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Introduction: The antinociceptive and pharmacological activities of C-

Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory

arthritis remain unexplored so far. In the present study, we aimed to assess the

protective actions of these compounds in an experimental mice model that

replicates key aspects of human rheumatoid arthritis.

Methods: Antigen-induced arthritis (AIA) was established by intradermal injection

of methylated bovine serum albumin in C57BL/6 mice, and one hour before the

antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were

administered intraperitoneally. Proteome profiling was also conducted on
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glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this

key signaling pathway associated with nociceptive neuronal sensitization.

Results and discussion: C-PC and PCB notably ameliorated hypernociception,

synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular

cytokine concentration of IFN-g, TNF-a, IL-17A, and IL-4 dose-dependently in

AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-

bet, RORg, and IFN-g in the popliteal lymph nodes, accompanied by a significant

reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal

proteome analysis revealed that PCB modulated biological processes such as

pain, inflammation, and glutamatergic transmission, all of which are involved in

arthritic pathology.

Conclusions: These findings demonstrate the remarkable efficacy of PCB in

alleviating the nociception and inflammation in the AIA mice model and shed

new light on mechanisms underlying the PCB modulation of the neuronal

proteome. This research work opens a new avenue to explore the translational

potential of PCB in developing a therapeutic strategy for inflammation and pain

in rheumatoid arthritis.
KEYWORDS

Phycocyanobilin, rheumatoid arthritis, hypernociception, glutamatergic transmission,
proteome, neutrophils, inflammation, C-Phycocyanin
1 Introduction

Rheumatoid arthritis (RA) stands as a persistent autoimmune

disease, marked by widespread synovitis and, at times, by relentless

bone deterioration (1). The ensuing joint abnormalities, which

include rigidity and deformity, precipitate a distressing setback of

mobility in RA-afflicted individuals and eventually lead to varying

degrees of bone decomposition, harm to ligaments and tendons,

and skeletal muscle weakening (2).

The initiation and extension of chronic RA inflammation

involves both adaptive and innate immune cells. Neutrophils have

been identified as the predominant leukocyte in the joints of

individuals with active RA (3). Their role in the disease’s

pathogenesis includes tissue damage and the discharge of

proinflammatory cytokines as well as an important crosstalk with

other immune cells such as T cells and dendritic cells (DCs) (4–6).

Animal models of arthritis have provided more direct evidence of

neutrophil involvement in this disease. In the K/BxN mouse RA

model, neutrophil depletion led to the complete reversion of the

joint inflammation, showing no signs of swelling either in the

forefeet or the ankle joints (7). Likewise, chemokines commonly

found in rheumatoid synovial fluid drew neutrophils into the

affected joints in an arthritis mice model induced by collagen,

while the neutrophil depletion also completely prevented the

disease development in this model (8).

Furthermore, impairment of the resolution of inflammation

acquires a prominent role in perpetuating clinical dysfunction in

chronic diseases such as RA. It has been noted that a persistent
02
failure in neutrophil death is correlated with an increased severity of

experimental arthritis in mice (9). Even when neutrophils die, their

disposal is dependent on the expression of “eat-me” signals that

trigger the engulfing activity of phagocytes, a process called

efferocytosis, which may also fail during RA (10). Therefore,

considering the diverse roles of neutrophils uncovered in the

development of RA, it comes as no surprise that they have

become crucial focal points for potential novel disease-

modifying treatments.

The prevailing symptom of RA is pain, as confirmed by

noteworthy data showing that 97% of individuals with early RA

experience pain, and this serves as the primary cause for their initial

consultation with healthcare practitioners (11). The onset of pain

precedes the visible signs of RA (12, 13), leading to psychological

affliction and disturbances in sleep patterns (14). Furthermore, pain

emerges as a pivotal factor that influences crucial aspects of daily

life. Even when the pain intensity is mild, it can significantly impede

regular activities (15). The joint’s synovium and capsule primarily

house the peripheral afferent fibers stemming from the dorsal root

ganglion (DRG). Within these regions, a considerable population of

primary Aa and Ab sensory neurons are engaged in

mechanosensation, while Ad and C fibers are responsible for

nociception (16). Additionally, sensory periphery nerves are also

distributed throughout the joint capsule, lateral area of the

meniscus, subchondral bone, ligaments, tendon sheaths, and

muscles. All these areas also contribute significantly to the

emergence of arthritic pain by exposing their innervating nerves

to sensitizing factors secondary to the arthritic progressive tissue
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erosion (17). Notably, synovitis within the joint stands as a key

pathophysiological mechanism of RA pain generation, directly

engaging and sensitizing the afferent nerves of the periphery

through a range of soluble mediators, including bradykinin,

pros tag land ins , cy tok ines , and the main exc i ta tory

neurotransmitter glutamate (18, 19).

Indeed, glutamatergic signaling in the joints has emerged as a

major factor in the pathophysiology of arthritic pain. Numerous

studies have consistently reported a significant increase in

glutamate concentration in the synovial fluid of humans with RA

(20, 21) and in animal models of this disease (22). In one study, a

single intra-articular injection of a glutamate receptor antagonist

successfully inhibited allodynia, a type of pain that arises from a

typically non-painful stimulus, in rats with complete Freund’s

adjuvant-induced arthritis (23). The accumulation of glutamate in

the arthritic joint is believed to originate from the peripheral dorsal

root ganglion (DRG) nerve terminals due to a marked increase in

the production of glutaminase, the primary glutamate synthetic

enzyme in neurons (24). This excess glutamate is subsequently

released into the extracellular space, leading to an autocrine or

paracrine sensitization process. Additional evidence supporting this

conclusion comes from studies showing that inhibiting glutaminase

peripherally has potent analgesic effects in rats with carrageenan-

induced paw inflammation (25).

In parallel to this peripheral sensitization, the mechanisms that

regulate pain in the central nervous system are also critically

dependent on the sensitization of neurons present in the dorsal

horn of the spinal cord, which receive input from the DRG Ad and
C fibers. This central sensitization, caused by the hyperexcitability

of spinal neurons, accompanied by a shortage or augmentation of

descending inhibitory or facilitatory pathways, respectively, leads to

the amplification of the receptive field and an increase in pain

sensitivity (26). Distinctive phases occurring in this spinal

sensitization of RA pain have been postulated. In the acute phase

of the disease, this phenomenon is dictated by the enhanced release

of glutamate from the DRG afferent presynaptic endings, which acts

on its ionotropic (NMDA, AMPA, kainite) and metabotropic

receptors present in the postsynaptic neurons of the spinal dorsal

horn (27). In the long-lasting stage of RA, a marked influence of

microglia and astrocyte activity on synaptic processing has been

documented in diverse chronic models of this malady (28).

Based on these premises, it is reasonable to investigate how

neurons respond to excitatory glutamatergic stimulation to predict

the possible mediators of inflammatory pain processing. Proteomics

studies have proven to be a valuable tool in identifying important

cellular markers and pathways of neuronal responses and

translatability at a mechanistic level (29). Among those extensively

studied cellular models is the human SH-SY5Y neuronal cell line,

known for its predictability in assessing neuronal glutamate receptors

excitability (30) and responses to inflammatory stimuli such as

lipopolysaccharide (31) or cytokines (32). Utilizing this model

provides an appropriate experimental framework to detect distinct

changes in proteomic profiles under glutamatergic stimulation,

potentially leading to new mechanistic hypotheses.
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The primary objective of RA therapy is to attain disease

remission by easing its symptoms and enhancing the overall

quality of life. RA treatment currently involves five main drug

classes: pain relievers, non-steroidal anti-inflammatory drugs,

glucocorticoids, biologic disease-modifying antirheumatic drugs

(bDMARDs), and non-biologic or synthetic DMARDs (33).

Despite their usefulness, these treatment approaches often come

with undesirable side effects, and approximately 20-40% of patients

with RA do not exhibit a positive clinical response to these therapies

(34). As a result, there is a pressing need for innovative treatment

alternatives to achieve this unmet need in RA treatments.

C-Phycocyanin (C-PC) is the main protein composing the

phycobilisomes of Spirulina platensis microalgae. This

phycobiliprotein is constituted by the a and b subunits,

polypeptides with molecular weights of 17.6 and 18 kDa,

respectively, which contain as a prosthetic group, a tetrapyrrolic

ring structure named Phycocyanobilin (PCB) that is linked by

thioether bonds to cysteines 84 (a chain), 82 and 153 (b chain)

(35). This compound functions as the chromophore of the protein

complex for energy transduction in the cyanobacteria´s

phycobilisomes, and it is associated with the antioxidant (36) and

immunomodulatory (37) activities of C-PC. The beneficial properties

of Spirulina platensis extracts, the natural source of C-PC/PCB, have

been studied in several animal models of arthritis (38). By exerting a

combination of antioxidant, antiangiogenic, and anti-inflammatory

actions, the raw preparations of Spirulina platensis have shown

promising evidence for alleviating arthritic injuries (39–41).

However, to the best of our knowledge, there is no previous report

describing the antinociceptive and inflammopharmacological

activities of PCB in the context of inflammatory arthritis.

Considering their properties, here we provide evidence that

PCB, either administered in pure form or released in vivo from its

prodrug, the biliprotein C-PC, has protective actions in an

experimental setting that mimics several hallmarks of the human

disease RA in mice, with emphasis on arthritis-associated

nociception and inflammation. This hypothesis was demonstrated

through observations that highlight this therapy’s potential to

effectively cope with functional, immunological, and pathological

arthritic injuries. Furthermore, we aimed to assess the effects of PCB

on glutamate-induced proteome changes in SH-SY5Y neurons,

seeking novel mechanistic insights that may explain the

counteractive actions of this molecule against arthritis nociception.
2 Materials and methods

2.1 Reagents

Sigma-Aldrich (St. Louis, USA) was the commercial supplier of the

reagents for most experiments, except in those accordingly indicated.

The raw material of Spirulina platensis was a kind gift from Genix

(Labiofam, Havana, Cuba). The extraction of C-PC from this biomass

followed the procedures already standardized and published by our

group, which are confirmed by an aqueous two-phase separation
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system (42). The final C-PC purity solution was higher than 4

(analytical grade) and this stock was kept refrigerated at 4°C during

the duration of the experiments. The working dilutions of C-PC were

prepared with sterile phosphate buffer saline (PBS) pH 7.4 immediately

before its administration to mice. PCB was commercially obtained in

powder (Cat. No. SC-396921, Santa Cruz Biotechnology, Inc., Dallas,

USA), diluted with sterile PBS pH 7.4 at 5 mg/mL, and stocked in

frozen aliquots (-20°C). Immediately before the administration, the

PCB solutions (light-protected) were diluted from the stock according

to the scheduled dose.
2.2 Laboratory mice

Male C57BL/6 mice (6-8 weeks old) provided by the Federal

University of Minas Gerais (UFMG) (43), Belo Horizonte, Brazil,

were maintained in the animal rooms of the Immunopharmacology

Laboratory, Department of Biochemistry and Immunology at

UFMG. Animals received standard food and filtered water ad

libitum with temperature and humidity-controlled conditions. All

procedures involving animal care and handling were approved by

the UFMG ethics committee (CEUA UFMG:165/2009).
2.3 Antigen-induced arthritis in mice and
treatment schedules

AIA was induced following a previously described procedure

(43). Briefly, mice were intraperitoneally anesthetized with a

mixture of 100 mg/kg of ketamine and 10 mg/kg of xylazine

(44) and then immunized by an intradermal shot at the tail base of

an emulsion containing 500 µg of methylated bovine serum

albumin (mBSA; Sigma) and 100 µL of saline plus Freund’s

complete adjuvant (CFA; Sigma) at 1:1 ratio (v:v). After two

weeks, the challenge with 10 µg of mBSA (in 10 µL sterile

saline) was performed by injecting it intra-articularly in the

right knee joint of anesthetized mice. At the appropriate time

points, euthanasia of the mice was carried out as permitted

according to Annex IV of Directive 2010/63/EU, with an

anesthetic overdose (180 mg/kg of ketamine and 24 mg/kg of

xylazine, intraperitoneally).

Three separate experiments and different outcome assessments

were performed. In the first experiment, five groups of mice (n=5-6

each one) were separated at random and divided into groups

composed of the control mice receiving an injection of 10 mL
sterile saline in the same joint and mice with AIA treated

intraperitoneally either with vehicle (PBS pH 7.4) or with C-PC

at 2, 4, or 8 mg/kg one hour before the antigen challenge. In the

second experiment, the same treatment schedule and route of

administration were used, and the mice were allocated at random

into four groups (n=6 each one) made up of, in addition to the

control, the diseased animals treated with increasing doses of PCB

(0.1 or 1 mg/kg), or with PBS pH 7.4 (defined as the vehicle). In the

first two experiments, the hypernociception (a pain index measured

in the affected right paw), the myeloperoxidase (MPO) activity, and
Frontiers in Immunology 04
the neutrophil infiltration in the affected knee cavity were

determined following previously described procedures (45).

Finally, the third experiment used a similar design to the

second. It included the control, the AIA + vehicle, and the AIA +

PCB 1 mg/kg groups (n=4-6 each one) but the experiment aimed to

perform a histopathological evaluation of the diseased knee.
2.4 Evaluation of hypernociception

An electronic pressure device equipped with a polypropylene

tip (4.15 mm2) transducer was utilized (Insight Instruments,

Ribeirão Preto, Sao Paulo, Brazil). Prior to the study, mice were

subjected to a 30-min room adaptation when housed in acrylic

cages (12 x 10 x 17 cm high) with a wired floor. Mechanical

stimulation was realized while the mice were completely calm, by

applying a force with the transducer tip to the central field of the

affected paw. Consequently, the bending of the femorotibial joint

was produced, accompanied by the retraction of the stimulated paw.

The device registered the force intensity when the paw retreat was

completed, and the results were expressed as the change in

withdrawal threshold (in grams) (46).
2.5 Determination of MPO activity and
CXCL1 levels

The assessment of the MPO activity and the CXCL1 protein

levels was performed in the periarticular tissue homogenate coming

from the right knee joint and processed by Ultra-Turrax (Ika, Minas

Gerais, Brazil). The MPO activity was evaluated as described (47),

by the enzymatic reaction of 25 µL of sample in the presence of 25

µL of 3,3’-5,5’-tetramethylbenzidine (TMB) at 1.6 mM as the color

reagent, followed by the spectrophotometric measurement of the

reaction product at 450 nm. The absorbance values were

interpolated in a standard curve made with a simultaneous assay

on 5% casein peritoneal-induced neutrophils, and results were

expressed as relative arbitrary units.

CXCL1 was measured by an ELISA kit as indicated by the

supplier instructions manual (Duo-Set kits, R&D Systems,

Minneapolis, MN, USA).
2.6 Intra-articular neutrophil quantification

The cavity of the right knee was cleansed with sterile PBS

(two times with 5 µL), added to 90 µL sterile PBS, and stored on

ice. The total quantity of leukocytes was immediately counted

with a Neubauer chamber when the samples (10 µL) were stained

with Turk’s solution. The remaining samples were mounted on

slides through a cytospin instrument (Shandon III; Thermo

Shandon, Frankfurt , Germany). Differential leukocyte

assessment in these slides was performed with a May-

Grünwald-Giemsa staining following standard morphologic

parameters (48).
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2.7 Real-time PCR

Total RNA was extracted from popliteal lymph nodes (LNs)

with TRIzol reagent (Invitrogen, Rockville, MD) (49). All qPCR

assays were done in triplicate with gene-specific primers

(Supplementary Table S1), which were used at 300 nM (OriGene

Technologies, USA). The reaction products were detected with Fast

SYBR Green PCR Master Mix in the Applied Biosystems 7900HT

Fast Real-Time PCR System (Applied Biosystems, Foster City, CA,

USA). Bi-distilled water was used as a negative control for all assays,

either for the target or for the housekeeping genes. The results were

calculated following the 2-DDCt method (50).
2.8 Cytometric Bead Array

After careful dissection of the periarticular tissues, these were

homogenized with Ultra-Turrax (Ika, Minas Gerais, Brazil) in the

presence of a protease-inhibitor mix in PBS pH 7.4. Supernatants

were obtained by centrifugation at 13,000g for 10 min at 4 °C and

frozen-stored (-70 °C) until needed for the CBA assay. Four

cytokines were evaluated (TNF-a, IFN-g, IL-17A, and IL-4)

following the kit’s protocol (BD™ CBA Mouse Inflammation Kit,

BD Biosciences, San Diego, CA), and quantified on a FACS Calibur

flow cytometer (Becton Dickinson, San Jose, CA).
2.9 Histopathological analysis

The right knee joints were collected for histological evaluation.

After the fixation step in 10% buffered formalin (pH 7.4), a 30-day

decalcification phase was done by incubating the samples in 14%

EDTA pH 7.2 at 20-25 °C prior to paraffin embedding, cutting in

sections, and staining with 5 mM hematoxylin/eosin. A pathology

specialist blindly analyzed two sections/knee joints with a light

microscope and assigned a score to each of the following

parameters: hyperplasia of the synovium, immune cell infiltration,

and bone erosion. The arthritis index was calculated by summing

the score of each of these parameters, ranging from 0 to 8, with a

higher index indicating an increased injury (51). Representative

images for each experimental group were taken with a microscope-

coupled digital camera and processed with Image J software

(National Institutes of Health, Bethesda, MD).
2.10 Isotopic labeling

The radioactive labeling was accomplished with 125I using the

Iodogen method (52). Briefly, an Iodogen coated 0.5 mL microtube

(Eppendorf, USA) was placed in 1 M phosphate buffer (pH 7.0),

using 37 MBq [125I]-NaI (Isotop, Hungary) in 1 M NaOH and

gently stirred for 5 min. Afterward, the labeling was done through

the addition of 100 mg of C-PC dissolved in 100 mL of purified

water. Then, the radiolabel was continued for an additional time of

20 min. The labeled C-PC was separated from the reaction medium
Frontiers in Immunology 05
in a Sephadex G25 column (GE Healthcare, USA) previously

equilibrated in 1 M phosphate buffer (pH 7.0). Finally, the blue

fractions with radiochemical purities of at least 90% were pooled

and stored at 4°C until use. Blood samples (70 mL) were collected
from the retro-orbital plexus by means of a heparinized capillary in

anesthetized rats at 1, 15, and 30 min after the administration of 5

mg/kg C-PC. All samples were centrifuged at 10,000 rpm for 5 min.

The 20µL plasma aliquot was added to 0.5 mL of 0.1% bovine serum

albumin and 0.5 mL of 20% trichloroacetic acid. The insoluble

material obtained by centrifugation at 10,000 rpm for 5 min

(Eppendorf, Germany) was analyzed in a gamma counter

(Berthold, Germany).
2.11 Biodistribution and pharmacokinetics
of C-PC

Lewis rats were used to evaluate the biodistribution and

pharmacokinetics of C-PC administered by four different routes:

intraperitoneal (ip), intravenous (i.v.), intranasal (i.n), and oral. For

the i.v. and i.n. routes, a unique dose of 1mg/kg was used. The

samples were taken at 1, 4, 8, 12, and 24 h post-administration in

the five rats of this subgroup. For the i.n. scheme, the samples were

also collected at 1, 10, and 30 min after receiving the compound, in

addition to long-time sampling at 1, 2, 4, and 24 h. In all

experiments, tissue distribution was determined at 24 h by

euthanasia under narcosis overdose. Percent of accumulated dose

per sample was calculated with respect to 1 mL of standard dilution

of administered dose measured in the same condition in a well-type

scintillation counter calibrated for the energy of 125I. Results are

expressed as percent of uptake relative to total radioactivity dose (%

D) or percent of uptake per mass of tissue (%D/g).

Pharmacokinetic analysis was carried out following the non-

compartmental approach using Pkanalix (Monolix Suite 2021R2,

Lixoft, France).
2.12 Cell culture and experimental groups

Human SH-SY5Y cells were maintained in culture DMEM/F12

medium supplemented with fetal bovine serum, penicillin,

streptomycin, and L-glutamine. The study was divided into three

groups, each one containing 4 x 106 SH-SY5Y cells: 1) non-treated

cells (used as a control), 2) PCB plus Glutamate, and 3) Glutamate.

After 24 h of pre-stimulation with 0.1 µM PCB, the medium was

replaced with freshly prepared 0.01 µM PCB plus 60 µM Glutamate

(group 2) or 60 µM Glutamate alone (group 3) for another day.

Afterward, the medium was removed; cells were washed using cold

PBS and processed to conduct proteomic expression analysis. Three

biological replicates were used per group.
2.13 Differential protein expression

Proteins were extracted in 1.5% SDS/50 mM DTT with boiling for

10 minutes. Samples were filtered by FASP according to Wisniewski
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(53) after the reaction of cysteines with iodoacetamide. Overnight Lysyl

endopeptidase and 6 h Trypsin digestions were performed at 37 °C.

Samples (1 mg) were analyzed in a Thermo Exploris 480 mass

spectrometer via LC-ESI-MS/MS. A nanoLC Ultima 3000 coupled

through a Pepmap column (75 mm x 150 mm) to the MS was used.

Gradients of 80% acetonitrile in 0.1% formic acid were performed in

120 min at 300 nL/min flow rate. The mass spectrometer was operated

in data-dependent analysis (DDA) mode with dynamic exclusion of 30

s and full-scanMS spectra (m/z 350–1650) with a resolution of 120,000

(m/z 200), followed by fragmentation of the most intense ions within 1

s cycle time with high energy collisional dissociation (HCD),

normalized collision energy (NCE) of 30.0, and resolution of 15,000

(m/z 200) in MS/MS scans.

Identification of peptides and proteins was based on the match-

between-runs procedure using MaxQuant software (v1.6.14.0) (54),

considering oxidation (M), deamidation (NQ), and N-terminal

acetylation as variable modifications. Alignment of chromatographic

runs was allowed with a 20-min alignment window and a time

matching of 5 min between runs. Filtering and quantification were

performed in the Perseus computational platform (v1.614.0) (54).

Student’s t-test was employed to identify statistically significant

changes (p-values lower than 0.05) in protein levels, after filtering

for two valid values in each group.
2.14 Bioinformatics analysis

Differentially modulated proteins associated with inflammation,

pain, arthritis, neurodegenerative diseases, and glutamatergic

transmission were identified by a literature search in the Pubmed

database (https://pubmed.ncbi.nlm.nih.gov/). To retrieve the

information contained in Pubmed, the text mining tools Chilibot

(chip literature robot) (http://www.chilibot.net/) and GeneCUP

(https://genecup.org/) were used (55, 56). The data mining study was

complemented with the information retrieved from the Diseases 2.0

database (https://diseases.jensenlab.org). Such a database provides

confidence scores to disease-gene associations annotated using text

mininganddata integration tools (57).Diseases related todifferentially

modulated proteins were also retrieved from DisGeNET (https://

www.disgenet.org/) and GAD_Disease databases by using the

DAVID functional annotation tool (https://david.ncifcrf.gov/) (58,

59). Interactions among differentially modulated proteins were

retrieved using the STRING database (http://string-db.org/) (60). In

such analysis, all STRING interaction sources were selected and the

confidence score was fixed at 0.4. The biological network of functional

associations was visualized using Cytoscape software (v.3.5) (61).
2.15 Statistical analysis

The statistical analysis was carried out with the GraphPad Prism

software version 9.5.1 (GraphPad Software Inc., CA, USA). All data

was expressed as the mean ± standard error of the mean (S.E.M.).

Data from the control and the AIA + vehicle groups obtained from

different experiments were pooled for the statistical analysis of the

hypernociception, the neutrophil quantification, and the MPO
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activity. The normality of the data was assessed, and when

appropriate, it was analyzed by one-way ANOVA and Tukey’s

multiple comparisons test (parametric). Non-Gaussian

measurements were analyzed by Kruskal-Wallis and Dunn’s

multiple comparisons tests (non-parametric). Differences between

groups were considered statistically significant at p<0.05

(Supplementary Table S2).
3 Results

3.1 C-PC ameliorates AIA-induced injury

We started our study with the evaluation of C-PC in the AIAmice

model, with the assumption that this biliprotein acts as a prodrug

during its in vivo administration by releasing the pharmacologically

active compound PCB into the body. The tetrapyrrole PCB is linked to

the specific cysteine residues in C-PC through thioether linkages. Its

unbinding could be bymeans of enzymatic activities as proteases in the

formof short peptides or inclusiveby thedirect rupture of the thioether

bond.Another form implies the acidic pHin the stomach, inwhich this

chemical bond is unstable. Nevertheless, the PCB could be linked to

another plasmatic protein (i.e., albumin) to facilitate its transport to

target cells.

As observed in Figure 1A, the AIAmice that received the vehicle

treatment presented a significantly increased nociception in

comparison with the control group. The prophylactic

administration of either of the three doses of C-PC (2, 4, or 8

mg/kg) was able to significantly reduce the hypernociception in AIA

mice one day following the antigen challenge, in comparison with

the AIA + vehicle (Figure 1A). AIA also produced a notable increase

of neutrophil infiltration, as well as MPO activity in the periarticular

tissue of vehicle-treated mice (Figures 1B, C). The treatment with C-

PC at the three doses evaluated significantly curtailed the entrance

and accumulation of neutrophils in the affected synovial cavity

(Figure 1B) and the MPO activity (Figure 1C). In addition, C-PC

significantly diminished the CXCL1 chemokine concentrations at

all doses assessed with respect to the diseased animals that received

the vehicle. (Figure 1D). It is noteworthy that a dose-response effect

for the range of doses of C-PC evaluated was not observed.
3.2 Biodistribution and pharmacokinetics
of C-PC

A radioactive assessment was conducted to determine the C-

PC’s biodistribution in various tissues. In the i.p., i.v., i.n., and oral

routes, radioactivity was detected at levels representing less than 2%

of the total administered dose. Conversely, as expected upon oral

administration, the accumulation of C-PC was notably higher

within the digestive tract, particularly in the large intestine

(Figure 2). The pharmacokinetic analysis revealed that i.v.

administration led to an exponential decline in plasma C-PC

levels. This decay was characterized by an average clearance of 8.9

mL/h and a distribution volume at the stationary phase of 295 mL,

which closely matched the body mass of the experimental subjects.
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Elimination was nearly complete 24 h after i.v. administration, as

indicated by an area under the curve of 22.7 h * mg/mL. Oral and i.n.

administrations demonstrated similar trends in the plasmatic C-PC

levels, with the maximum concentration reached at 1 and 4 h,

respectively. However, the maximum concentration was much

higher in the case of i.n. administration, reaching the value of

12.0 mg/mL, compared to the value of 6.8 mg/mL achieved by the

oral route at these time points. Indeed, when comparing the areas

under the curve, a clear increase was evident for the i.n. route with

226 h * mg/mL, whereas for the oral route, it was 77 h * mg/mL

(Supplementary Figure S1).
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3.3 Dose-response effects of PCB against
hypernociception and neutrophil
infiltration in mice with AIA

The prophylactic PCB treatment was effective in ameliorating

the arthritis-induced hypernociception in mice following one day of

antigen challenge, with respect to the AIA animals receiving the

vehicle (Figure 3A). The quantification of the leucocyte infiltration

into the inflamed knee revealed that the pretreatment with PCB

significantly lessened the neutrophil agglomeration in the synovial

space, showing a response associated with the used doses, when
FIGURE 2

Distribution of C-PC after intraperitoneal (n=4), intravenous, nasal (n=2), and oral (n=2) administration in Lewis rats. Values expressed as %D/g of
tissue or %D relative to total dose and standard deviation.
B

C D

A

FIGURE 1

C-Phycocyanin reduces the hypernociception (A), neutrophil infiltration (B), MPO activity (C), and CXCL1 levels (D) in AIA mice. Data are mean ±
SEM of 5-11 mice/group. *p<0.05, **p<0.01, ***p<0.001, compared with vehicle-treated arthritic mice; &p<0.05, &&p<0.01, &&&p <0.001, compared
with control (ANOVA + Tukey’s tests).
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statistically contrasting with the vehicle AIA mice (Figure 3B).

Similarly, PCB produced a decline in the MPO activity in relation to

the AIA mice that were injected with vehicle solution. (Figure 3C).

Importantly, this effect of PCB followed a dose-response behavior.
3.4 PCB effects on cytokine production
and T cell markers expression in mice
with AIA

On the other hand, a significant downregulation of PCB at

1 mg/kg on the transcriptional factors T-bet (Th1), RORg (Th17),
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and the proinflammatory cytokine IFNgwas observed compared with

the AIA + vehicle group, as determined by qPCR analysis of popliteal

lymph nodes (Figure 4A). Likewise, PCB treatment dose-dependently

restricted the expression of cytokines mediating a proinflammatory

Th1 phenotype in periarticular tissue homogenate as assessed by

CBA: IFN-g with a significant difference and a clear trend towards a

reduction for TNF-a when the AIA + PCB 1 mg/kg was compared

with the AIA + vehicle (Figure 4B). Furthermore, a significant drop

was also achieved with the treatment of 1 mg/kg PCB, the uppermost

dose used, for the cytokine IL-17A (Figure 4B). Interestingly,

treatment with both PCB amounts tested (0.1 and 1 mg/kg)

produced a significant reduction of the cytokine IL-4, characteristic
BA

FIGURE 4

Effect of Phycocyanobilin on (A) mRNA levels by qPCR in popliteal lymph nodes, and (B) protein levels by Cytometric Bead Array (CBA) in the
supernatant from periarticular tissues homogenates. Data are mean ± SEM of 5-6 mice/group. *p<0.05, compared with vehicle-treated arthritic
mice; &p<0.05, &&p<0.01, compared with control. ANOVA + Tukey tests for IFN-g (mRNA and protein), T-bet, RORg, and IL-4; Kruskal-Wallis + Dunn
tests for TNF-a and IL-17A.
B

C

A

FIGURE 3

Phycocyanobilin ameliorates the hypernociception (A), the neutrophil accumulation (B), and the MPO activity (C) in mice with acute AIA. Data are mean ±
SEM of 5-11 mice/group. ***p<0.001, compared with vehicle-treated arthritic mice; &&p<0.01, &&&p <0.001, compared with control (ANOVA + Tukey’s tests).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1227268
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marı́n-Prida et al. 10.3389/fimmu.2023.1227268
of a Th2 response, in AIA mice compared with diseased animals

receiving the vehicle (Figure 4B).
3.5 PCB reduces the tissue damage in the
lesioned joint of mice with AIA

Based on this encouraging evidence, we then decided to perform a

histological assessment of the affected knees to confirm the protective

activity of PCB on the tissue structure. The healthy control is shown in

panel 5A (Figure 5A). On the contrary, those animals affected by the

disease andreceiving thevehicle treatment showeda riseof the arthritis

index, with a distinctive synovial accumulation of polymorphonuclear

cells (Figure5B).This featurewas counteractedby1mg/kgPCB,which

dramatically reduced the leucocyte exudate in the joint space

(Figure 5C) Accordingly, the arthritis index showed a significant

reduction in diseased animals treated with PCB at 1 mg/kg

compared with AIA + vehicle group (Figure 5D).
3.6 PCB regulates the proteome profile in
glutamate-exposed SH-SY5Y neuronal cells

To identify the array of proteins under the regulation of PCB,

we conducted quantitative proteomic analysis on SH-SY5Y
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neuronal cells. These cells were exposed to the excitatory

neurotransmitter glutamate and subsequently treated with or

without PCB over a 24-hour period. Out of a total of 4,511

identified proteins, 19 proteins displayed differential modulation

in cells treated with PCB (Table 1, Figure 6, and Supplementary

Table S3). An additional comparative study was performed to

quantify the proteins modulated by either the PCB treatment or

the glutamate injury independently by using non-treated SH-SY5Y

cells as the control condition (Supplementary Table S4 and

Supplementary Figure S2).

For a better understanding of putative cellular processes

affected by PCB, the 19 differentially modulated proteins were

classified using the information from disease databases and text

mining tools (Supplementary Table S4). As shown in Figure 7,

besides proteins related to neurodegenerative diseases, PCB

treatment downregulates proteins involved in arthritis and pain.

Furthermore, proteins that play a role in glutamatergic transmission

and inflammation were also modulated in response to

PCB treatment.
4 Discussion

The first-ever published observations regarding the beneficial

actions of Spirulina extracts against arthritis were published in 2002
B

C

DA

FIGURE 5

Histological assessment of PCB on the knee joint in AIA mice. Photographs are representative of (A) Control, (B) AIA + vehicle, and (C) AIA + 1 mg/kg
PCB. (D) Quantitative evaluation of PCB effects on the arthritic index. The right panels are magnified 2.5 times the respective region in the left panel
for (A-C). Histopathological confirmation of the AIA-caused joint inflammation is evident on panels (B), such as the occurrence of inflammatory
infiltrate (II), indicated by arrows, in the adipose tissue (AT) and inside the meniscus (M). It is also observed in panels (B) an increase in blood vessels
(BV) with their red blood cells inside the AT and the modification of tissue morphology when examining in relation to the other panels (A, C). AT,
Adipose Tissue; AC, Articular Cavity; B, Bone; BM, Bone Marrow; M, meniscus; and II, Inflammatory Infiltrate. Data are mean ± SEM of 4-6 mice/
group. **p<0.01, compared with vehicle-treated arthritic mice; &p<0.05, &&&p <0.001, compared with control (ANOVA + Tukey’s tests).
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TABLE 1 Differentially modulated proteins SH-SY5Y cells treated with PCB.

UniProt _ACC a Description Gene Symbol b FC c p-value c

PCB up-regulated proteins

Q9C0D9 Ethanolaminephosphotransferase 1 EPT1 1.35 1.96

Q9NVG8 TBC1 domain family member 13 TBC1D13 1.27 1.49

Q9H9C1 Spermatogenesis-defective protein 39 homolog VIPAS39 0.98 1.55

Q15528 Mediator of RNA polymerase II transcription subunit 22 MED22 0.83 3.77

Q8NBM4 Ubiquitin-associated domain-containing protein 2 UBAC2 0.69 1.36

Q9H9A5 CCR4-NOT transcription complex subunit 10 CNOT10 0.69 1.43

Q9NVR5 Protein kintoun DNAAF2 0.65 1.61

Q9H900 Protein zwilch homolog ZWILCH 0.64 2.08

Q9BUN8 Derlin-1 DERL1 0.60 1.42

Q9H490 Phosphatidylinositol glycan anchor biosynthesis class U protein PIGU 0.60 1.76

PCB down-regulated proteins

Q8N806 Putative E3 ubiquitin-protein ligase UBR7 UBR7 -0.59 1.54

Q9Y5X1 Sorting nexin;Sorting nexin-9 SNX9 -0.60 2.06

Q9H0V9 VIP36-like protein LMAN2L -0.64 1.39

Q92575 UBX domain-containing protein 4 UBXN4 -0.64 1.41

H0YLW0 Signal recognition particle 14 SRP14 -0.69 1.64

O75044 SLIT-ROBO Rho GTPase-activating protein 2 SRGAP2 -0.69 1.40

O43318 Mitogen-activated protein kinase kinase kinase 7 MAP3K7 -0.78 1.99

Q16637 Survival motor neuron protein SMN1 -1.34 1.81

Q96FJ2 Dynein light chain 2, cytoplasmic DYNLL2 -1.37 2.11
F
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a Accession numbers in the UniProtKB database.
b Recommended gene name (official gene symbol) as provided by UniProtKB.
c Fold change (FC) and p-values of differentially modulated proteins according to quantification performed in Perseus computational platform (v1.614.0) [ (–) downregulated].
BA

FIGURE 6

Proteomic profile modulated by PCB in SH-SY5Y cells. (A) Volcano plot of quantified proteins from SH-SY5Y cells after PCB treatment. Red points
indicate those proteins that met the statistical significance cutoff (|FC| ≥ 1.5; p-value<0.05). (B) Hierarchical clustering of proteins differentially
modulated by PCB treatment compared to cells subjected to Glutamate damage (three replicates per condition). Red and green colors mean
upregulated and downregulated, respectively.
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by a Cuban group in a model of this disease in mice induced

by zymosan (62). This group attributed the observed effect to C-PC,

which constitutes around 15% of Spirulina dry biomass (63). Our

group has studied the actions of C-PC in animal models of

multiple sclerosis, such as the Experimental Autoimmune

Encephalomyelitis, in which we have reported positive outcomes

of this biliprotein, in a manner dependent on the dose, in the range

of 2, 4, and 8 mg/kg, when administered intraperitoneally (64).

Using the same experimental setting, we tested three PCB amounts

(0.1, 0.5, and 1 mg/kg), and a dose-response positive activity was

also obtained (65). Thus, previous observations have confirmed that

PCB is the main responsible agent for the biological activities of C-

PC (66), as demonstrated in different experimental scenarios such

as ischemic stroke (66) and acute kidney damage (67). Following

this reasoning, we first intended to evaluate if the administration of

C-PC could alleviate AIA in mice. Then, we questioned whether the

application of PCB may counteract the AIA-induced injury by

assessing different outcomes: functional (hypernociception),

immunological (neutrophils and cytokines), biochemical (MPO

activity), gene expression, and histopathological. The doses of

PCB used in the present study were calculated in function of the

C-PC composition. As mentioned above, this biliprotein contains

three PCBs attached. Although the lower PCB dose evaluated (0.1

mg/kg) is equivalent to 2 mg/kg C-PC, we highlight the fact that the

higher PCB dose used in this study (1 mg/kg) is equivalent to a 2.5-

fold increase of 8 mg/kg C-PC (higher evaluated dose). Since a dose-

response effect was not observed with these C-PC administered

amounts, we increased the PCB dose to better detect the dose

dependence of its pharmacological activity against AIA.
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Our observations confirmed a significant C-PC-promoted

reduction of pain and joint inflammation in AIA mice. Reports of

anti-arthritic properties of this compound have been demonstrated

with other arthritis models. These anti-arthritic properties of the

compound are attributed to its selective inhibitory property on

COX-2, its efficacy in eliminating free radicals, and inhibiting lipid

peroxidation (68). C-PC can prevent osteoarthritis by attenuating

the oxidative stress in chondrocytes induced by H2O2 (69).

Interestingly, a similar property has also been reported by our

group for the PCB treatment inhibiting the H2O2 damage in PC12

cells (70). C-PC has been shown to act on fundamental processes

such as inflammation, chondral degeneration, and oxidative stress

in canine in vitro osteoarthritis (71). Our study evidenced that C-PC

significantly reduced the alpha chemokine CXCL1 in the AIA

model . CXCL1 has been shown to have neutrophi l

chemoattractant activity in inflamed tissue in arthritis following

activation of the CXCR2 receptor (72). Notably, antagonism of this

CXCR2 receptor has resulted in an inhibition of neutrophil

migration strongly associated with reduced injury in rats

experiencing AIA (73). In patients with RA, the rise of CXCL1

expression correlated with the accumulation of neutrophils (74).

This evidence suggests that the inhibition of the CXCL1 expression

could mediate the protective actions of C-PC in AIA mice, via the

decreased infiltration of neutrophils to the injured joint tissue.

The biodistribution of C-PC following i.v., i.p., and i.n.

administration exhibited notably low levels across all examined

tissues. However, in the case of oral administration, significant

levels of the radioactive-labeled product were detected along the

entire digestive tract. Notwithstanding, at least 50% of the product
FIGURE 7

Functional terms associated with the proteomic profile modulated by PCB. Edges types are represented according to the data source.
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appears to be absorbed and redirected by blood flow. This result is

consistent with the way that the molecule goes to its target sites. An

important point to consider is that radiolabeling occurs mainly at

the residues His and Tyr of the protein by nucleophilic aromatic

substitution (75). This reaction is not possible in PCB due to the

absence of aromatic carbon-hydrogens as part of its structure.

However, PCB is released from C-PC after proteolysis (76), and it

could reach the bloodstream and be transported throughout the

body in solution given its stability (77) or attached to serum

albumin (78), in a chemical association that appears to be

mutually protective against oxidative damage, keeping the

antioxidant activity and the chemical structure of this tetrapyrrole.

Furthermore, the pharmacokinetic results are in line with the

significant chemical and biological disparities between the digestive

tract and the nasal route. As mentioned above, oral administration

of C-PC is followed by the degradation of its polypeptide moieties,

resulting in the liberation of PCB. This tetrapyrrole has been

identified as the active molecule accountable for the observed

pharmacological effects of C-PC (67). Consequently, it becomes

plausible that the radioactivity detected in plasma after oral

administration comprises short peptides covalently linked to PCB.

Supporting this observation are the clearance values of 5.6 mL/h

following the i.n. administration and 21.0 mL/h for the oral route.

Such elevated clearance values are indicative of compounds with

lower molecular weights. Additionally, the potential shielding effect

of the polypeptide moieties on the prosthetic group could explain

the prolonged retention in plasma of the initially administered

protein through the i.n. route. Taken together, the biodistribution

and pharmacokinetics behavior of C-PC across different routes of

administration contribute to understanding how this compound,

and its derivative PCB, interacts with different tissues and how the

body processes it. This essential data can also guide future dosing

strategies and the design of drug delivery systems to ensure that the

drug reaches its intended target. In this line of thinking, we can

envision the application of nanotechnology for improving the

controlled delivery of PCB toward targeted tissues. The

nanotechnology-enabled PCB delivery systems, such as liposomes

or nanoparticles, can enhance the bioavailability and stability of this

tetrapyrrole, leading to prolonged therapeutic effects in RA (79).

RA is a pathology associated with impairment in the redox and

immunological balances, and neutrophils are key mediators in both

processes (80). In this study, we observed that both molecules, C-PC

and PCB, limit the severity of AIA due to, at least in part, inhibiting

the migration of neutrophils to the affected synovial cavity. In this

context, neutrophils may directly damage knee structures, such as

the bone and the cartilage, through the production of proteases and

reactive oxygen species (ROS). Additionally, neutrophils could also

dictate some inflammation processes either by antigen presentation

or by the release of soluble factors, including prostaglandins,

chemokines, cytokines, and leukotrienes (81). Dysregulated

activation of neutrophils and their derived ROS production are

implicated in tissue damage and destruction in RA (82).

The distinctive harm caused by RA to the cartilage and bone of

the knee is associated with synovial exudate of immune cells and a

disproportionate increase of proinflammatory factors such as TNF-

a, IFN-g, and IL-17A (83, 84). Our results demonstrated that a
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PCB-mediated effect was detected by qPCR on the T-bet (Th1

phenotype) and RORg (Th17 phenotype) transcriptional factors

expression, as well as IFN-g cytokine in popliteal lymph nodes. At

the protein level, PCB also reduced the concentration of the

proinflammatory cytokines TNF-a, IFN-g, and IL-17A in

periarticular tissue.

IFN-g and IL-17A are versatile cytokines widely involved in

inflammatory diseases, mediating both immune activation and

tolerance. In our study, a protective role of PCB in AIA mice was

demonstrated, which could be associated with a reduction of both

cytokines, critical components of the inflammatory damage induced

by AIA (85).

These cytokines were measured in periarticular tissue

homogenate, suggesting that a diverse set of immune cells, other

than neutrophils, may also be locally involved in the AIA-induced

acute synovial inflammation. Our observations point to an

involvement of IL-17A-producing T cells, known as Th17 cells, in

this pathological scenario. Accumulated evidence has shown the

pivotal role of Th17 cells in diverse pathological conditions

encompassing the immune system. These specialized cells have

demonstrated their involvement in various autoimmune disease

models (86). Notably, they have been linked to the progression of

experimental autoimmune encephalomyelitis (EAE) (87), and

collagen-induced arthritis (88). Furthermore, Th17 cells facilitate

the recruitment of neutrophils in airways and in collagen-induced

arthritis (89, 90), contributing to the perpetuation of the

inflammatory milieu in arthritis. Moreover, Th17 plays a

significant role in osteoclastogenesis, as it efficiently upregulates

the expression of RANKL on osteoclast precursors (91, 92). This

molecular modulation sets the stage for the induction of osteoclast

formation and bone resorption, contributing to the pathogenesis

of arthritis.

Th17 cells in vitro differentiation from naïve CD4+ T subset is

dependent on the cytokines TGF-b, IL-6, and IL-23 via induction of

the transcription factor RORg (93). We have previously

demonstrated that PCB inhibits the proliferation of antigen-

activated encephalitogenic CD4+ T cells in rats and in 2D2 mice

(56). This supports the results of the current study, in which we

observed a downregulation effect of PCB on the Th17 master

transcriptional factor RORg in popliteal lymph nodes. Thus, PCB

may inhibit the proliferation of naïve activated CD4+ T precursor

cells leading to a reduced number of differentiated Th17 in the

periphery, which consequently will provoke their limited migration

into the affected joint. In addition, it has been demonstrated an

inductor activity of C-PC/PCB on the differentiation of regulatory T

cells (Treg) (94). Treg inhibits the activity and differentiation of

Th17 cells and favors the amelioration of experimental

inflammatory arthritis (95, 96).

On the other hand, over the past few years, intriguing findings

have advanced the insight of neutrophils from mere short-lived first

responders of the innate immune system, towards active

participants in adaptive immunity, particularly in chronic

inflammatory disorders such as RA (97). In this newfound role,

neutrophils serve as accomplices, not just bystanders of cells from

the adaptive immune response such as T cells and DCs. The decisive

role of neutrophils in guiding the trajectory of T-cell development,
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orchestrated by DCs, towards Th17 cells, relies on potent factors

present within their granule content, which include neutrophil

elastase (98) and lactoferrin (99). Our data suggest that by

inhibiting the neutrophil accumulation and activity in the

inflamed joint, C-PC/PCB may indirectly curtail the Th17 cell

development driven by the interaction between neutrophils

and DCs.

Furthermore, a direct effect of PCB on the function of human

monocyte-derived DCs has been reported. Pre-treatment of human

DCs in vitro with PCB before stimulation with lipopolysaccharide

led to a significant reduction in the supernatant levels of cytokines

IL-12p70 and IL-23, accompanied by a reduced expression of

costimulatory molecules CD83 and CD40 (100). When these

lipopolysaccharide-stimulated DCs were treated with PCB and

cocultured with allogeneic CD4+ T cells, Basdeo et al. (2016)

observed a significant decrease of more than 50% in the

production of IFN-g, which is characteristic of Th1 cell

polarization, compared to the untreated control (89). This

evidence suggests that PCB halts the maturation of DCs, leading

to a drop in their production of polarizing cytokines, ultimately

downregulating the adaptive inflammatory response. Thus, PCB

may also prevent the development of synovial inflammation by

directly inhibiting the professional antigen-presenting functions of

DCs recruited into the affected synovium (101), along with the

consequent reactivation of CD4+ T cells (102).

It is noteworthy to mention our results indicating the

decreasing effect of both PCB doses on the cytokine IL-4, a

cytokine that is known for its anti-inflammatory properties, is

produced by Th2 and Tc2 cells, but the action of IL-4 on other

types of T cells, such as CD8+, Tregs, and Th9 T cells, has been also

described. Furthermore, a versatile effect of IL-4 is known on B cells

(103). The regulatory function of IL-4 on inflammation depending

on the context of RA is known (104). Though this cytokine is

frequently reported to mediate anti-inflammatory events, its

proinflammatory actions have also been described as probably

controlled by Th cells. This biphasic IL-4 activity could, therefore,

restrain immunity when cellular components are involved, while

fostering the humoral component of the immune response, in a

context-specific manner (105). Interestingly, the IFN-g/IL-4 ratio

(106) could better express the Th1/Th2 balance that explains the

effect of PCB on AIA.

In addition to the biological actions of PCB here observed, this

organic molecule presents other advantages in relation to C-PC

when considering its pharmaceutical development (1): it can be

obtained either by chemical synthesis (107, 108) or by genetic

engineering of its synthesizing enzymes in E. coli (109) (2), chemical

products such as PCB avoid exhaustive bioequivalence studies

because a well physicochemical characterization is enough to

introduce it as therapeutic agents (3), PCB could be attached to

protein drugs in combined therapies (4), PCB is more stable than C-

PC under proteases attack, and (5) due to the small size of PCB

(relative to C-PC), it may overpass many body compartments

prohibited to large macromolecules, such as the blood-brain

barrier. Because of all of the above, we decided to carry out our

experiment with this tetrapyrrole to evaluate its effects as a possible

treatment for RA.
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In this study, we performed a proteomic profiling of glutamate-

exposed SH-SY5Y neuronal cells as an in vitromodel to evaluate the

effects of PCB on one of the main excitatory signaling in

nociception and neurodegeneration. The modulation of proteins

related to biological processes such as inflammation, glutamatergic

transmission, and pain were evaluated. Those associated with

pathologies such as arthritis and neurodegenerative diseases were

also considered. After the analysis, we found that only 19 proteins

were differentially modulated in SH-SY5Y cells treated with both

PCB and glutamate. It is worth noting that the concentration of

glutamate used (60 mM) was relatively high (110, 111), which may

be a limitation of the present study. However, the evidence obtained

may have opened new insights regarding the PCB effects on

neuronal excitatory states.

Through a protein network analysis, we identified that the

proteins influenced by PCB treatment were interconnected with

diseases and implicated in biological processes. One notable finding

was the PCB downregulation of Mitogen-activated protein kinase 7

(MAP3K7) or a ubiquitin-dependent kinase of MKK and IKK

(TAK1) (112). MAP3K7 is a serine/threonine kinase that

integrates many biochemical signals. This protein is involved in

numerous cellular processes such as proliferation, differentiation,

transcriptional regulation, and development. As a part of the

mechanism of this kinase, after activation by extracellular stimuli,

it translocates to the nucleus and regulates gene expression by

phosphorylating various transcription factors (113, 114). MAP3K7

has also been strongly implicated in many of the processes

underlying the pathology of rheumatoid arthritis (115, 116) and

neurodegenerative diseases (117) in which inflammation (118, 119)

is implicated. The current findings suggest that MAP3K7

downregulation may also contribute to the PCB effects on the

reduction of neuroinflammation-induced microglial dysfunction

as was identified in our previous study. Furthermore, MAP3K7

plays a crucial role in pain signaling from various causes, including

inflammation. Notably, the utilization of the MAP3K7 inhibitor

takinib demonstrated its capacity to mitigate inflammatory,

neuropathic, and primary pain, in animal models established

through intraplantar administration of complete Freund’s

adjuvant, chronic constriction injury, and systemic introduction

of catechol-O-methyltransferase, respectively (120). MAP3K7

inhibition was also able to diminish the expression of pain-

associated mediators in synovial cells isolated from arthritis

patients, suggesting its important role in managing peripheral

sensitization in arthritis nociception (121). Therefore, by

downregulating MAP3K7 expression, PCB may act on the

amelioration of arthritis pain.

Neutrophils in the synovial fluid of patients with arthritis

exhibit a reduced ability to suppress activated T cells, possibly

related to changes in proteins involved in cell-cell contact and

inflammation (122). Among the proteins involved in the interaction

between neutrophils and T cells is Dynein light chain 2 (DYNLL2)

(123), which regulates the dynein 1 function and subsequently the

cargo and movement of vesicles and organelles through

microtubules (124). This protein has also been documented to

play a central role in the interaction of the NMDA receptor-

associated scaffold complex and the enhancement of the synaptic
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NMDA receptor activity (125). In our study, we identified a

downregulation of the DYNLL2 protein in SH-SY5Y cells treated

with PCB. One possible explanation could be associated with key

elements in the mechanisms that underlie the protective effects of

PCB, such as the reduction of oxidative stress through the inhibition

of NADPH oxidase (42) and the amelioration of inflammation.

Another protein that displayed downregulation was the Survival

Motor Neuron Protein 1 (SMN1), a constituent of a complex

catalyzing the assembly of small nuclear ribonucleoproteins

(snRNPs). The expression of this protein was associated with

levels of inflammatory cytokines (IL-1b and TNF-a) in

osteoarthritis (126). Thus, the limited expression of SMN1

induced by PCB may contribute to keeping the levels of these

proinflammatory cytokines during arthritis under control, as a

previously observed effect of PCB on these cytokines in a model

of experimental autoimmune encephalomyelitis (65). On the other

hand, PCB also induced a downmodulation of SLIT-ROBO Rho

GTPase-activating protein 2 (SRGAP2) in SH-SY5Y cells treated

with glutamate. This protein participates in neuronal

morphogenesis and is also linked with neuronal migration during

cerebral cortex development (127, 128). In this context, it has been

reported that the elimination of endogenous expression of SRGAP2

promotes neurite growth in differentiated cells (129) and

contributes to the restriction of osteoclastogenesis during

arthritis-related inflammation (130).

Anothermodulatedprocesswas identifiedasmediatedbyDerlin-1

(DERL1), a protein that serves as a functional component of

endoplasmic reticulum-associated degradation of misfolded proteins

(131). Its disruption hampers neurite outgrowth and nervous system

development, ultimately leading to brain atrophy (132). In our study,

we observed an upregulation of the DERL1 in glutamate-exposed SH-

SY5Ycells treatedwithPCB,whichmay impact functions related to the

endoplasmic reticulum. One study reported that DERL1 colocalized

with neurofibrillary tangles in the brain of patients with Alzheimer’s

disease and could play an important role in endoplasmic reticulum-

associated neurodegeneration (133). Another protein that has been

shown to interact with DERL1 is the mutated superoxide dismutase 1

(SOD1), which accumulates and misfolds in motor neurons in

amyotrophic lateral sclerosis (134), another neurodegenerative

disease, and the interaction with DERL1 is involved in the disease

pathophysiology (135). Another DERL1 interacting protein is the

NADPH oxidase subunit p22phox, and a previous report has shown

that this interaction regulates thepartner degradationofp22phox,with

potential implications in the reactive oxygen species-producing

capacity of this enzyme (136). This accumulated evidence suggests

that PCB could potentiate the adequate functioning of endoplasmic

reticulumquality control by upregulatingDERL1, and thus preventing

the associated cellular dysfunction (132). In this sense, it has been

suggested that inhibitors of endoplasmic reticulum stress could

mitigate chondrocyte damage and reduce arthritis degeneration (137).

Another interesting result of our study was the upregulation of

the ethanolamine phosphotransferase 1 (EPT1) protein by PCB in

SH-SY5Y cells. This enzyme transfers phosphoethanolamine from

cytidine diphosphate-ethanolamine to lipid acceptors to form

ethanolamine glycerophospholipids via the ‘Kennedy’ pathway

(138). This kinase is part of the enzymes required to synthesize
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phosphatidylethanolamine within the myelin membrane (139).

Studies in a patient with spastic paraplegia revealed

hypomyelination and brain atrophy demonstrating its role in the

myelination process and in maintaining normal phospholipid

homeostasis (140). These studies are consistent with the reported

effect of PCB on myelin in an animal model of experimental

autoimmune encephalomyelitis (141).
5 Conclusion and future perspectives

In summary, the data presented in this study demonstrate that

the preemptive administration of C-PC and PCB effectively

mitigates mBSA-induced arthritic injuries in mice. This was

achieved by limiting hypernociception and reducing neutrophil

infiltration and MPO activity, all of which are closely linked to

the inflammatory injury occurring in the knee during RA.

Moreover, PCB exhibits the ability to modulate the local

concentrat ion of proinflammatory cytokines and the

inflammatory infiltrate within the affected joint, thereby

preserving the structural integrity of the tissue.

The evidence presented here regarding the biodistribution of C-

PC opens an intriguing perspective when considering the future

administration of its derivative PCB for RA. As follow-up research,

exploring the oral route of PCB administration could potentially

offer advantages such as improved patient compliance, reduced

invasiveness, and enhanced systemic delivery.

The significance of glutamatergic signaling in joint-related pain

in RA is well-known. In the context of this study, the integration of

bioinformatics tools facilitated the in vitro assessment of PCB’s

impact on the neuronal proteome when subjected to glutamate

excitation. This approach led to the identification of proteins

associated with pivotal biological processes including pain,

inflammation, and glutamatergic transmission, which hold

substantial relevance for pathologies such as RA.

The findings from this investigation point toward a potential

application of PCB as an innovative therapeutic approach for RA.

Furthermore, the study provides insights into the potential

mechanisms of action and therapeutic targets associated with the

effects of PCB. Ultimately, these results offer promising avenues for

further exploration and development of this novel treatment for RA

and related conditions involving inflammatory pain.
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65. Marıń-Prida J, Pavón-Fuentes N, Lagumersindez-Denis N, Camacho-Rodrıǵuez
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94. Pentón-Rol G, Martıńez-Sánchez G, Cervantes-Llanos M, Lagumersindez-Denis
N, Acosta-Medina EF, Falcón-Cama V, et al. C-Phycocyanin ameliorates experimental
autoimmune encephalomyelitis and induces regulatory T cells. Int Immunopharmacol
(2011) 11:29–38. doi: 10.1016/j.intimp.2010.10.001

95. Yang S, Zhang X, Chen J, Dang J, Liang R, Zeng D, et al. Induced, but not
natural, regulatory T cells retain phenotype and function following exposure to
inflamed synovial fibroblasts. Sci Adv (2020) 6:1–13. doi: 10.1126/sciadv.abb0606

96. Langdon K, Haleagrahara N. Regulatory T-cell dynamics with abatacept
treatment in rheumatoid arthritis. Int Rev Immunol (2018) 37:206–14. doi: 10.1080/
08830185.2018.1465943

97. Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for tolerance
induction: don’t lose sight of the neutrophils. Front Immunol (2021) 12:732992.
doi: 10.3389/fimmu.2021.732992

98. Souwer Y, Groot Kormelink T, Taanman-Kueter EW, Muller FJ, van Capel
TMM, Varga DV, et al. Human TH17 cell development requires processing of dendritic
cell–derived CXCL8 by neutrophil elastase. J Allergy Clin Immunol (2018) 141:2286–
2289.e5. doi: 10.1016/j.jaci.2018.01.003

99. de la Rosa G, Yang D, Tewary P, Varadhachary A, Oppenheim JJ. Lactoferrin
acts as an alarmin to promote the recruitment and activation of APCs and antigen-
specific immune responses. J Immunol (2008) 180:6868–76. doi: 10.4049/
jimmunol.180.10.6868

100. Basdeo SA, Campbell NK, Sullivan LM, Flood B, Creagh EM, Mantle TJ, et al.
Suppression of human alloreactive T cells by linear tetrapyrroles; relevance for
transplantation. Trans Res (2016) 178:81–94.e2. doi: 10.1016/j.trsl.2016.07.011

101. Suwa Y, Nagafuchi Y, Yamada S, Fujio K. The role of dendritic cells and their
immunometabolism in rheumatoid arthritis. Front Immunol (2023) 14:1161148.
doi: 10.3389/fimmu.2023.1161148

102. Prendergast CT, Patakas A, Al-Khabouri S, McIntyre CL, McInnes IB, Brewer
JM, et al. Visualising the interaction of CD4 T cells and DCs in the evolution of
inflammatory arthritis. Ann Rheum Dis (2018) 77:579–88. doi: 10.1136/annrheumdis-
2017-212279

103. Vitetta ES, Ohara J, Myers CD, Layton JE, Krammer PH, Paul WE. Serological,
biochemical, and functional identity of B cell-stimulatory factor 1 and B cell
differentiation factor for IgG1. J Exp Med (1985) 162:1726–31. doi: 10.1084/
jem.162.5.1726

104. Iwaszko M, Biały S, Bogunia-Kubik K. Significance of interleukin (IL)-4 and IL-
13 in inflammatory arthritis. Cells (2021) 10:3000. doi: 10.3390/cells10113000

105. Harada Y, Tanaka S, Motomura Y, Harada Y, Ohno S, Ohno S, et al. The 3′
Enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in
follicular helper T cel ls. Immunity (2012) 36:188–200. doi : 10.1016/
j.immuni.2012.02.002
frontiersin.org

https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1080/09629350220131917
https://doi.org/10.1006/bbrc.2001.4663
https://doi.org/10.1007/s11481-015-9642-9
https://doi.org/10.3389/fimmu.2022.1036200
https://doi.org/10.2174/1570159X19666210408123807
https://doi.org/10.1039/D0FO03294H
https://doi.org/10.1006/bbrc.2000.3725
https://doi.org/10.1016/j.ijbiomac.2016.09.051
https://doi.org/10.1016/j.taap.2013.05.021
https://doi.org/10.1038/srep33123
https://doi.org/10.1038/sj.bjp.0707462
https://doi.org/10.1186/s13075-020-02331-8
https://doi.org/10.1016/B978-0-12-382239-0.00003-0
https://doi.org/10.1016/j.jprot.2016.03.043
https://doi.org/10.3390/antiox12030568
https://doi.org/10.3390/antiox12030568
https://doi.org/10.1371/journal.pone.0167973
https://doi.org/10.1016/j.arr.2023.101927
https://doi.org/10.1111/cei.13228
https://doi.org/10.3390/biomedicines10071604
https://doi.org/10.3389/fimmu.2021.649693
https://doi.org/10.4049/jimmunol.0902907
https://doi.org/10.3389/fimmu.2015.00571
https://doi.org/10.1016/j.pain.2009.11.006
https://doi.org/10.1016/j.immuni.2008.03.004
https://doi.org/10.1016/j.immuni.2008.03.004
https://doi.org/10.3389/fimmu.2022.996469
https://doi.org/10.1084/jem.20030896
https://doi.org/10.4049/jimmunol.162.4.2347
https://doi.org/10.4049/jimmunol.167.2.1004
https://doi.org/10.1172/JCI5703
https://doi.org/10.4049/jimmunol.170.5.2655
https://doi.org/10.4049/jimmunol.170.5.2655
https://doi.org/10.1038/ni1488
https://doi.org/10.1016/j.intimp.2010.10.001
https://doi.org/10.1126/sciadv.abb0606
https://doi.org/10.1080/08830185.2018.1465943
https://doi.org/10.1080/08830185.2018.1465943
https://doi.org/10.3389/fimmu.2021.732992
https://doi.org/10.1016/j.jaci.2018.01.003
https://doi.org/10.4049/jimmunol.180.10.6868
https://doi.org/10.4049/jimmunol.180.10.6868
https://doi.org/10.1016/j.trsl.2016.07.011
https://doi.org/10.3389/fimmu.2023.1161148
https://doi.org/10.1136/annrheumdis-2017-212279
https://doi.org/10.1136/annrheumdis-2017-212279
https://doi.org/10.1084/jem.162.5.1726
https://doi.org/10.1084/jem.162.5.1726
https://doi.org/10.3390/cells10113000
https://doi.org/10.1016/j.immuni.2012.02.002
https://doi.org/10.1016/j.immuni.2012.02.002
https://doi.org/10.3389/fimmu.2023.1227268
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marı́n-Prida et al. 10.3389/fimmu.2023.1227268
106. Kawashima M. Effect of treatment of rheumatoid arthritis with infliximab on
IFN , IL4, T-bet, and GATA-3 expression: link with improvement of systemic
inflammation and disease activity. Ann Rheum Dis (2004) 64:415–8. doi: 10.1136/
ard.2004.022731

107. Gossauer A, Hinze RP. Synthesis of bile pigments. 7. An improved chemical
synthesis of racemic phycocyanobilin dimethyl ester. J Org Chem (1978) 43:283–5.
doi: 10.1021/jo00396a023

108. Bishop JE, Nagy JO, O’Connell JF, Rapoport H. Diastereoselective synthesis of
phycocyanobilin-cysteine adducts. J Am Chem Soc (1991) 113:8024–35. doi: 10.1021/
ja00021a032

109. Zhao X, Gao H, Wang Y, Wang Z, Zhou J. Efficient synthesis of
phycocyanobilin by combinatorial metabolic engineering in escherichia coli. ACS
Synth Biol (2022) 11:2089–97. doi: 10.1021/acssynbio.2c00016

110. Sun ZW, Zhang L, Zhu SJ, Chen WC, Mei B. Excitotoxicity effects of glutamate
on human neuroblastoma SH-SY5Y cells via oxidative damage. Neurosci Bull (2010)
26:8–16. doi: 10.1007/s12264-010-0813-7

111. Gardón DP, Cervantes-Llanos M, Matamoros BP, Rodrıǵuez HC, Tan C, Marıń
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