

phagosomes also inhibits the fusion of phagosomes and

lysosomes (166). Salmonella secretes phosphoinositide

phosphatase to maintain PI3P levels in the membrane, thereby

preventing phagosome maturation and fusion with the lysosome
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and ensuring its survival (167). Chlamydia trachomatis avoids the

fusion of its internalized phagosomes with endosomes and directs

them to the secr e tory pa thway to avo id an ac id i c

environment (168).

3.2.2 Disarming V-ATPase
It was shown 30 years ago thatM. tuberculosis, when it reaches

the phagolysosome, excludes V-ATPase from its membrane and

maintains the lumen at a pH of 6.3 or higher (169). The entity

responsible for excluding V-ATPase from the phagosome was

PtpA (80). In addition, antacid 1-tuberculosinyladenosine (1-

TbAd), which neutralizes acidification of the lumen, is secreted

by the bachillus (170). H. pylori, which can live in highly acidic

stomachs, has evolved various genes to adapt to the acidic

environment. One of the effectors is urease, which produces

ammonium ions that allow the pathogen survive in the harsh

acid environment of the stomach (171). Candida albicans and C.

glabrata use amino acids in their lysosomes to produce

ammonium ions to neutralize the intraluminal pH (172, 173).

Mycobacteria spp. have the same strategy (174). Research has

been conducted to create more effective vaccine that lacks urease

(175). a single bacterium has multiple defense mechanisms

against the host offense of lysosomal acidification. In addition

to Mycobacterium spp., Rhodococcus spp (176, 177). and

Histoplasma capsulatum (178) were reported to exclude V-

ATPases from phagosomes that contain them.
TABLE 3 Immune evasion strategies to neutralize bacterial destruction mechanisms.

Host process Pathogen Effectors Mechanism

V-ATPase

Mycobacterium tuberculosis
Protein tyrosine phosphatase A (PtpA) Inhibit lysosomal fusion

Antacid 1-tuberculosinyladenosine (1-TbAd) Neutralization

Helicobacter pylori Urease Neutralization

Candida albicans Urease Neutralization

Candida glabrata Urease Neutralization

Rhodococcus equi Virulence-associated protein A (VapA) Exclude V-ATPae

Histoplasma capsulatum Not identified Exclude V-ATPae

Yersinia pseudotuberculosis Not identified Inhibit proton pump

L. pneumophila SidK to bind V1A Inhibit proton pump

Pseudomonas aeruginosa pyocyamin Inhibit proton pump

Vibrio parahaemolyticus VopQ Neutralization by pore formation

Toxoplasma gondii Not identified Exclude V-ATPase

Reactive radicals

Salmonella typhimuium Salmonella pathogenicity island-2 (SPI2) Inhibit the accumulation of flavocytochrome b558

Listeria monocytogenes Pore-forming cytolysin listeriolysin O Exclude NOX2

Fransicella tularensis fevR Inhibit NOX2 activity

Mycobacterium tuberculosis

Iron-dependent enzyme (SodA) Detoxification

Copper/zinc-dependent enzyme (SodC) Detoxification

KatG: Catalase/Peroxidase/Peroxynitritase Detoxification

CpsA Inhibit NOX2 activity
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Some bacteria secrete substances that directly inhibit V-

ATPase. Y. pseudotuberculosis directly inhibits the activity of the

proton pump without affecting the expression level of the protein

component of V-ATPase, thereby causing lysosomal deacidification

(179). SidK produced by L. pneumophila physically binds to V-

ATPase V1A and inhibits its proton transport (180). Structural

analysis of the binding of SidK to V-ATPase showed that the two a-
helical bundles at the N-terminus of SidK bind to V1A and

markedly reduce the flexibility of its subunit (181). Pseudomonas

aeruginosa secretes pyocyamin, which is a potent inhibitor of V-

ATPase (182). Toxoplasma gondii survives by eliminating all

components involved in membrane fusion with endosomes,

r e su l t ing in non-ac id i c vacuo le (183 , 184) . Vibr io

parahaemolyticus secretes VopQ, a type III effector protein, which

is incorporated into the lysosome membrane as a channel for the

free passage of protons, and the pH in the cytoplasm and lysosome

lumen is balanced (185).

3.2.3 Disarming NOX2
Salmonella typhimurium inhibits the accumulation of

flavocytochrome b558 by releasing Salmonella pathogenicity

island-2 (SPI2), a member of the type III secretion system (186).

Listeria monocytogenes also eliminates the NOX2 membrane

component by secreting the pore-forming cytolysin listeriolysin O

(187). Fransicella tularensis not only excludes flavocytochrome b558
but also directly inhibits the activity of the NOX2 complex by

releasing a regulatory factor called fevR (188). M. tuberculosis has

also taken multiple countermeasures against reactive radicals,

including two types of SODs that process ROS: iron-dependent

enzyme (SodA) (189) and copper/zinc-dependent enzyme (SodC)

(190) and both contribute significantly to the virulence of the

pathogen. In addition, the bacillus secretes KatG, which serves as

a peroxidase and peroxynitritase, to metabolizes reactive radicals

produced by the phagocyte oxidative burst (191). When the bacillus

is preyed upon by the LAPosome, it secretes CpsA as an effector and

inhibits the activity of NOX2 (192).
3.2.4 Securing nutrition
Gram-negative rods such as E. coli, Salmonella spp., and

Klebsiella pneumoniae restore the host-inhibited function of

their own siderophores, which are responsible for iron

absorption, by producing a protein called iroA (193). The thick

waxy cell walls of Mycobacterium spp. provide excellent

protection against severe environmental and host invasion, but

are not conducive to the exchange of nutrients and metabolites

necessary for growth and survival with the outside world.

Mycobacterium attempts to secure iron by producing

mycobactin as a siderophore (194). The host interferes with

mycobactin, as it did against siderospheres of gram-negative

rods, but Mycobacterium secretes Esx-3 of the type VII secretion

system (Esx-1-5) to support mycobactin and iron absorption

(195). Aspergillus fumigatus produces HapX in iron deficiency to

suppress iron-consuming pathways such as host heme synthesis

and respiration, including the TCA circuit, and to increase the

production of iron-absorbing siderophores (196).
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4 Host-directed therapy for
bacterial infections

Against bacterial infections, tremendous resources have been

devoted to the development of antimicrobial agents that kill the

bacteria themselves. Cancer therapy has long since moved beyond

the days when drugs were developed to kill cancer cells themselves,

and HDTs have become a major pillar of cancer treatment. The

development of HDTs for bacterial infections has just begun, and

the development of HDTs for the phagolysosome pathway, the first

line of innate immunity, has lagged further behind. The molecular

mechanisms of the phagolysosome and bacterial evasion strategies

described thus far provide major clues to HDT. In the following

part, we would like to describe the current status of drug discovery

that intervenes in the phagolysosome pathway.
4.1 Phagocytosis activator

The application of immune checkpoint blockade to infectious

diseases has been investigated in the context of the interrelationship

between innate and adaptive immunity, rather than between

infected cells and innate immunity. Interventions on the PD1-

PD-L1 axis are effective in animal studies against infectious diseases

such as malaria, toxoplasma, leishmania, and Listeria (197). The

results of a phase 1/2 trial of nivolumab in sepsis have overcome

safety concerns, including the development of autoimmune disease

(198). In cancer therapy, although macrophages have been

intensively studied as targets for intervention in various aspects,

phagocytosis that macrophages execute is recognized as a promising

drug discovery (199). The findings of the phagocytosis checkpoint

may provide clues to the treatment of infectious diseases (53). The

inhibition of the PD-1-PD-L1 axis as a phagocytosis checkpoint

enhances phagocytosis in liver Kupffer cells and prevent bacterial

infection (200). A study using CD47 KO mice also reported that E.

coli pneumonia showed better recovery compared to wild

type (201).
4.2 V-ATPase activator

It was reported that monocytes from imatinib-treated patients

with leukemia showed an increased production of V0a3 and V0c

and had more acidic lysosomes. Sera from those patients, which are

added to the cell culture of macrophages, enforced more acidic

lysosomes and of M. tuberculosis (202). One compound was

reported to promote regulated assembly of V-ATPase, KU-60119,

which was identified as an ATM inhibitor that inhibited assembly of

V1E and V1G through phosphorylation of the latter (119). ZLN005

was originally recognized as a peroxisome proliferator-activated

receptor gamma coactivator 1-a (PGC1a) activator (203). By

administering ZLN005 to the cecum perforation ligation (CPL)

model of sepsis and analyzing intraperitoneal cells, ZLN005 was

shown to be a transcription factor EB (TFEB) activator involved in

lysosome biogenesis as well as a lysosomal acidifier (204). The
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compound significantly improved overall survival and drastically

reduced intraperitoneal bacterial load in mice at only 2 h after

administration of ZLN005 in in vivo sepsis model. These results

indicate that lysosomal acidification is a therapeutic target

for sepsis.
5 Clinical aspects and limitations in
host-directed therapy

When considering the pathogenesis of sepsis (205), in most

cases the organism of origin is not known at the onset of the disease.

When the pathogen is unknown, the choice of treatment, especially

antimicrobial agents, is highly dependent on the experience and

ability of the clinician. In contrast, the existence of host-directed

therapies that are independent of the organisms causing the disease

can first reduce the bacterial load. Even if not eradication,

significant improvement in survival may be achieved if circulatory

collapse and multiorgan damage can be avoided by reducing the

excessive bacterial load to a controllable level, which has been

beyond the reach of current initial therapy. When addressing

infections caused by resistant bacteria (206), countering bacterial

interference with lysosomes, which play a crucial role in bacterial

elimination, emerges as a significant alternative to traditional

disinfection methods.

The disadvantage of augmenting the phagolysosomal system is

that overactivation of autophagy is a concern, since the lysosomal

system is the final point of autophagy, which forms the basis of

cellular function (62). There is also concern that digestion in

lysosomes may be problematic by causing energy depletion in the

cell, as significant energy expenditure is thought to occur during

digestion in lysosomes (20). These are all reasons to believe that if

host-directed therapeutics were to be discovered, the method of

administration would need to be carefully set up.
6 Perspective

Bacterial infections are a major public health threat no less than

malignancies, neurodegenerative diseases, and cardiovascular and

metabolic diseases. The development of antibiotics with the goal of

disinfection shines as the most significant achievement of 20th

century medicine (2). Now, the development of new antibiotics

against the emergence of resistant bacteria is taking a backseat to

bacterial evolution. Anticancer therapy has seen a breakthrough

with the establishment of host-directed therapy in parallel with the

development of therapeutic agents aimed at eliminating cancer cells

(207). Host immunity plays a major role in the pathogenesis of both

cancer and infectious diseases (197). However, host-directed

therapy for infectious diseases is still in its infancy (208). In both

innate and adaptive immunity, the phagolysosomal system plays a

central role in bacterial clearance against bacterial infections (22).

Bacteria have evolved to achieve evasion of this phagolysosome
Frontiers in Immunology 14
system by any means necessary (64, 183). Due to rapid advances in

antibiotic technology, the host has not yet evolved to acquire an

effector mechanism to counter the evasion mechanism exhibited by

resistant bacteria. On the other hand, detailed molecular biological

analyses of this system have been performed (26, 101, 209), and the

time is ripe for the development of drugs with a point of action in

this system. Possible targets of action are numerous, including

phagocytosis, phagosome maturation, fusion with lysosomes,

lysosome acidification, and lysosome quality control. This system

is a fundamental cellular system and is also heavily involved in

neurodegenerative diseases (93) and embodies the development

strategy of organelle drug discovery rather than the framework of

disease-by-disease drug discovery. The development of host-

directed therapeutics for bacterial infections has the potential to

revolutionize the drug discovery system. It is hoped that the

development of HDT together with a new class of antimicrobial

agents, will work like two wheels on a cart, dramatically increasing

the life-saving rate of sepsis and creating a treatment strategy that is

not afraid of superbugs.
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