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Targeting reactive oxygen
species and fat acid oxidation for
the modulation of tumor-
associated macrophages: a
narrative review

Yujian Teng, Licheng Xu, Wenjing Li , Pengyan Liu,
Linli Tian*† and Ming Liu*†

Department of Otolaryngology, The Second Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating

the tumor microenvironment(TME). Recent research has shown that TAMs

exhibit diversity in terms of their phenotype, function, time, and spatial

distribution, which allows for further classification of TAM subtypes. The

metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes.

FAO is closely linked to the production of reactive oxygen species (ROS), which

play a role in processes such as oxidative stress. Current evidence demonstrates

that FAO and ROS can influence TAMs’ recruitment, polarization, and

phagocytosis ability either individually or in combination, thereby impacting

tumor progression. But the specific mechanisms associated with these

relationships still require further investigation. We will review the current status

of research on the relationship between TAMs and tumor development from

three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of

FAO, ROS, and TAMs.

KEYWORDS
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1 Introduction

Various components of the tumor microenvironment(TME) play a crucial role in

tumorigenesis and progression. Among these components, tumor-associated macrophages

(TAMs) can regulate the TME through different infiltration levels and polarization

characteristics (1, 2). TAMs in TME mainly originate from peripheral blood mononuclear

cells (PBMCs) and tissue-resident macrophages (TRMs) (3). PBMCs are recruited to TME

primarily mediated by chemokine-mediated pathways involving CCR2/CCL2 (4, 5), CSF1/

M-CSF (6–8), and others. TRMs are present in tissues during embryonic development with
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tissue-specific and self-renewal abilities. In the past, TAMs were often

classified into two distinct phenotypes, M1 and M2, with

lipopolysaccharides and interferon-gamma (IFN-gamma) or

interleukin (IL)-4 and IL-13 as representative inducers, respectively

(9). M1 promotes the formation of an inflammatory environment

and possess tumor-killing capabilities. M2 assists in constructing an

immunosuppressive microenvironment by secreting IL-10,

transforming growth factor beta (TGF-beta), or prostaglandin E2

(PGE2) to promote tissue repair and tumorigenic development.

However, researchers have revealed that in most cases, TAMs

exhibit a transitional phenotype between M1 and M2 (10–12). The

emergence of this transitional subtype has expanded the previous

classification criteria for TAMs. It has been demonstrated that TAMs

can regulate tumor progression by modulating their own phenotype

(13–15).

Reactive oxygen species (ROS), as a kind of redox byproduct,

mainly includes superoxide, hydrogen peroxide (H2O2), and

hydroxyl radical (HO-) (16). Mitochondria, endoplasmic

reticulum,and peroxisomes are the primary sites of ROS

production (17). ROS possess high chemical reactivity, and the

oxidative stress effects will occur when the cell’s antioxidant

capacity cannot coordinate the excess ROS (18, 19). For tumors,

such ROS and oxidative stress effect are both necessary and lethal,

and they regulate TAM-related mechanisms through multiple

signaling pathways (20) (as shown in Figure 1).

Lipids, including triglycerides, cholesterol, and phospholipids,

play crucial roles in cellular function. Fatty acids and glycerol

constitute the triglycerides. Moreover, both tumor cells and

immune cells undergo lipid metabolism, including fatty acid

oxidation (FAO), reprogramming to survive the harsh

environment (21). TAMs, known for their high plasticity (22),

exhibit differences in FAO efficiency between M1 and M2

phenotypes. The metabolic reprogramming associated with it,

especially FAO, plays an essential role in regulating tumor

progression (23–25), and this article will describe how FAO

synergistically influences tumor progression in conjunction with

TAMs (as shown in Figure 2).

Previous studies have revealed complex interactions among

TAMs, ROS, FAO, which may influence the biological functions

of tumors through multiple factors (as shown in Figure 2). As a

result, integrating the critical signaling pathways involving TAMs,

FAO, and ROS establishes a theoretical foundation and offers

research implications for further investigation into tumor

treatment modalities.
2 ROS and TAMs

In studies investigating the regulation of tumor progression by

immune cells, researchers have observed that ROS at different levels

can either promote or inhibit tumor growth depending on various

molecular signaling pathways. The generation of ROS involves

multiple mechanisms, with mitochondria being the primary site

of ROS production. Electron leakage in the electron transport chain

(ETC) is the primary source of ROS (26). Electron leaking from

complex I and III of ETC react with O2 to generate ROS in the inner
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mitochondrial membrane, influenced by the redox state of the ETC,

the proton dynamics and the local O2 concentration (27). ROS can

also generate in other organelles, such as endoplasmic reticulum or

peroxisome (17). In addition, the nicotinamide adenine

dinucleotide phosphate (NADPH) oxidases (NOX) (28), xanthine

oxidase (XO) (29), cytochrome p450 (30), nitric oxide synthase

(NOS) are also in ROS generation (31). The generated ROS are

further involved in various molecular signaling pathways that

regulate tumor cell proliferation, differentiation and apoptosis

(32–34).

Growing evidence demonstrating that ROS play a role in

modulating the tumor microenvironment through multiple

mechanisms. ROS can directly induce cell death in tumor cells

(35) and also regulate tumor progression by acting on the

recruitment and polarization of TAMs (36, 37). We will discuss

the relationship between ROS and TAMs and summarize the

current status of research on the relevant molecular signaling

pathways (as shown in Table 1).
2.1 Recruitment of TAMs

ROS are involved in regulating the infiltration of TAMs through

a mechanism of action related to influencing the macrophage

recruitment, which is one of the primary ways to affect TAMs. In

related studies, by activating T cells and natural killer (NK) cells,

ROS recruits both neutrophils and macrophages into the TME and,

in this way, kills cancer cells and inhibits tumor progression (51,

52); TAMs can also secrete ROS after being recruited to the TME,

which contributes to reduces the activity of T cells and NK cells

(53). Excessive ROS can damage mitochondrial DNA (mtDNA).

Mitochondria of hepatocellular carcinoma cells release mtDNA into

the cytoplasm in response to ROS, activating Toll-like receptors

(TLRs), of which TLR9 can induce CCL2 to recruit macrophages to

the TME.Additionally, TLR9 activation can also contribute to the

maintenance of the M2 phenotype of TAMs (38).

In the M1 phenotype of TAMs, via inhibiting the prolyl

hydroxylase domain (PHD), ROS-induced the generation of

hypoxia-inducible factor 1alpha (HIF-1alpha). HIF-1alpha can

interact with pyruvate kinase M2 (PKM2), increasing the

transcriptional levels of macrophage glycolysis-related enzymes

and sustaining aerobic glycolysis. It can also induce angiogenesis

and participate in the recruitment of TAMs (39, 40).
2.2 Polarization of TAMs

The recruitment of TAMs provides favourable conditions for

tumor development. As research has progressed, the

interconversion mechanism of between M1 and M2 phenotypes

of macrophages, involving ROS, has been recognized as a critical

factor in regulating the function of TAMs. In most cases, elevated

ROS promotes M2 polarization, a process in which ROS often plays

a pro-tumor role. Mitochondrial Lon, a chaperonin, can induce

ROS production and participate in M2 polarization, while M2 can

induce Lon production, forming a positive feedback loop (43, 54).
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In a study of specific mechanisms, researchers found Lon can

release ROS-dependent inflammatory cytokines such as TGF-beta,

IL-6, IL-13, and vascular endothelial-derived growth factor-A

(VEGF-A) through p38 and NF-kB signaling pathways to

promote epithelial-mesenchymal transition (EMT), angiogenesis,

and M2 polarization (43). In addition to the passive TAMs

regulation by ROS, TAMs actively modulate ROS levels through

NOX2, leading to high levels of ROS production. This, in turn,
Frontiers in Immunology 03
recruits and regulates other immune cells in the TME, including

myeloid-derived suppressor cells (MDSCs) and regulatory T cells

(Treg). Together, TAMs and these immune cells work to effectively

regulate the immune function of TME, establishing an

immunosuppressive microenvironment (55–59).

High levels of ROS can also limit tumor progression by

activating cell death pathways. In a 2012 paper by Brent R.

Stockwell, it was described that cells can Interact with excess ROS
FIGURE 1

The relationship between ROS and TAMs. Simplified figure depicting various possible mechanisms of TAMs associated with ROS at a cellular-level
affect oncogenesis and development of tumor in TME.
FIGURE 2

The relationship of ROS FAO and TAMs. Simplified figure depicting various possible mechanisms of TAMs associated with ROS and FAO at a cellular-
level affect oncogenesis and development of tumor in TME.
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through mechanisms such as the Fenton reaction. The combination

of excess ROS with a dysregulated antioxidant system resulting in

the reaction of intracellular lipids with ROS, producing lipid

peroxide (LOOH). And the accumulation of LOOH drives a

novel form of programmed cell death called ferroptosis (60–64),

which also occurs in TAMs (44). Extracellular vesicles (EVs) are

also essential participants in the mechanisms involved. These

exosomes can carry immunosuppressive components and

chemokines (65). TAMs exposed to tumor cell-derived exosomes

exhibit a metabolic profile similar to the M2 phenotype, enhancing

FAO, oxidative phosphorylation (OXPHOS), and oxygen

consumption rates (66–68). EVs can also down-regulate T cell
Frontiers in Immunology 04
immune function by inducing TAMs to produce IFN-beta and

IL-6. In this way, EVs disrupt the immune function of immune

cells (65).

Mammals have evolved various complex antioxidant systems in

vivo to scavenge ROS and mitigate the harmful effects of oxidative

stress, including superoxide dismutase (SOD) (69), catalase (CAT)

(70), peroxidase (PRDX) (71, 72), glutathione peroxidase (GPX)

(48), and mitochondrial autophagy (73, 74).Additionally, a central

regulator of antioxidant genes known as Nrf2 can be dissociated

from (KEAP1) under conditions of oxidative stress to exert

antioxidant functions (45–47). Recently research has shown that

beta-glucan with antioxidant properties can modulate ROS
TABLE 1 Targets of ROS associated with TAMs.

Target Cells
affected Molecular/signaling events Cellular/system events Ref.

Recruitment

mtDNA
Cancer
cells

Damaged mtDNA activated TLR9 and induced CCL2 through NF-kB
pathway

TAMs recruitment (38)

PHD TAMs HIF-1alpha interacted with PKM2 via PHD inhibition
TAMs recruitment; induced aerobic glycolysis of
M1 and transcription of IL-1b

(39,
40)

MnSOD
Cancer
cells

MCT-1/IL-6/Nrf2/MnSOD TAMs recruitment (41)

RORalpha
Cancer
cells

ROS and cytokine(IL-6, IL-8 et al) was inhibit by RORalpha via targeted
NDUFS6 and NDUFA11

Inhibition of TAMs recruitment (42)

Polarization

mtDNA
Cancer
cells

MtDNA released from mitochondria activated TLR9 and induced CCL2
through NF-kB pathway

M2 polarization (38)

Inflammatory
cytokines

Cancer
cells

Cancer cells secreted TGF-b、IL-6、IL-13 and VEGF-A via ROS
M2 polarization; activated EMT and
angiogenesis

(43)

PL-PUFA(PE) TAMs
GPX4 failured to redox ROS, PL-PUFA(PE) was oxidized to PL-PUFA(PE)-
OOH,and PL-PUFA(PE)-OOH was accumulated

Programmed Cell Death of TAMs (44)

Nrf2 TAMs Nrf2 promoted the transcription of antioxidant protein and enzymes
Inhibition of TAMs-related ROS production and
inflammation

(45–
47)

GM-CSF T cell
Magmas induced GM-CSF and inhibited Caspases3/7 activation by
regulating ROS levels

M1 polarization
(48–
50)

MnSOD
Cancer
cells

MCT-1/IL-6/Nrf2/MnSOD
M2 polarization; suppressed M1 macrophage
phagocyticity

(41)

RORalpha
Cancer
cells

RORalpha targeted NDUFS6 and NDUFA11, to inhibit ROS and cytokine
(IL-6, IL-8 et al) production

M1 polarization (42)
frontier
TABLE 2 Targets of FAO associated with TAMs.

Target Cells affected Molecular/signaling events Cellular/system events Ref.

S100A4 TAMs IL-4/S100A4/PPAR-g/CD36/FAO M2 polarization (88)

RIPK3 TAMs Inhibition of RIPK3 promoted FAO by regulated ROS, Caspase1 and PPARg M2 polarization; TAMs recruitment (92)

PPARg TAMs PPARg/NF-kB M2 polarization (95)

USP14 M2 SIRT1/PGC-1a/FAO FAO efficiency promotion (96)

KRASG12D Cancer cells The ferroptosis released exsomes(KRASG12D) to promote FAO of TAMs via STAT3 M2 polarization (97)

CD40 TAMs CD40 promoted FAO and glutamine metabolism M1 polarization (108)
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production in LPS-induced RAW264.7 mouse macrophages. Beta-

glucan achieves this by regulating Nrf2 through the activation of the

scavenger receptor Dectin-1 (75). Activation of Dectin-1 enhances

the expression of the antioxidant enzyme heme oxygenase-1 (HO-

1) within macrophages, thereby reducing ROS levels and oxidative

stress (76). In studying the relationship between GPX and

macrophages, researchers observed that dysfunctional GPX4

induced ferroptosis in macrophages by accumulating lipid

peroxides (63, 64). In addition, the mammalian protein

translocation mechanism, Magmas, can be involved in regulating

ROS levels to maintain redox homeostasis, in which Magmas

protects cells with oxidative stress damage by inhibiting the

activation of Caspases3/7 (48), induces granulocyte-macrophage

colony-stimulating factor (GM-CSF) to promote M1 polarization,

and enhances the antigen-presenting effect of macrophage (49, 50).

When targeting Mn-superoxide dismutase (MnSOD) or MnSOD-

related genes to inhibit MnSOD levels, researchers observed that

TAMs infiltration and M2 polarization processes were inhibited

(41, 48). Retinoid orphan nuclear receptor alpha (RORalpha),

which is also involved in the complex process of the antioxidant

system, can significantly (42) reduce ROS levels, decreases

macrophage infiltration, and enhances M1 polarization (42). All

of these antioxidant mechanisms involved in the regulation of

TAMs further reveal the feasibility of targeting the anti-ROS

oxidative system to impede tumor progression.

To date, we have identified several tumor molecular signaling

pathways regarding how ROS affects phenotypes of TAMs (as shown

in Table 1). Directly targeting these pathways to reduce the

recruitment and function of TAMs in TME and reversing M2-like

TAMs to M1,or modulating macrophages phagocytosis has emerged

as an extremely promising strategy for antitumor immunotherapy.
3 Fatty acid oxidation and TAMs

The researchers observed that TAMs predominantly exhibited

an M1 phenotype during the initiation stage of tumor development.

As the tumor progressed to an advanced stage, TAMs primarily

expressed an M2 phenotype (21, 77). In the early stage of tumor
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development, TAMs preferentially utilize glycolysis metabolism for

energy generation (78). However, as the tumor progressed, FAO

and OXPHOS gradually became the predominant modes of TAMs’

metabolism (79). The metabolic reprogramming from M0 to M1 is

achieved by inhibiting macrophage mitochondrial function and

improving substrate utilization, regulated by HIF-1a and its

downstream proteins (80–82). Conversely, when macrophages

transitioned from M0 and M1 phenotypes to M2 phenotypes,

their FAO and OXPHOS metabolic efficiency increased,

accompanied by activation of the tricarboxylic acid cycle (TCA)

cycle (77, 83, 84).

In studies examining the influence of lipids on tumor

progression, we have observed that TAMs infiltrate more in lipid-

rich droplets of TME. Furthermore, a short-term high-fat diet can

activate the macrophages in adipose tissue of patients with

colorectal cancer, and reduce the risk of cancer metastasis,

tentatively suggesting a potential correlation between lipid

metabolism and TAMs (85). Examination of the lipid metabolic

profile of TAMs has revealed heterogeneity in their fatty acid

metabolic profile under different phenotypes, leading to the

speculation that FAO metabolic activity is associated with the

TAMs’ phenotypes (77, 83). In most cases, cells undergo three

steps from fatty acid oxidation to the final production of energy:

FAO, conversion of acetyl-coenzyme A (Acetyl-CoA) by TCA, and

OXPHOS (86). Beta-oxidation of fatty acids is the primary

metabolic pathway of FAO, and when the efficiency of beta-

oxidation metabolism is enhanced in TAMs, tumor-invasive

abilities become stronger (87).

Further study of specific mechanisms, researchers found that

the metabolic efficiency of FAO plays a crucial role in regulating

mitochondrial function and polarization of TAMs. Beta-oxidation

is closely related to the phenotype of TAMs (77, 83). Peroxisome

proliferator-activated receptor (PPAR) system is an essential

regulator of fatty acid metabolism and is involved in the

metabolic reprogramming of TAMs to M2 phenotypic

polarization (88, 89). The PPAR system mediated through signal

transducer and activator of transcription 6 (STAT6) and

PPARgamma coactivator 1-beta (PGC-1beta) elevated the

metabolic efficiency of FAO in TAMs (23, 90, 91). In further
TABLE 3 Targets involving TAMs, ROS, and FAO.

Target Cells
affected Molecular/signaling events Cellular/system

events Ref.

RIPK3 TAMs
RIPK3 deficiency reduced ROS production, inhibited disruption of PPAR by Caspase-1, and
enabled PPAR-facilitated FAO in TAMs

M2 polarization; TAMs
recruitment

(92)

CD36 TAMs SHP1/JAK1/STAT6 M2 polarization
(24,
117)

Exosomes TAMs
Inhibition of Complex I (NADH:ubiquinone oxidoreductase) and complex IV (cytochrome c
oxidase)

M1 polarization (118)

IL-1b TAMs
Secretion of IL-1b regulated by modulation of FAO via a ROS and NLRP3-dependent manner in
M2

Cancer cell Migration (120)

CCL2 Cancer cells
Inhibition of RB promote activating of AMPK and recruitment of TAMs via FAO and ROS-
dependent manner

TAMs recruitment (121)

Itaconate TAMs Knockdown of IRG1/Itaconate inhibit FAO and ROS by reducing the efficiency of OXPHOS M1 polarization (119)
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studies, the expression levels of PPAR-gamma and its downstream

CD36 were upregulated by the action of the upstream S100A4

protein, which induced M2 polarization responses in the form of

enhanced fatty acid absorption and FAO (88). Researchers have

observed that intact structure is a prerequisite for the regulation of

FAO by PPARs, but receptor-interacting protein kinase 3 (RIPK3)-

mediated Caspase-1 can disrupt the integrity of PPAR-gamma in

TAMs, leading to the generation of a PPAR-gamma 41 kDa

fragment that can move into the mitochondria. This fragment

prevents the buildup of lipid droplets and the promotion of

cancerous M2 cells by inhibiting the function of FAO and MCAD

enzymes in a time-dependent manner (92–94). In another study,

ovarian cancer stem cells can also promote the M2 polarization of

TAMs with the PPARg/NF-kB pathway (95). In addition to the

PPAR system, the researchers observed that ubiquitin-specific

protease14 (USP14)-mediated deubiquitination of SIRT1 can

elevate its downstream fatty acid oxidation-related pathway,

SIRT1/PGC-1a, in IL-4+IL-10-induced M2 macrophages. We can

find the levels of M2 marker CD206 and SIRT1/PGC-1a expressed

higher in USP14+ macrophages compared to USP14- macrophages.

And this alteration did not affect the expression of other key

proteins involved in FAO, such as PPARs, as confirmed by qRT-

PCR. However, the elevated USP14 alone did not lead to M2

polarization, which further suggests that there may not be only

one single FAO-related signaling pathway during the polarization

schedule of TAMs (96).

Exosomes are also involved in FAO-mediated phenotypic

regulation of TAMs. Kirsten rat sarcoma viral oncogene homolog

(KRASG12D) protein, carried by the exosome, can polarize M2-type

macrophages by regulating STAT3-dependent FAO after internalized

by TAMs. Moreover, macrophages with high expression of KRASG12D

showed increased expression of FAO-related genes such as carnitine

palmitoyl-transferase 1A (CPT1A) and acyl-CoA dehydrogenase short

chain (ACADS) (97). However, unlike the results obtained by testing

FAO-related genes in TAMs, the activity of the rate-limiting enzyme

ACADS in TME was positively correlated with M1 and Treg

infiltration levels but negatively correlated with and M2 (98). Further

studies identified methylation sites of ACADs and differences in the

expression of methylation levels of ACADs between cancer and normal

tissues, suggesting that epigenetic alterations in ACADS may be

involved in forming this phenomenon (98).

The specific signaling pathways have not been sufficiently

studied. Previous studies have shown that the IFN-gamma, GM-

CSF and LPS are important influences in the inducement of M1

polarization (99). Unlike the mechanisms associated with the

oxidative decomposition of fatty acids alone, the secretion of IFN-

gamma can inhibit the srebp1-mediated fatty acid synthesis

pathway in immunosuppressed (M2-like) TAMs and stimulate

FAO (100). Perhaps we can target the crosstalk between IFN-

gamma and FAO to regulate the phenotype of TAMs by

regulatting the secretion of IFN-gamma (101–104). However, we

should not overlook the combined efficacy of the treatments. For

example, inhibiting CD8+ T cells by Treg cells may enhance the

secretion level of IFN-gamma, but we should also consider the anti-

tumor effects of CD8+ T cells (99, 105). Therefore, a comprehensive

approach is needed to select the ideal target for treatment.
Frontiers in Immunology 06
In an attempt to investigate the link between metabolic

reprogramming and TAMs, some metabolites are also involved in

the mechanisms regulating the phenotype of TAMs (106, 107). One

study found that CD40 activation altered the NAD+/NADH ratio

through lactate production and enhanced M1 polarization, which

relied on glutamine-lactate conversion. However, unlike

lipopolysaccharide (LPS)-activated M1, CD40-activated M1

exhibited elevated activity of FAO and TCA cycle. The

researchers speculate that a combination of CD40 activation and

type I interferons (IFN-I) deficiency may contribute to this

alteration (78, 108). Additionally, alpha-ketoglutarate (AKG), an

essential intermediate in the TCA cycle, can regulate both FAO and

Jumonji domain-containing protein-3(JMJD3)-dependent

epigenetic modifications of the M2 genes, thereby increasing the

ratio of AKG’s downstream product succinate to AKG and inducing

M2 polarization (106, 109–111).

In conclusion, signaling pathways related to fatty acid

metabolism exert some influence on TAMs regulation, either by

directly altering FAO efficiency or by affecting the production of

related metabolites (as shown in Table 2). The discovery of this

phenomenon provides a new theoretical basis for regulating

phenotypic alteration and polarization of TAMs through FAO.
4 ROS, fatty acid oxidation and TAMs

Previous studies have demonstrated that ROS and FAO can

separately regulate TAMs (38, 77, 83). For instance, modulating

cellular oxidative stress levels by targeting ROS can interfere with

the tumor microenvironment and modulate the phenotype of

TAMs (19, 112). In addition, targeting and regulating FAO-

related signaling pathways can inhibit the growth and survival of

cancer cells and TAMs (79, 87, 113). In some studies, we observed

that ROS could affect mitochondrial FAO (114, 115) by disrupting

mitochondrial DNA (mtDNA) due to the proximity of ROS

production sites to mtDNA (65, 114, 116), and such a spatial

relationship provides an opportunity to study the interplay

among ROS, FAO, and TAMs.

Several potential signaling pathways suggest that ROS and FAO

jointly regulate the level of TAMs and tumor progression (as shown

in Table 3). Intact mitochondrial structures support the proper

functioning of FAO (38, 77, 83), and FAO-related mechanisms can

regulate the phenotype of TAMs (115, 122). In contrast, NADH and

FADH2 produced by FAO contribute to electron leakage processes

in the ETC collectively participate in the mitochondrial generation

of ROS, which further influences phenotypic changes in TAMs

(123). It is due to these interconnected mechanisms that researchers

have attempted to establish links between TAMs, ROS, and FAO to

overcome current limitations in diagnosis and treatment.

As mentioned, PPARs play a crucial role in regulating FAO. The

deficiency of RIPK3 reduces ROS levels through the ROS/Caspase-

1/PPAR pathway, which inhibits Caspase-1-mediated PPAR-

gamma catabolic processes. Maintaining PPAR function and

integrity improves FAO efficiency, leading to M2 polarization and

TAMs recruitment (92). Scavenger receptors (SRs) are a group of

endocytic receptors involved in various processes such as apoptosis,
frontiersin.org
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autoimmunity, inflammation, and lipid metabolism. CD36 protein

is a member of SRs localized on the cell surface in adipose tissue,

gastrointestinal tract, heart, skeletal muscle, and macrophages

(124). In 2007, Nada A. Abumrad’s team first identified the

critical role of CD36 in fatty acid uptake and lipid accumulation

(125), which enables cells to generate energy through FAO instead

of glycolysis (24). Current studies have revealed that CD36 can

enhance the effectiveness of FAO but also promotes the generation

of ROS (126). And the generated ROS levels can promote Janus

kinase 1 (JAK1) phosphorylation and Src homology region 2 (SH-2)

domain-containing phosphatase 1 (SHP1) dephosphorylation in

response to oxidative stress, which regulates the transcription of

TAM genes (24) and the polarization towards the M2 phenotype

(117). Complex I (NADH: ubiquinone oxidoreductase) and III

(ubiquinone: cytochrome c oxidoreductase) have been shown to

have a crucial role in ROS production. Furthermore, complex IV,

one of the regulatory sites of oxidative phosphorylation, is closely

related to the final generation of ATP from FAO (127, 128).

Complex IV (cytochrome c oxidase) expresses at higher levels in

M2 compared to M1 (p < 0.05), contrasting with the difference of

complex I, in which the complex I was lower in M2 than in M1 (p <

0.05) (118). The study did not reveal the specific mechanism leading

to this phenomenon. However, it also enhances the possibility of the

mitochondrial complexes as potential therapeutic target that

involves the interplay of ROS, FAO, and TAMs. In a study on

hepatocellular carcinoma cells, researchers found that changes in

FAO efficiency in TAMs can regulate tumor cell migration. Further

studies showed that M2-type macrophages upregulate IL-1b
secretion levels by regulating FAO in a NLRP3- and ROS-

dependent manner (120). The secreted IL-1b then enhances cell

migration by activating the NF-kB pathway in tumor cells (129). To

investigate the mechanism related to the oncogene retinoblastoma

gene (RB) in malignancies, researchers knocked out the RB gene in

mouse sarcoma and breast cancer models. As a result, AMPK was

activated, which increased FAO by inhibiting ACC activity, thereby

promoting mitochondrial ROS production and JNK activation. This

activation led to the involvement of the CCL2/CCR2 axis in a

mitochondrial ROS and JNK-dependent manner, recruiting

immune cells, including TAMs and MDSCs, into TME (121).

In addition, some potential mechanisms that link TAMs, ROS,

and FAO. Researchers have found that macrophages with the M1

phenotype are more resistant to ferroptosis compared to M2 (44),

and several studies on ferroptosis suggest the interplay among

TAMs, ROS, and FAO (44, 130–132). The occurrence of

ferroptosis is dependent on the oxidation of ROS, and one study

recently demonstrated that inducing cellular ferroptosis lead to

mitochondria shrink, or even disappearance of mitochondrial

ridges, impairing the function of FAO (61, 64, 115, 122). In one

study, ROS and ferroptosis mediated the release of KRASG12D-

containing exosomes. Scavenger receptors, specifically receptor for

advanced glycation end products (RAGE) on tumor-associated

macrophages (TAMs), mediate the uptake of KRASG12D. This

uptake promotes the M2 phenotype through STAT3-dependent

FAO and is positively correlated with survival rates (97).

As a critical transcription factor regulating the expression of

antioxidant genes (133, 134), can reduce ROS generation through
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increased transcription. Nrf2 has been shown to control the

efficiency of FAO by acting on OXPHOS and regulating the

production of TAM-related ROS (133). Apart from its direct

impact on redox processes, Nrf2 also regulates macrophages by

inhibiting the transcriptional function of pro-inflammatory factors

(135). In a study using itaconate to target the inhibition of KEAP1-

NRF2 complex degradation, undamaged Nrf2 was released and

translocated to the nucleus, activating the transcription of

downstream genes. This resulted in the inhibition of both lipid

peroxidation and ferroptosis in macrophages (132, 136). However,

the exact mechanism of Nrf2 in TAMs still needs to be thoroughly

investigated. As a macrophage-specific metabolite generated in the

presence of Immunoresponsive gene 1 (IRG1), itaconate

production is increased in M2 (137, 138) and correlated with

beta-oxidation efficiency in TAMs (119, 139). Itaconate is one of

the highly upregulated metabolites in peritoneal tissue-resident

macrophages in B16 melanoma cells or ID8 ovarian cancer cells

(119). Knockdown of IRG1 lead to the downregulation of itaconate

and reduced FAO, OXPHOS, and ROS levels in TAMs. This

significantly inhibited tumor progression, although the studies did

not indicate what mechanism led to this phenomenon (119, 140).

However, these influences can be considered potential clinical

biomarkers while altering TAMs polarization.
5 The therapeutics of two targets

Considering the significance of TAMs in regulating tumor

progression and the complex interactions among ROS, FAO, and

TAMs, some studies have explored the inclusion of TAMs with ROS

or FAO to identify more effective anti-cancer therapies (141).

Studies focusing on ROS have demonstrated that downregulation

of ROS in TAMs often leads to a skewed phenotype towards M1

polarization, which provides a theoretical basis for therapeutic

modalities that target NOX2, Lon proteins, RORa to alter ROS

levels and thus reconfigure the phenotype of TAMs (42, 54, 56–59).

In recent years, several signaling pathways between ROS and PD-L1

in immunotherapy-related studies involving TAMs have been

identified (19, 56). For instance, in a triple-negative breast cancer

(TNBC)-related study, induced generation of ROS in a manner that

activates NF-kB signaling to promote PD-L1 expression on the

surface of TAMs (142). In contrast, in the field of therapeutics

combined with nanotechnology, iron oxide nanoparticles (IONPs)

were found to reprogram TAMs toward an immunogenic phenotype

in a manner that modulates changes in ROS production levels

through the activation of Caspase-3, which is closely related to

apoptosis-reduced cell survival in mouse mammary tumors (142).

Additionally, researchers have observed that different levels of ROS

may indicate variable tumor sensitivity to chemotherapy. Thus, it is

crucial to closely monitor the dynamics of ROS during patient

treatment (142). Elevated expression of FAO-related genes and

increased FAO efficiency are metabolic characteristics of

macrophages skewed towards the M2 phenotype (24), Inhibiting or

enhancing FAO metabolic efficiency in macrophages can induce

polarization towards the M1 or M2 phenotype, respectively (24).

Macrophages will exhibit anti tumor effects with the M1 phenotype
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and promote tumors with the M2 phenotype. Therefore, shifting the

balance of TAMs to the M1 phenotype by altering FAO will inhibit

tumor progression. Since PPARs are critical transcription factor for

FAO promotion in TAMs and is involved in regulating the

polarization of TAMs, they are considered potential target for

cancer therapy. In related studies, modulation of PPAR-gamma in

TAMs by S100A4 and others has also emerged as a potential cancer

treatment modality (88). In addition, by mediating fatty acids uptake,

CD36 can regulate the metabolic efficiency of FAO and OXPHOS to

influence the phenotype of TAMs. Currently, there are fewer studies

specifically targeting FAO in TAMs. Most studies reprogram the

phenotype of TAMs by targeting mitochondrial function or

OXPHOS alone or in combination with treatment (143–145). This

part of the study also provides a basis for studying FAO as a

therapy target.

Previous studies show that cancer cells are susceptible to

developing resistance to single treatments (146). Combining

different therapeutic modalities to reduce cancer resistance and

improve treatment efficacy has also been a significant challenge for

researchers. Therapies that modulate the phenotype of TAMs by

targeting FAO or ROS have shown effects on tumorigenesis and

progression, respectively. Given the close interaction between FAO

and ROS, targeting both pathways provides valuable intervention

points. However, the specific mechanisms through which they

influence tumorigenesis and progression are still being elucidated.

Therefore, a combination therapies targeting different molecular

key pathways have been selected to achieve more potent anti-

cancer effects.

We found combined targeting both FAO and ROS play an

crutial role in inhibiting tumor progression. Targeting RIPK3,

CD36, RIPK3 can directly regulate TAMs polarization toward an

anti-tumor M1 phenotype. Methods that affect CCL2 secretion

(121) or the use of etomoxir and siRNA to modulate IL-1b
secretion in TAMs capacity to reduce TAMs recruitment (120).

Numerous therapeutic approaches targeting FAO and ROS in

TAMs are currently under development. For instance, a potential

therapeutic involving two targets was identified. Decitabine, a DNA

methyltransferase inhibitor, was found to have an impact on the

hypomethylation of RIPK3. This inhibits the FAO process in TAMs

through the ROS/Caspase-1/PPAR-gamma signaling pathway and

leads to a reversal of the pro-tumor phenotype of TAMs (92). An

agent called a-T-K nanoemulsions, prepared with the combination

of KIRA673-75 (IRE1-XBP1 inhibitor) and a-tocopherol (ROS

inhibitor), had a dual inhibitory effect. Under a-T-K intervention,

macrophages showed increased expression of CD86, a marker of

M1-type cells, and decreased expression of CD206, a marker of M2-

type cells. Simultaneously, the IRE1-XBP1 pathway, which

upregulated FAO, was inhibited, resulting in decreased levels of

ROS and FAO (147). This intervention led to reduced tumor cell

survival and improved efficacy of immunotherapy for lung cancer.

Importantly, in experimental settings, simultaneous inhibition of

both ROS and FAO showed superior antitumor effects compared to

either drug alone (147). And a-T-K demonstrated fewer adverse

effects in a mouse model (147), so we believe this work will provide

a valuable reference for cancer treatment, bringing hope for more
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effective tumor therapy by combining the targeting of ROS

with FAO.
6 Conclusions

We review the signaling pathways involving ROS, FAO, and

TAMs, which present new opportunities for therapeutic

interventions in tumors. ROS can influence the biological

function of tumors by regulating the recruitment, polarization,

and phagocytosis ability of TAMs, in which ROS production and

the antioxidant system in vivo play an important role. The efficiency

of FAO metabolism and the regulation of related metabolites also

impact the function of TAMs. Meanwhile, several signaling

pathways that affect the biological processes of tumors have been

identified, which efficiently modulate tumor progression through

regulatory mechanisms involving TAMs, ROS, and FAO. However,

the current research findings are still far from sufficient, and further

investigations are still needed to gain a deeper understanding and

explore the intricate relationship between TAMs, oxidative stress,

and nutrient metabolism for potential therapeutic targets.
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