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Editorial on the Research Topic

Microglia in neuroinflammation
Microglia are a resident innate immune cell population of the central nervous system

(CNS) derived from yolk sac erythro-myeloid progenitors that migrate to the developing

brain prior to the formation of the blood-brain barrier (1). This critical cell population has

gained considerable traction in the literature as it is considered a protective barrier from

CNS damage and, yet, can also serve as a primary mediator of neuroinflammation (1).

Under normal physiological conditions, microglia perform homeostatic functions, such as

parenchymal surveillance, neurotrophic support, pathogen or debris removal, and

maintenance of synaptic homeostasis and neuronal plasticity (1).

When CNS homeostasis is disrupted, microglia—as the brain’s primary innate immune

cells—sense and respond to pathogen-, damage-, or neurodegeneration-associated

molecular patterns (PAMPs, DAMPs, or NAMPs, respectively). In response, microglia

may initiate “neuroinflammation” by modifying their activity, for example, by increasing

phagocytic capacity or secreting pro-inflammatory cytokines, which under some

pathological conditions, may promote leukocyte infiltration (2). Depending on the

context, this response can have protective or harmful outcomes. It may also become

rampant and drive neurodegenerative disease and other chronic CNS pathologies (2).

Yet, the notion that microglia, and the neuroinflammation induced by their aberrant

activity, are strictly pathogenic players in CNS disease is rapidly evolving. There clearly exists

a delicate circuitry of feedback mechanisms that maintain the balance of time-sensitive

"regulators", be they secreted molecules, sensory receptors (e.g., TREM2) and signaling

pathways, transcription, or epigenetic factors, designed to keep microglial function in check.

The goal of this Research Topic is to further elucidate these time-sensitive regulatory circuits

and how/when they impact microglial-mediated neuroinflammation.

Microglia are at the forefront of research into neuroinflammation associated with

neurodegenerative diseases, including Alzheimer’s disease, and contributing articles to this

Research Topic expound upon their role. Reid et al. uncovered that microglia and neurons
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under various stressors secreted calreticulin. This highly conserved

chaperone typically resides in the endoplasmic reticulum but can be

extracellularly released (3). Calreticulin has been found in human

cerebrospinal fluid bound to amyloid beta (4). Reid et al. suggest that

calreticulin may then serve as 1) an alarmin to recruit and activate

microglia, 2) an extracellular chaperone to prevent amyloid-beta

aggregation, and 3) a neuroprotectant by preventing amyloid-beta-

induced, microglial-mediated neuronal loss. Karahan et al. examined

the impact of the deletion of Abelson interactor family member 3

(Abi3), a candidate risk gene for Alzheimer’s disease enriched in

microglia (4), in the early stages of the disease in the 5XFADmodel of

Alzheimer’s disease. Consistent with their prior investigations in the

later stages of the disease (5), Abi3 deletion resulted in increased

amyloid-beta plaque load in conjunction with elevated levels of

insoluble amyloid early in the disease course. However, Karahan

et al. found that Abi3 deletion in the earlier stages of the disease did

not induce the concurrent increase in microgliosis or plaque-

associated microglia identified in the later stages (5). These findings

add to the growing body of literature suggesting that microglia-

expressed risk genes possess distinct time-sensitive functions

depending on the stage of Alzheimer’s disease.

Microglia as mediators of neuroinflammation associated with

other chronic CNS pathologies are also gaining momentum. For

instance, prolonged dysregulated activation of microglia following the

initial insult in traumatic brain injury induces a secondary insult

resulting in neuronal death and chronic neurodegeneration (6).

Triggering receptor expressed on myeloid cells 2 (TREM2) is a type

I transmembrane receptor found on microglia, and mutations in

TREM2 are associated with several neurodegenerative disorders,

including Alzheimer’s disease (7). Katsumoto et al. showed that in

the absence of TREM2, microglia fail to phagocytose degrading

neurons, contributing to the accelerated neurodegeneration

observed in the chronic phase of traumatic brain injury in a mouse

model of tauopathy. The authors postulate that TREM2-deficient

microglia in this system may instigate an incomplete blood-brain

barrier (8) or may not develop into neuroprotective disease-associated

microglia (DAM) (9) or white matter-associated microglia (WAM)

(10) subsets, as TREM2 is required for these functions.

Other chronic CNS pathologies wherein microglia contribute to

the disease include those affecting the eye, specifically diabetic

retinopathy, glaucoma, and retinal stroke. Church et al. showed

that the pharmacological depletion of microglia protected mice

from retinal degeneration in a model of diabetic retinopathy. The

authors took advantage of a mouse strain expressing a polymorphic

variant of the CX3CR1 gene identified in ~25% of the population that

rendered the receptor less capable of binding its ligand, fractalkine, to

mitigate microglia-mediated inflammation (11). Using this mouse

strain, Church et al. showed that the protective effect of microglial

depletion depends on a fully functioning CX3CR1 receptor. Reinehr

et al. developed a new multifactorial glaucoma model, combining a

model of spontaneous intraocular pressure with a model of

autoimmune glaucoma, that developed more severe optic nerve

degeneration and loss of retinal ganglion cells than its component

models. Further, the authors showed that retinal microglia were more
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abundant and activated in the multifactorial glaucoma model. Zeng

et al. attempted an in vivo assessment of the clinical significance of

macrophage-like cells, including microglia, in retinal stroke. The

authors identified increased density and morphological changes in

the macrophage-like cell population indicative of aggregation and

activation positively correlated with ischemia severity and disease

duration. However, whether these macrophage-like cells are, indeed,

microglia is yet to be determined.

In addition to original research submissions, our Research Topic

focuses on emerging reviews of two highly relevant topics: 1) epigenetic

regulation of pain-mediating cytokines/chemokines produced by

microglia and 2) microglia as sensors of gut microbe-derived signals

in the gut-brain axis. As microglia are implicated in promoting chronic

pain upon activation through the production of cytokines/chemokines

(12), Jiang et al. reviewed current literature focused on the epigenetic

control of this activation-induced signaling mediator production by

microglia. Specifically, Jiang et al. focused on histone modifications

(acetylation, deacetylation, methylation) in microglia as targetable

processes to control chronic pain. Focusing on extracellular

mechanisms potentially influencing microglial function, the intestinal

microbiome produces molecules that exert both local and systemic

effects designed to maintain host health. However, an imbalance of gut

microbiota composition has been linked to several psychiatric and

neurologic disorders (13). D’Alessandro et al. reviewed current

literature detailing the impact of microbiota-derived signals on

microglial phenotype and function. These signals include those

resulting from gut microbiota dysbiosis, vagal nerve stimulation, and

small molecules produced by gut microbiota that make it into the

systemic circulation, like short-chain fatty acids, lipopolysaccharide,

and tryptophan metabolites. Indeed, D’Alessandro et al. highlighted

that several of these signals might be targetable for modulating

microglial contributions to brain disease.

We are only now scratching the surface regarding the

contribution of microglia regulatory circuits to neurodegenerative

disease and particularly in other CNS pathologies resulting from

chronic neuroinflammation. Further, knowledge of the expansive

regulatory mechanisms designed to keep microglial function in

check at different stages of CNS pathophysiology is rapidly

emerging. A more comprehensive mechanistic understanding of

these time-sensitive regulatory circuits may allow us to modulate

microglia activity and significantly advance the design of novel

classes of microglia-based therapeutics. Contributions to this

Research Topic have helped pave the way.
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