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Cholera, a persistent global public health concern, continues to cause outbreaks

in approximately 30 countries and territories this year. The imperative to

safeguard water sources and food from Vibrio cholerae, the causative

pathogen, remains urgent. The bacterium is mainly disseminated via ingestion

of contaminated water or food. Despite the plate method’s gold standard status

for detection, its time-consuming nature, taking several days to provide results,

remains a challenge. The emergence of novel virulence serotypes raises public

health concerns, potentially compromising existing detection methods. Hence,

exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability.

Immunobiosensors, leveraging antibody specificity and sensitivity, present

formidable tools for detecting diverse small molecules, encompassing drugs,

hormones, toxins, and environmental pollutants. This review explores cholera

toxin detection, highlighting phage display-based nano immunosensors’

potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity,

through specific antibody fragments or mimotopes, enabling precise

quantification. This innovative approach promises to reshape cholera toxin

detection, offering an alternative to animal-derived methods. Harnessing

engineered bacteriophages aligns with ethical detection and emphasizes

sensitivity and accuracy, a pivotal stride in the evolution of detection strategies.

This review primarily introduces recent advancements in phage display-based

nano immunosensors for cholera toxin, encompassing technical aspects, current

challenges, and future prospects.
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Introduction

Cholera, a malady triggered by Vibrio cholerae, induces grave diarrhea and

dehydration owing to its toxin production. Prevalent in areas with inadequate sanitation

and restricted clean water access, this ailment poses a substantial threat to children under

five, underscoring the significance of timely treatment to avert fatal consequences (1–3).

Cholera’s profound influence on global health is evident in its annual toll of millions of
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cases and thousands of fatalities. Moreover, the economic

ramifications are substantial, encompassing expenses for

treatment, lost productivity, and public health interventions in

affected nations (4–6). Cholera diagnosis entails laboratory

testing, utilizing phage display-based nano immunosensors for

cholera toxin detection. Early identification and treatment are

vital for effective disease management. To combat cholera’s global

impact, prevention measures like enhanced sanitation and clean

water access are crucial. Vibrio cholerae, the causative bacterium,

encompasses various strains, with serotypes O1 and O139

commonly associated with outbreaks. These strains produce a

potent cholera toxin, inducing severe diarrhea and dehydration in

infected individuals, hallmarking characteristic symptoms like

watery diarrhea and vomiting.

Vibrio cholerae secretes various toxins, intricately involved in

cholera’s pathogenesis (7, 8) (Figure 1A). These encompass: 1.

Cholera toxin (CT): A protein complex responsible for hallmark

cholera symptoms - watery diarrhea and vomiting. The toxin binds

to intestinal cell surfaces, triggering a signaling cascade that induces

chloride and water secretion into the intestinal lumen. 2. Toxin-

coregulated pilus (TCP): An indispensable surface protein for

Vibrio cholerae colonization in the human intestine. Facilitating

bacterial biofilm formation and adherence to intestinal cells. 3.

Zonula occludens toxin (ZOT): A protein toxin disrupting tight

junctions between intestinal cells, causing increased permeability of

the intestinal epithelium and loss of water and electrolytes. 4. Repeat

in toxin (RTX): RTX, a protein toxin, lyses host cells, liberating
Frontiers in Immunology 02
nutrients to fuel Vibrio cholerae growth and replication. 5.

Accessory cholera enterotoxin (ACE): A protein toxin that

potentiates cholera toxin activity, elevating water and electrolyte

secretion into the intestinal lumen. 6. Cholerae-sensitive

enterotoxin (Sta): A protein toxin intensifying cholera toxin

activity and directly impacting the intestinal epithelium,

heightening water and electrolyte secretion.

Vibrio cholerae primarily spreads via the fecal-oral route,

stemming from direct contact with contaminated individuals or

indirectly through fluids, food, or materials tainted by the pathogen

(11). Widespread cholera outbreaks often correlate with natural or

human-induced disasters that disrupt water and sanitation systems,

facilitating disease transmission. The aquatic environment also acts

as a key player in cholera spread, with the bacteria flourishing in

waterways conducive to their proliferation (12, 13). The paramount

importance of precise and dependable detection methods for

monitoring and curtailing cholera transmission cannot be

overstated (14). Thus, the imperative to devise effective, accurate,

and reliable techniques for detecting pathogenic Vibrio cholerae in

water sources becomes indispensable in mitigating the disease’s

propagation (15, 16). Although the gold standard for cholera

diagnosis remains isolating Vibrio cholerae O1 serotype from

fecal samples, novel virulent serotypes demand alternative

detection approaches (17). Given the stable nature of cholera

toxin’s structure, detecting Vibrio cholerae toxin could offer

significant advantages (18, 19). Cholera toxin (CT), a virulent

protein produced by Vibrio cholerae, underpins disease
FIGURE 1

(A) Infection with Vibrio cholera. The Cholera Toxin (CT) binds to the Ganglioside GM1 and increases cAMP by increasing adenylate cyclase (AC)
activity. Zonula occludens toxin (Zot) affects the structure of intestinal mucosal epithelial cells. Accessory cholera enterotoxin (ACE) stimulates Cl-/
HCO3-secretion in enterocytes. Heat-stable enterotoxin (Sta) increases cGMP while inhibiting the Na+/Cl regulation. (Adapted from [8]) (B)
Mechanism of action of V. cholera toxin. The complete toxin is shown to bind to the cell membrane’s GM1-ganglioside receptor. The A1 catalyzes
the GS regulatory protein, “locking” it in active. Accumulation of cAMP along the cell membrane is caused by increased adenylate cyclase (AC)
activity. (Adapted from [9]) (C) CT secretion via OMVs and through the T2S (type II secretion) system are complementary mechanisms for CT
delivery, ensuring that the toxin can effectively penetrate and damage host cells (Adapted from [10]).
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symptoms. CT comprises CTA and CTB subunits, with CTA

driving the disease phenotype and CTB serving as the vehicle

transporting CTA to target cells. CTA consists of two major

domains, CTA1 (the active toxin) and CTA2 (anchoring CTB).

Conversely, CTB, a homotrimeric and non-toxic protein, exhibits

robust binding to GM1 gangliosides on mammalian cells, displaying

high affinity (20) (Figure 1B). CT lacks affinity for LPS, a major

component of the outer membrane’s outer leaflet (OM).

Nonetheless, certain CT molecules enter the periplasm and

integrate into OMVs (outer membrane vesicles), small spherical

structures budding from the OM. Unlike soluble CT, OMV-

incorporated CT fails to bind to the GM1 receptor on host cell

lipid rafts due to its location within the OMV. Thus, CT secretion

via OMVs and the T2S (type II secretion) system synergize as

complementary mechanisms for effective toxin delivery, enabling

penetration and damage to host cells (Figure 1C).

State-of-the-art approaches for cholera toxin analysis, like high-

performance liquid chromatography (HPLC) (21), liquid

chromatography-mass spectrometry (22), gas chromatography

(23), and thin-layer chromatography (TLC) (24), boast sensitivity

and precision. However, their practicality for field testing or

extensive screening can pose challenges. Nano immunosensors

offer a promising avenue for toxin rapid identification, boasting

simplicity, cost-effectiveness, high specificity, and field monitoring

prowess. Several immunoassay techniques, encompassing enzyme-

linked immunosorbent assay (ELISA) (25), fluorescence

polarization immunoassays (26), fluorescent immunoassays (27),

and side-flow immunochromatographic assays (IFA) (28), have

been documented for cholera toxin detection. In these assays,

antibodies, including monoclonal, polyclonal, and recombinant

variants, serve as primary immune reagents. Competition-based

formats are common due to the toxin’s small size, precluding

simultaneous binding by both antibodies. A diverse range of

antibodies targeting various cholera toxins, such as monoclonal

antibodies (29), polyclonal antibodies (30), and recombinant

antibodies (31), have been prepared. Currently, antibodies remain

pivotal immune reagents and their preparation continues to evolve

(32, 33). However, traditional antibody production can be intricate,

time-consuming, and costly, hindering broad application (34).

Specific antibody fragments or mimotopes present a compelling

alternative for cholera toxin detection, as they exhibit precise

binding to antibodies, competing with analytes for binding sites

(35, 36). Mimotopes, peptides imitating protein, carbohydrate, or

lipid epitopes, hold immense potential for diagnosis ,

immunotherapy, and vaccine development (37). With their vital

roles in these fields, mimotopes emerge as a crucial asset (38–40).

Nano immunosensors offer a promising departure from traditional

immunoassays in toxin detection. By emulating toxin epitopes and

mirroring their properties, nano immunosensors replace toxins or

toxin-derived reagents in non-toxic analysis (41, 42). Notably,

simulated peptides and anti-idiotype antibodies currently

underpin toxin immunoassay development (43 , 44) .

Incorporating a wide array of applications, phage display

technology spans epitope mapping (45), enzymatic functions (46),

targeted drug delivery (47, 48), and protein interaction definition

(49, 50).
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Recent research has centered on phage display-based nano

immunosensors for cholera toxin detection. Utilizing phage-

displayed peptides to mimic cholera toxin epitopes, these

immunosensors enable rapid, sensitive, and specific detection in

water samples. Nevertheless, challenges remain, necessitating

improved stability and sensitivity, optimized detection conditions,

and reduced production costs. Notwithstanding, phage display-

based nano immunosensors exhibit promising potential, offering

a new, safe, and swift detection technology for ensuring

environmental water safety. Future research should focus on

addressing these challenges, further enhancing performance, and

expanding the applicability of phage display-based nano

immunosensors in cholera toxin detection.
Preparation and functionalization of
nano immunosensors

The production and functionalization of nano immunosensors,

encompassing mimotope peptides and anti-idiotype antibodies (51),

assume pivotal roles in enabling effective cholera toxin detection.

Figure 2 illustrates the production and functionalization of these

mimotope peptides and anti-idiotype antibodies. Utilizing phage

display technology, simulated peptides are generated via biological

panning, targeting primary antibodies of corresponding antigens

(52). Anti-idiotype antibodies, encompassing monoclonal,

polyclonal, and nano variants, can be obtained through

immunizing animals with primary antibodies (53). To facilitate

green immunoassays, functionalization of nano immunosensor

mimotopes necessitates the use of carrier proteins or signaling

probes as coated antigens or tracers (54, 55). Achieving

functionalization is possible via chemical synthesis or molecular

fusion techniques, with the latter showing greater potential for

enhanced performance and specificity (56). Precise and efficient

preparation and functionalization of nano immunosensors are

paramount, ensuring their sensitivity, specificity, and accuracy in

detecting cholera toxin in water sources.
Phage display technology

Phage display technology (Figure 3) emerges as the primary

method for preparing mimicking peptides, vital in toxin detection.

These polypeptides mimic antigen epitopes and entail genetic

modification of phage DNA. By binding to a phage coat protein,

peptides, proteins, and antibody fragments are expressed on the

phage surface. Additionally, the introduction of exogenous DNA

sequences permits the display of related genes and their products on

the phage surface (58, 59). Moreover, the protein or peptide

maintains its ability to recognize molecular targeted binding sites

(60). In 1985, Smith pioneered the phage display technique, fusing

the restriction endonuclease EcoR I with the PIII protein as a

recombinant small coat protein (61). Subsequently, the shell

proteins PVIII and PVI were also employed for phage display

(62–64), with the innovative proposal of a dual display system

(65). The M13 phages utilized in phage display can be classified into
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different carriers, including 3 + 3, 6 + 6, and 8 + 8 types. Phage

vectors are primarily categorized into type 3/8 and type 33/88

vectors based on the number of displayed exogenous peptides (66).

Phage display technology, renowned for its remarkable specificity

and sensitivity, finds extensive application in nano immunosensor

development for toxin detection. This versatile tool excels in epitope

mapping and identifying mimotopes for diverse antigens. In

essence, phage display technology stands as a potent approach for

crafting highly specific and sensitive nano immunosensors,

revolutionizing cholera toxin detection in water sources.

Phage display technology has revolutionized protein

engineering and drug discovery. Among the most common type

are random peptide libraries, showcasing millions of epitopes that

aid in identifying specific binding peptides for various targets,

including microorganisms, organ tissues, and nanoparticles (67).

Biopanning enables the selection of peptides with high affinity and

selectivity towards their targets (68). The advancement of cyclic

peptides has further bolstered the technology, yielding peptides with

enhanced stability and bioactivity. Notably, commercial libraries

like the Ph.D-12 and Ph.D-7 phage display peptide libraries have

been established, while chemical modifications can augment their
Frontiers in Immunology 04
abundance (69). The construction of diverse phage libraries has

provided a cornerstone for biological panning of targeted binding

peptides, holding tremendous potential in disease diagnosis and

treatment. Additionally, chemical modification of commercial

libraries facilitates the creation of phage libraries with desired

abundance without genetic recombination (70). The vast

repertoire of random peptide libraries, with tens of millions of

epitopes, plays a vital role in disease diagnosis and treatment (71).

Biopanning allows for the selection of specific binding peptides

against a myriad of targets, including microorganisms like cancer

cells (72–74), bacteria, viruses (75, 76), organ tissues (77), and even

nanoparticles (78). Balmforth et al. (79) harnessed phage display to

identify two antibody mimics, anti-cholera toxins Affimer (ACTA)

-A2 and ACTA-C6, demonstrating their non-covalent binding to

the unbound plane of the B subunit of cholera toxin. This discovery

showcased the selective in vivo delivery of Affimers to motor

neurons, paving the way for the development of non-viral motor

neuron drug delivery vectors. Furthermore, the establishment of

various phage libraries, including random peptide libraries,

antibody phage libraries, cDNA phage libraries, among others,

underpins the biological panning of targeted binding peptides (80).
FIGURE 2

Immunosensor mimotope preparation schematic diagram. The preparation of mimotopes for use in immunosensors typically involves immunization
or biopanning to obtain the mimotopes. Anti-idiotype antibodies can be prepared through immunization (A), while mimotope peptides can be
obtained through phage biopanning (B). To expand their applications, mimotopes can be conjugated with signal probes or fused with reporter
proteins and carrier proteins (C). This can enhance the sensitivity and specificity of the immunosensor. The schematic diagram for the preparation of
mimotopes includes the steps of selection, amplification, and preparation of single-strand DNA (Adapted from [44]).
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Structure and life cycle of phage M13

Phage M13, a filamentous bacteriophage, exhibits a diameter of

6.5 nm and a length of approximately 1000 nm (81). Its structure

encompasses a single-stranded DNA genome enclosed in a protein

tube comprising about 2700 copies of the PVIII molecule.

Additionally, four minor coat proteins, each with 5 copies,

namely PIII, PVI, PVII, and PIX, are present (82) (Figure 4A).

Diverging from other phages, filamentous phages do not cause

bacterial host lysis and primarily rely on F pili to infect Escherichia

coli (84, 85) (Figure 4B). During infection, major coat proteins

detach from the phage particles and are deposited in the host, while

the single-stranded DNA (ssDNA) enters the cells and undergoes

conversion into a double-stranded replication form. The progeny

DNA replicates via a rolling cycle mechanism and assembles into a

cell core protein complex with the viral replication assembly protein

gp5. With the aid of host proteins, the virions are extruded through

the membrane. Subsequently, the replication assembly proteins,

which cover and protect viral DNA inside the cell, are replaced by

coat proteins in the cell membrane to cover and protect viral DNA

outside the cell. Ultimately, the virions are extruded through the

membrane with the assistance of host proteins (86). The targeted

proteins play a crucial role in expressing five structural coat

proteins, where each of them has one side inserted into the

bacterial inner membrane, facilitating the assembly of progeny

particles. Notably, on a phage particle, units comprising five
Frontiers in Immunology 05
proteins form a banded arrangement that encases the DNA (87).

Among these coat proteins, g3p and g8p are of particular

significance in the cloning and detection of recombinant phage

antibodies and peptides. Typically, both g3p fusion proteins are

expressed on the tip of phage M13 (88).
Phage display to prepare
simulated peptides

Phage display technology enables the cost-effective screening of

novel mimicking peptides through phage peptide libraries

(Figure 3). Using the primary antibody corresponding to the

antigen as the ligand for phage display biopanning, specific phage

peptides can be obtained after several cycles of affinity biopanning.

These peptides simulate the amino acid epitopes and physical and

chemical properties of the corresponding antigens. Through

multiple rounds of biopanning, unbound phages are washed out,

and the specific phage is eluted for further amplification. After 3-5

cycles of affinity biopanning, the specific phage peptides are

obtained, followed by DNA sequencing and analysis for further

characterization (89). The specific phages obtained through

panning can simulate not only the amino acid epitopes but also

the physical and chemical properties of the corresponding antigens

(90). Utilizing the ph.D-12/ph.D-7 phage display peptide library

kits, novel peptides that bind to the anthrax toxin receptor (ATR)
FIGURE 3

The use of a phagemid vector for phage display. Millions of library variants are cloned into a phagemid vector. By transforming E. coli with
phagemids and rescuing phages, large phage libraries can be obtained. The phages with specific-binding antibodies against immobilized targets can
be selected and isolated through multiple rounds of biopanning. The phages were then screened and sequenced (Adapted from [57]).
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with high affinity and specificity have been identified, showing

potential for neutralizing anthrax toxicity in cells. Lee, Sang-Choon

and colleagues (91) used phage display to select ATR-binding

peptides, resulting in the discovery of two novel peptides with

high affinity and specificity that could neutralize anthrax toxicity in

cells. Phage display technology is widely employed for the

production of recombinant antibodies (RABs), where a specific

peptide is displayed on the surface of a filamentous phage particle

through fusion between the gene encoding the antibody and the

coat protein (pIII or pVIII). The process involves exposing the

antigen-coated surface to a phage library, followed by rigorous

washing to remove antibody-bound phages, which are then re-

amplified by infecting E. coli. This amplification and washing cycle

is repeated, with an increase in specifically bound phages expected

after each round. After several rounds of washing and amplification

with E. coli, antigen-specific antibody phages can be examined

using various methods (92). The substitution of mimotopes for

toxins offers significant advantages in enhancing laboratory and

environmental safety. Phage display technology enables rapid and

cost-effective amplification and purification of mimotopes, making

it a practical alternative to complete antigen synthesis. Moreover,

the use of self-made phage display peptide libraries provides a cost-
Frontiers in Immunology 06
effective approach to generate mimotopes specifically targeting the

desired antigen (93, 94). This method holds immense potential for a

wide range of applications, including disease diagnosis and

treatment, drug discovery, and the development of toxin-free

immunoassays. By leveraging phage display technology for

mimotope production, researchers can explore novel avenues for

safer and more efficient research and application in various

scientific fields.
Preparation of anti-idiotype antibody

The concept of anti-idiotype antibodies, initially proposed by

Jerne in 1974 as part of his “immune network theory” (95), has

opened new possibilities for antigen detection. These antibodies

mimic the spatial structure and biological activity of an antigen,

allowing them to specifically bind to idiotypic antibodies (96). The

preparation of anti-idiotype antibodies includes monoclonal,

polyclonal, and nanobodies, offering a more stable conformation

and enhanced environmental resistance compared to mimotope

peptides. This promising attribute positions them as an attractive

antigen alternative for the development of harmless immunoassays
A

B

FIGURE 4

The filamentous bacteriophage’s basic structure (A) and life cycle (B) (Adapted from [83]).
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(97, 98). With their unique characteristics, anti-idiotype antibodies

represent a significant advancement in immunosensor technology

for safer and more reliable detection methodologies. The use of

polyclonal antibodies (PABs) and monoclonal antibodies (Mabs)

has been limited in simulating small haptens due to their large flat

recognition surface (99). However, recent advancements have led to

the emergence of nanobodies, derived from camels without light

chains, offering immense potential for generating anti-idiotype

antibodies. These nanobodies exhibit a smaller size, high

solubility, thermostability, chemical stability, and suitability for

genetic manipulation, making them a remarkable substitute in

immune sensing. Notably, their variable domains can bind to

antigens without domain pairing (100–103). Nanobodies, such as

single-chain fragment variable antibodies (scFv) and variable

domain of the heavy chain of the heavy-chain antibody (VHH),

offer distinct advantages over conventional antibodies due to their

smaller size (Figure 5). These compact nanobodies exhibit

remarkable properties, including high solubility, thermostability,

and chemical stability, making them exceptionally well-suited for

genetic manipulation (104). As a result of these favorable

characteristics, nanobodies have gained widespread recognition

and have been extensively utilized in the development of toxin-

free immunoassays (105). In a study conducted by Caixia Zhang

et al. (106), two distinct anti-idiotypic nanobodies were isolated

against OTA-specific monoclonal antibodies (mAb). Through

careful examination of the primary structure, the researchers

identified alterations in the complementary determining regions

(CDRs). Notably, modifications were observed in CDR1, CDR2,

and CDR3. The findings revealed that these anti-idiotypic

nanobodies exhibited the potential to enhance the sensitivity of

immunoassays. Leveraging these nanobodies as a safe substitute for

conventional synthetic toxic antigens, the researchers successfully

established an ELISA method that ensures both safety and efficacy.
Functionalization of nano immunosensors

In most cases, immunosensor mimotopes are strategically

labeled or fused with signal probes and reporter proteins to

achieve signal amplification or serve as effective tracers (Figure 6).
Frontiers in Immunology 07
To further enhance the detection sensitivity, these immunosensor

mimotopes can be labeled with biotin or composite probes. In a

noteworthy study by Tong, Weipeng, et al. (107), a simulated

peptide was obtained from a commercial phage display library,

and to bolster sensitivity, biotin was introduced as a competitive

antigen by modifying the main protein. The proposed method

exhibited excellent linear detection within the range of 4.8 to 625

pg/mL, boasting an impressive detection limit (LOD) of 5.39 pg/

mL. Remarkably, this LOD was approximately 26-fold lower than

that of the conventional horseradish peroxidase (HRP)-based

ELISA. Lu, Xin, et al. (108) have developed a remarkably sensitive

electrochemical immunosensor utilizing phage display peptide

derived from Bacillus thuringiensis protein. The targeted phage

display peptide, obtained from the Ph.D.-12 phage display library,

exhibited exceptional specificity, stability, and affinity.

By integrating this selected peptide into the electrochemical

immunosensor with a gold nanoparticle-modified electrode,

they achieved impressive performance. The peptide-based

immunosensor demonstrated a wide operating range of 0.01 to

100 ng/mL and an impressively low detection limit of 7 pg/mL. This

innovative approach holds great promise for the ultra-sensitive

detection of various proteins, opening up new possibilities for a

range of applications. In a subsequent breakthrough, Mingyang

Wang and their research team (109) introduced a screening strategy

for VEGF members with a structural resemblance to VEGF165,

considering its potential as a therapeutic target for various

malignancies. Their aim was to significantly enhance the

specificity of the selected phage monoclonal. Their efforts yielded

a phage monoclonal expressing the peptide SPFLLRM, which

displayed excellent affinity and specificity for VEGF165.

Leveraging this specific phage-modified electrode, they

successfully constructed a VEGF165 electrochemical impedance

spectroscopy (EIS) immunosensor. Through meticulous

optimization of experimental conditions, they achieved a linear

range of 0.5-1000 pg/mL and a detection limit of 0.15 pg/mL. This

phage-based EIS sensor holds promising prospects for applications

in diagnostics and therapies, presenting a significant advancement

in the field.

Nano immunosensors have emerged as a cutting-edge

technology with tremendous potential for diverse applications,
FIGURE 5

Various recombinant antibodies were compared to conventional antibodies (Adapted from [83]).
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including disease diagnosis, drug discovery, and environmental

monitoring. Beyond the conventional methods of labeling or

fusing with signal probes and reporter proteins, researchers have

explored innovative ways to further enhance the performance of

these sensors by functionalizing them with various nanomaterials.

Gold nanoparticles (AuNPs), for instance, have proven to be

valuable in modifying the electrode surface or serving as labels for

the mimotope. Such modifications lead to improved sensitivity and

stability of the immunosensor. Similarly, carbon nanotubes (CNTs)

have been employed to enhance the electrode surface area and

facilitate electron transfer, elevating the overall performance of the

nano immunosensor. Additionally, other nanomaterials, including

graphene oxide (GO), quantum dots (QDs), and magnetic

nanoparticles (MNPs), have also been utilized for the surface

modification of electrodes or labeling of mimotopes. By

doing so, researchers have achieved heightened detection

sensitivity and selectivity in these advanced immunosensors. The

functionalization of nano immunosensors with diverse

nanomaterials showcases a promising avenue to further enhance

their capabilities and widen their scope of applications.
Frontiers in Immunology 08
Application of nano immunosensors in
the detection of cholera toxin

Nano immunosensors have gained widespread recognition as a

valuable tool for cholera toxin detection, primarily due to their

ability to obviate the need for competing antigens and tracers,

streamlining the assay process and enhancing efficiency.
Cholera toxin detection based on
immunosensor mimotopes

Cholera toxin, an AB5 toxin comprising A (CTA) and B

subunits (CTB) (110), shares structural similarities with other

toxins, such as Escherichia coli thermal instability toxin (111) or

Shiga-like toxin (112). Consequently, when developing mimotopes

for cholera toxin detection, meticulous attention must be given to

ensuring their specificity. This crucial aspect safeguards against

potential false-positive results arising from cross-reactivity with
A

B

C

FIGURE 6

The procedure for performing competitive immunoassays using phage form (A) or peptide fusion protein (B). Immunochromatography schematic
diagram (C) (Adapted from [83]).
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similar toxins. Thus, stringent validation of the mimotopes is

essential before practical implementation in the field (113). As

delineated above, cholera toxin (CT) is a sophisticated protein

complex consisting of A and B subunits. The B-subunit adeptly

enters host cells by binding to ganglioside GM1, subsequently

embarking on a journey to the endoplasmic reticulum. On the

other hand, the A-subunit plays the role of an ADP-

ribosyltransferase, catalyzing the transfer of ADP-ribose from

NAD+ to specific target proteins. This enzymatic activity,

orchestrated by the A1 chain of the A subunit, precipitates a

cascade of events, culminating in the manifestation of watery

diarrhea. Upon successful translocation of the A1 chain into the

cytoplasm via the unfolded endoplasmic reticulum, a remarkable

evasion from proteasomal degradation ensues. Swiftly, the A1 chain

finds its equilibrium, resuming its role as a potent ADP-

ribosyltransferase. Herein lies the crux of its toxicity, as the ADP

ribosylation of the heterotrimeric G protein Gsa ensues. This

relentless activation of adenylate cyclase fuels an unprecedented

surge in intracellular levels of cyclic AMP (cAMP). Within

intestinal cells, the expeditious surge in cAMP production

orchestrates chloride secretion, inevitably triggering substantial

water loss. The profound consequence manifests as the hallmark

symptom of cholera: relentless, watery diarrhea (114).

The use of immunosensor mimotopes as recognition

components has gained significant traction owing to their ability

to overcome limitations while seamlessly integrating into

pharmaceutical processes (115). These unique components

possess the capacity to spontaneously self-assemble into specific

nanostructures through non-covalent interactions, rendering them

ideal molecular elements for constructing cutting-edge detection

platforms (116). For instance, a remarkable breakthrough came

from the research team led by Jong Min Lim (117), who harnessed

the power of M13 phage display to develop an affinity peptide

specifically targeting the B subunit of Vibrio cholerae. Rigorous

evaluations employing ELISA confirmed the robust binding affinity,

while local surface plasmon resonance (LSPR) and surface-

enhanced Raman spectroscopy (SERS) were employed to

meticulously assess the performance of the prepared biosensors.

Impressively, the LODs achieved by LSPR and SERS were recorded

as 1.89 ng/mL and 3.51 pg/mL, respectively. The sensor stands as a

non-labeling, non-interference solution for the sensitive detection

of cholera toxin, presenting a solid foundation for cholera

monitoring and control. In a similar vein, Alejandro D.

Montaner’s research team made noteworthy strides by identifying

small peptides capable of binding to GM1 through the phage

display of random peptides, with a focus on exploring their

immunogenicity through chemical coupling (118).
Cholera toxin detection based
on phage-ELISA

An exemplar application of immunosensor mimotopes in toxin

detection lies in the novel cholera toxin (CT) assay, accomplished

through phage-ELISA. Traditionally, competitive antigens are

indispensable for immunoassays targeting small molecules,
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necessitating the laborious synthesis of substantial quantities of

these toxic small-molecular toxins. Leveraging mimotopes in

immunoassays can circumvent the utilization of such hazardous

compounds. In comparison to alternative analytical methods,

immunoassays offer numerous advantages for rapid detection,

boasting heightened sensitivity, augmented specificity, and

simplified sample preparation (119). The inherent diminutive size

of specific toxin mimotopes presents a challenge in their direct

fixation to solid surfaces for immunoassays. Instead, these

simulated peptides are ingeniously conjugated with specific

proteins to generate fusion proteins amenable for immunoassays

(120). A direct and effective approach involves utilizing M13 phages

as coated antigens, in conjunction with the specific mimotope.

Among the diverse immunoassay techniques, ELISA stands as a

widely employed method for toxin detection. Consequently,

employing specific mimotopes as antigen-coated phages within

ELISA (phage-ELISA) presents a feasible and promising avenue

(121). The mimotope, initially selected from a phage display library,

underwent biotinylation for subsequent use as a competing antigen

in the ELISA assay. To ensure specific recognition by the anti-CT

monoclonal antibody, the mimotope was ingeniously fused to the

p3 protein of the M13 phage. Detection of the biotinylated

mimotope was achieved through the application of streptavidin-

labeled polymeric horseradish peroxidase (HRP). Remarkably, this

phage-ELISA approach exhibited remarkable sensitivity, boasting a

detection limit of 0.05 ng/mL, surpassing traditional ELISA

methods by 200-fold. By employing mimotopes in phage-ELISA

assays, this method not only ensures enhanced sensitivity but also

offers a safer and more efficient alternative, obviating the necessity

for toxic small-molecule toxins.

Mimotopes have ushered in a revolutionary era in toxin

detection, introducing a safer and more efficient alternative to

conventional methods. Leveraging mimotopes within phage-

ELISA assays has been scientifically demonstrated to augment

sensitivity while concurrently reducing the reliance on toxic

small-molecule toxins. Zhuolin Song and his accomplished team

have engineered a groundbreaking ochratoxin A (OTA) assay using

phage-ELISA, boasting an exceptional detection limit of 2.0 pg/mL

(122). The pivotal element of this assay involves a simulated peptide

meticulously screened from the M13 phage library, meticulously

biotinylated, and subsequently employed as a competing antigen.

Additionally, a heptapeptide simulated epitope, ingeniously fused to

the p3 protein of M13, provided targeted recognition of the anti-

OTA monoclonal antibody. By modifying the capsid p8 protein

with biotin molecules, the team aptly loaded streptavidin-labeled

polymeric horseradish peroxidase (HRP). Exhibiting remarkable

sensitivity, this approach impressively outperforms traditional

ELISA methods with an OTA detection limit 250 times lower.

Furthermore, the integration of mimotopes has opened doors to the

use of colloidal gold test strips, a rapid and cost-effective toxin

detection method. Furthermore, Weihua Lai and colleagues have

spearheaded the development of colloidal gold test strips tailored

for OTA detection, culminating in an impressive detection limit of

10 ng/mL (123). Through meticulous panning from a random pool

of seven-peptide phages, a transformative test paper was fashioned,

ingeniously circumventing the problem of toxicity arising from
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direct toxin usage. By harnessing the potential of mimotopes within

multi-immunoassay systems, efficiency, cost-effectiveness, and

sensitivity in toxin detection can be markedly enhanced. Indeed,

the incorporation of mimotopes in toxin detection presents a

promising pathway towards elevating the safety and efficacy of

toxin detection methodologies.
Cholera toxin detection based on single-
strand fragment variable antibody

In the realm of cholera toxin detection, the utilization of single-

strand fragment variable (ScFv) antibodies emerges as a beacon of

promise. ScFv epitomizes a recombinant protein formed by the

fusion of the variable heavy chain region (VH) and variable light

chain region (VL) of the antibody through a short peptide linker

(124) (Figure 5). This strategic design imbues ScFv with a trifecta of

virtues: a petite structure, enhanced permeability, and remarkable

affinity. Owing to its diminutive molecular weight, formidable

permeability, and exceptional affinity, scFv has garnered extensive

usage in diverse domains, spanning tumor treatment (125),

infectious disease prevention (126), and the detection of food

safety residues (127). The advent of phage display as a

remarkably efficient in vitro selection technique has positioned

scFv as a compelling alternative to conventional antibodies.

Through judicious mutation strategies, the affinity of scFv can be

substantially augmented (128). This enhancement was vividly

elucidated by the meticulous investigation of Lakzaei et al. (129),

wherein they judiciously compared three distinct strategies: soluble

antibody capture, PH step elution, and conventional panning,

ultimately enriching specific antibody clones targeting diphtheria

toxoid. Fifteen phage ScFV-positive clones against diphtheria

toxoid were successfully isolated using the soluble antibody

capture method. Conventional panning and PH step elution

techniques yielded 9 and 5 positive phage ScFV clones,

respectively. The soluble scFv fragments exhibited neutralizing

activity ranging from 0.15 to 0.6 mg against the cytotoxic dose of

diphtheria toxin, underscoring the effectiveness of soluble antibody

capture in isolating specific scFv fragments. Embracing ScFv

antibodies holds promise in enhancing the sensitivity and

specificity of cholera toxin detection. Subsequently, Maryam

Alibeiki et al. (130) employed a phage display library to select

numerous antibody clones targeting clostridium perfringens toxoid

ETX. The enrichment of anti-ETX-specific clones was achieved

through binding to immobilized antigens, followed by elution and

phage proliferation. After multiple rounds of binding selection,

ELISA analysis confirmed the high affinity and specificity of the

isolated clones for ETX. In a recent study, Shadman et al. (131)

successfully identified novel single-chain fragment variable (scFv)

antibodies against the pseudomonas aeruginosa exotoxin A domain

I (ExoA-DI) from a human scFv phage library. To achieve this, the

recombinant ExoA-DI of pseudomonas aeruginosa was expressed

in Escherichia coli and subsequently purified using a Ni-NTA

column for the screening process of the human antibody

phage library.
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The development of recombinant antibodies against toxins

through phage display technology presents a promising avenue

for diagnosing and treating infections. The screening of human

antibody phage libraries allows for the discovery of antibodies from

naive antibody gene banks, which in turn can be utilized to create

novel therapeutic agents targeting toxin-related diseases. A new

screening procedure has been devised to prevent the elimination of

rare specific clones, enabling the identification of highly reactive

phage clones. In the case of exotoxin A from Pseudomonas

aeruginosa, the purified scFv antibodies demonstrated remarkable

specificity and reactivity with both the recombinant domain I and

the full-length natural exotoxin A. This exciting finding lays the

foundation for the potential development of new therapeutic agents

to combat pseudomonas aeruginosa infections. Altogether, phage

display technology represents a powerful tool for the development

of recombinant antibodies against toxins, revolutionizing the

diagnosis and treatment of infectious diseases (132, 133).
Cholera toxin detection based on
immunosensor anti-idiotype antibody

The anti-idiotype antibody, located in the variable region of the

immunoglobulin with specific antigenic determinants, serves as a

secondary antibody targeting a particular type of primary antibody

(134, 135). Numerous anti-idiotypic antibodies have been

developed, effectively targeting both large and small molecules,

and have found applications in diagnosis and immunoassays

(136–138). A captivating discovery was made in 1993 when

camelidae antibodies were found to possess no light chains,

comprising solely heavy chain antibodies. These unique

antibodies feature a single variable domain (VHH) forming the

variable domain (VH), giving rise to what is known as a nanobody.

Notably, camel immune VHH libraries can be cloned using the M13

phage display vector. The M13 phage display vector, commonly

employed for cloning such libraries, facilitates the generation of

heavy chain-only antibodies lacking light chains. The V-domains

from these antibodies are amplified from cDNA derived from

lymphocytes found in peripheral blood, lymph nodes, or spleen of

an immunized animal, subsequently cloned into the phage vector.

Following transfection into Escherichia coli and infection with a

helper phage, a library of recombinant phage particles can be

harvested from the supernatant (Figure 7). Given their small size

and ease of manipulation, anti-specific nanobodies have emerged as

valuable tools for diagnostic and therapeutic purposes (140–143).

Moreover, anti-idiotypic antibodies have found utility beyond their

traditional applications, extending to immunoassays targeting small

molecules. An illustrative example is the anti-idiotypic nanobody-

phage display-mediated immuno-polymerase chain reaction

method, enabling simultaneous quantitative detection of multiple

toxins. In a recent investigation conducted by Dong, Sa et al. (144),

anti-Cry1A polyclonal antibodies were employed as antigens to

screen for anti-variant antibodies capable of mimicking the Cry1A

toxin, using a phage display human domain antibody library.

Following four rounds of biopanning, five positive clones
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exhibiting binding activity were identified, with clone D6 displaying

a remarkable inhibitory effect on the binding of Cry1A toxin and

anti-Cry1A polyclonal antibodies. D6 was characterized as a

subtype anti-idiotypic antibody, proficient in mimicking Cry1A

toxin and competitively binding to anti-Cry1A polyclonal

antibodies. Intriguingly, bioassay results demonstrated that D6

possessed discernible insecticidal activity. The study lays a

foundation for the development of toxin simulators, offering

promising applications in the domains of agriculture and

environmental protection.

Notably, Xu, Chongxin, et al. (145) have achieved a significant

breakthrough in the field of toxin monitoring by developing a

highly sensitive anti-microcystin single-chain variable fragment

(scFv). The application of this scFv in an established ELISA

showcased promising prospects for ultra-sensitive detection in

water samples. Besides competitive immunoassays, innovative

nanobody-based methods have also emerged, among which the

phage display mediated immunopolymerase chain reaction (PD-

IPCR) technique deserves special mention. PD-IPCR harnesses

recombinant phage particles as readily available reagents for

IPCR, obviating the need for conventional monoclonal antibodies

(146), as shown in Figure 8. This technique exhibits tremendous

potential as an ultra-sensitive assay for small molecules, rendering it

a valuable tool for monitoring toxins in both environmental and

clinical samples. Furthermore, Rezaei, Zahra S. et al. (147) have

made strides in the detection of vascular endothelial growth factor

(VEGF) by developing a precise PCR-conjugated phage display

system using VHH nanobodies. This innovative approach, known

as PD-IPCR, presents new avenues for VEGF detection,

highlighting the versatility and potential of nanobody-based

methods in diagnostics and therapeutics. In a remarkable

development, a novel system has been devised utilizing anti-

VEGF monoclonal antibodies as specific binding agents within a

sandwich immunosorbent assay platform. Strikingly, the same anti-

VEGF phage particles that serve as anti-VEGF reagents in the PD-

IPCR method also function as DNA templates simultaneously.

During validation, the anti-VEGF phage ELISA exhibited an

impressive linear range of 3-250 ng/ml, setting a new standard

with a remarkable detection limit (LOD) of 1.1 ng/ml. By leveraging

the PD-IPCR method, the linear range for VEGF expanded to an
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unprecedented 0.06-700 ng/ml, with an astonishingly low detection

limit of 3 pg/ml. Such an advanced method displayed commendable

sensitivity, yielding a serum recovery rate of 83-99% and a relative

standard deviation of 1.2-4.9%, thus rendering it highly suitable for

clinical analysis. The method’s practicality and efficacy were evident

as it was successfully applied to the clinical determination of VEGF

in human serum samples. Impressively, the results obtained showed

a strong correlation with conventional ELISA findings. These

significant findings underscore the immense potential of the PD-

IPCR method, positioning it as a valuable tool for clinical diagnosis

and other multifaceted applications in the realm of VEGF detection.

A groundbreaking study by Ren et al. has unveiled an

innovative approach utilizing anti-idiotype nanobody-phage

display mediated immunopolymerase chain reaction for the

simultaneous and quantitative detection of total aflatoxin and

zearalenone in cereals (148). Impressively, this method exhibited

exceptional sensitivity and specificity, boasting a linear range of

0.01-100 ng/mL for zearalenone (ZEN). Similarly, Xianxian Wang

et al. have made substantial strides by developing a highly sensitive

and specific immunoassay for the quantitative determination of

ZEN, employing the anti-idiotype variable domain of heavy-chain

antibodies (VHH) PD-IPCR (149). Through four cycles of

refinement, a remarkable anti-idiotype VHH phage clone was

isolated, and the LOD of PD-IPCR based on the VHH phage

stood at an astonishing 6.5 pg/mL, surpassing phage ELISA by

approximately 12-fold. The promise of high throughput analysis in

practical applications became evident with the successful

application of this method in ZEN detection of grain samples

using liquid chromatography-tandem mass spectrometry (LC-MS/

MS). These groundbreaking studies collectively underscore the

immense potential of anti-idiotype PD-IPCR methods, offering a

gateway to ultra-sensitive mycotoxin detection in cereals. The

utilization of PD-IPCR not only enhances sensitivity and expands

the linear range compared to phage ELISA but has also been verified

for ZEN detection in grain samples through LC-MS/MS validation.

In addition to PCR-based analysis, loop-mediated isothermal

amplification (LAMP) represents another cutting-edge technique

for the rapid and simple detection of target nucleic acids (150). The

impact of this groundbreaking method is evident in a myriad of

diagnostic fields, including bacterial, viral, and parasitic pathogen
FIGURE 7

Schematic diagram of the M13 phage vector used for clone library of VHH. The open reading frame of the V-domains from the heavy chain-only
antibody was PCR amplification from lymphocytes in immunized animals. The PCR product was cloned into a phage vector downstream of the
promoter, in the box upstream of epitope tags, and followed by the coding sequence for the M13 phage head capsid protein gIIIp. The phage was
then transfected into Escherichia coli that could be read by codon. After infecting bacteria with helper phage, a library of recombinant phage
particles was obtained from the supernatant (Adapted from [139]).
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detection (151, 152), as well as disease diagnosis (153). Among the

innovative adaptations of the loop-mediated isothermal

amplification technique, the immunolamp (iLAMP) assay has

emerged as a particularly promising tool for toxin detection.

Renowned for its specificity, visual identification capabilities, and

isothermal amplification, the iLAMP assay follows a well-defined

procedure. It involves applying antitoxin monoclonal antibodies to

the base of a glutaraldehyde-treated PCR tube, followed by the

addition of the sample extract and anti-idiotype nanobody phage to

the tube. Following the reaction, unbound phage is meticulously

removed, and the LAMP solution is introduced to the test tube for

the amplification process. With encouraging results in toxin

detection, the iLAMP assay holds significant potential as a rapid

and straightforward detection tool across diverse fields

of application.

In a groundbreaking study led by Chen Dailing et al. (154), the

rapid detection of virulence-related genes in Vibrio cholerae (ace,

zot, cri, and nanH) was achieved using the highly efficient Loop-

mediated Isothermal Amplification (LAMP) visualization method.

To accomplish this, the researchers designed and synthesized three
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pairs of molecular probes for each gene. Positive results were readily

identified by the development of a vibrant green color under visible

light or green fluorescence under ultraviolet light (302nm).

Remarkably, the LAMP method exhibited detection limits ranging

from 1.85 to 2.06 pg per genomic DNA response, surpassing the

sensitivity of standard PCR. These results highlight the potential of

LAMP as an effective and sensitive tool for the rapid detection of

Vibrio cholerae and its associated virulence factors. Another

notable adaptation of LAMP, the immunolamp (iLAMP) assay,

has emerged as a powerful approach for toxin detection, owing to its

specificity, visual identification capability, and isothermal

amplification. The fundamental procedure involves coating the

bottom of a glutaraldehyde-treated PCR tube with antitoxin

monoclonal antibodies (mAb), followed by the addition of sample

extract and anti-idiotype nanobody phage to the test tube. These

nanobody phages effectively mimic antigens (toxins) in the immune

response, resulting in competition between phages and toxins for

binding to mAb. After the reaction, unbound phages are

meticulously removed through a washing step, and the LAMP

solution is introduced to the test tube for the subsequent
FIGURE 8

The VHH-phage-based PD-IPCR process. VHH-phages and toxin were mixed and incubated with ovalbumin-conjugated toxin precoated on a solid
surface. The VHH-phage with toxin was washed out and the excess VHH-phage was fixed. The VHH-phage DNA was released by heat lyse as a
template for real-time PCR.
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amplification process. As a consequence, if the sample contains

toxins, the mixture in the tube retains a distinctive purple color

(indicating a positive result); otherwise, it turns sky blue (indicating

a negative result) (155) (Figure 9). This approach holds remarkable

potential for the rapid and straightforward detection of toxins,

making it a valuable tool in various fields, including food safety and

environmental monitoring.
Simultaneous determination of
multiple cholera toxins

Currently, a diverse array of technologies is available for the

detection of biotoxins, encompassing chromatography,

immunochemical determination, and electrochemical methods

(156–158). Notably, multiple immunochromatography (mICA)

strips have been devised to enable simultaneous monitoring of

multiple toxins (159). These innovative strips utilize various small

molecular toxins or antibody-conjugated fluorescent nanoparticles,

such as colloidal gold particles (160), fluorescent microbeads (161),

and carbon nanoparticles (162). In light of the importance of

efficient surveillance of freshwater sources, the electrospray

ionization (ESI) liquid chromatography-mass spectrometry (LC-

MS) technique has emerged as a formidable tool for biotoxin

detection. In parallel, the development of a multiplex lateral flow

immunoassay (LFA) has proved instrumental in the detection of

primary marine biotoxin groups, including amnesic shellfish

poisoning. Lastly, notable strides have been made in the

development of multiple immunoassays targeting diverse

biotoxins through the implementation of immunosensor

mimotopes. This approach holds tremendous promise for the

creation of more efficient and accurate detection methods

specifically tailored for cholera toxin detection. These

advancements signify significant progress in the field of biotoxin

detection, paving the way for enhanced diagnostic capabilities and

improved safety measures.
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Immunoassay flow chromatography based
on immunosensors

An immunoassay flow chromatography utilizing immunosensor

mimotopes has emerged as a powerful method for the concurrent

detection of multiple cholera toxins. Among the various screening

platforms, immunochromatography (ICA) stands out as the most

widely employed and well-established technique, offering advantages

of simplicity, rapidity, stability, high throughput, ease of use, and cost-

effectiveness (163) (Figure. 6C). Central to ICA’s functionality is the

liquid test sample’s flow, which interacts with the analyte through a

strip containing antibodies, leading to the accumulation of a

chromogenic substance that generates a readable signal (164).

Presently, researchers are actively working on developing both single

and multiple assays with conventional antibodies using ICA

(Figure 10). The integration of immunosensor mimotopes in this

approach holds tremendous promise to enhance the accuracy and

sensitivity of the ICA method, positioning it as an invaluable tool for

the detection of biotoxins across diverse fields, such as food safety and

environmental monitoring. A series of recent studies conducted by

Tong and his esteemed research team have been devoted to the

development of innovative immunochromatography sensors for

detecting zearalenone (ZEN), exhibiting excellent reproducibility and

employing a bio-safe approach (166–168). Additionally, Yan, Jia-

Xiang, and colleagues have made significant strides in creating a

cost-effective and highly sensitive multiplex immunochromatographic

assay (mICA) that allows for the rapid detection of fumonisins B-1

(FB1), zearalenone (ZEN), and ochratoxin A (OTA) (169). This

groundbreaking mICA harnesses mimotopes of FB1, ZEN, and OTA

from phage display technology, skillfully integrated with maltose

binding protein (MBP) as simulated coated antigens applied to the

mICA test line. Impressively, the visual detection limits achieved by this

novel method are an astonishing 0.25 ng/mL for FB1, 3.0 ng/mL for

ZEN, and 0.5 ng/mL for OTA, all within an impressive timeframe of

merely 10 minutes. Subsequent testing using real-life samples has

affirmed the method’s accuracy, reproducibility, and practicality.
FIGURE 9

Detailed procedure for iLAMP detection (Adapted from [155]).
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Notably, the proposedmICA technique has been demonstrated to yield

results on par with those obtained from the widely regarded ultra-high-

performance liquid chromatography combined with tandem mass

spectrometry (UPLC-MS/MS) in detecting FB1, ZEN, and OTA

using natural samples.
Multiple cholera toxins detection based
on PD-IPCR

As discussed earlier, PD-IPCR represents an ultra-sensitive

immunoassay for small-molecule biotoxin detection. Its

remarkable sensitivity and specificity make it a highly promising

solution for toxin detection across various domains, including food

safety, environmental monitoring, and public health. Ren et al.

(170) devised an innovative detection platform that integrates PD-

IPCR and RT-PCR, enabling simultaneous detection of multiple

toxins in stored corn. PD-IPCR, an ultra-sensitive immunoassay for

small-molecule biotoxins, was combined with real-time PCR assays

capable of detecting various genes, including the cholera toxin gene.

This platform facilitated the concurrent detection of multiple

toxins, while establishing a quantitative standard curve for

comprehensive analysis. The detection limits were 0.02 ng/mL for

aflatoxins and 8×102 spores/g for Aspergillus section Flavi,

respectively. This method holds promise for simultaneous

detection of small molecular pollutants and microorganisms,

introducing novel perspectives in diagnostic and public health

applications. The development of this detection platform has

significant potential in simultaneously detecting small molecular

pollutants and microorganisms, offering fresh insights for detection

technology advancements. The capability to detect multiple toxins

in one sample enhances detection efficiency, accuracy, and cost-

effectiveness. This has profound implications in food safety,

environmental monitoring, and public health. Continued progress

in biosensors, chemosensors, and assays opens doors to innovative

methods for screening and identifying other biotoxins.
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Summary

Immunoassays play a crucial role in rapidly screening biotoxin

residues in the environment for human health protection. However,

their traditional approach involving large quantities of toxic

biotoxins or complex chemical synthesis of coated antigens and

tracers presents challenges. The chemical synthesis process suffers

from drawbacks like intricate procedures, batch errors, low binding

efficiency, and the use of organic solvents. As an innovative

substitute, immunosensor mimotopes, such as simulated peptides

and anti-idiotype antibodies, offer a safer option for these

immunoassays. Utilizing phage display or monoclonal/polyclonal

antibody technology, immunosensor mimotopes serve as

competing antigens, tracers, or standard substitutes. They

eliminate the need for toxic compounds and provide an eco-

friendly analytical tool for biotoxin detection, addressing issues of

batch errors, low binding efficiency, and organic solvent usage.

Immunosensor mimotopes hold immense promise as reagents in

the detection of cholera toxins.

Phage M13, widely used in mimotope biopanning, offers a

versatile approach for detecting small analytes, including

biotoxins, via M13 phage display technology. Construction of

random peptide or recombinant antibody libraries facilitates the

selection of alternative antigens or antibodies. The choice between

libraries should consider specific application requirements, as each

possesses distinct advantages and limitations. Random peptide

libraries, simpler to construct, exhibit a broad epitope recognition

range, including continuous and discontinuous sequences, allowing

specific binding to various proteins or ligands. Conversely,

recombinant antibody libraries offer higher affinity and specificity

for the target analyte. In cholera toxin detection, the use of phage

M13 in mimotope screening presents a powerful tool for alternative

antigen or antibody development. Random peptide libraries

demonstrate particular utility in detecting small antigens without

bias. However, they may exhibit lower affinity, limiting certain

applications. In such cases, recombinant antibody libraries become
FIGURE 10

(A) The individual test strip for a single toxin by means of an antibody linked to a phosphorous probe. The 10 channels phosphorous probe-based
lateral flow disc holds 10 detection channels (Toxin1 to Toxin10), each consisting of a single strip for the target toxin. (B) The schematic
representation of the lateral flow microarray strip. Each of the 32 dots represents a distinct capturing agent (Adapted from [165]).
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a preferred choice, yielding antibodies with superior affinity. Thus,

selection between random peptide and recombinant antibody

libraries hinges on the specific needs of the intended application,

ensuring optimal results for cholera toxin detection.

In practical applications, the detection of cholera toxins often

involves using fusion proteins formed by coupling random peptides

with other proteins, rather than single peptides or phages alone.

Multifunctional phage display technology has enabled the

development of versatile biosensors based on M13 phage for

detection and analysis. Through surface modifications, M13

phage gains new characteristics, such as targeted binding ability,

optical properties of quantum dots, and the accumulation of

magnetic nanoparticles (171). These modifications make M13

phage an ideal platform for highly sensitive and selective

biosensor development in cholera toxins detection, offering

improved accuracy and efficiency. In contrast to random peptides,

recombinant antibodies possess the advantage of direct fixation on

both solid surfaces and antigens. Isolated from libraries,

recombinant antibodies like scFvs and anti-idiotype antibodies

find applications in sensitive diagnosis techniques such as ELISA,

PD-IPCR, and iLAMP. Additionally, recombinant antibodies

expand the scope of immunoassay agents, allowing for the

detection of diverse biotoxins within the same group. The use of

recombinant antibodies has led to simultaneous biotoxin detection

based on phage display, showcasing their advantages, including

enhanced specificity, increased sensitivity, shorter detection time,

and improved safety. Recombinant antibodies represent a potent

tool for the sensitive and specific detection of cholera toxins. In the

quest for cholera toxin screening, researchers harnessed diverse

resources, including antigens for antibody preparation, proteins,

and antibody samples for immunomolecular sieving. Antigens,

derived from animals, triggered immune responses, resulting in

specific antibodies. To enhance affinity, an animal immune

repository was utilized, spotlighting antibodies finely tuned to the

toxin. Nanobodies, from animals like camels, featured compact size,

stability, and genetic manipulability, becoming potent alternatives

to conventional antibodies. Nanobodies played crucial roles,

particularly in targeted antibody selection, mimicking toxin

epitopes for precise immune analyses, thus serving as high-affinity

substitutes. This integrated approach supported effective cholera

toxin detection and analysis (172).

Despite the significant benefits offered by Immunosensor

mimotopes in cholera toxins immunoassays, certain limitations

persist. The preparation of mimicking peptides and anti-idiotype

antibodies can be challenging, and the selection of mimotopes from

phage display peptide libraries may encounter failure probabilities.

Likewise, obtaining anti-idiotype antibodies from immune animals

can also pose challenges. Overcoming these limitations requires

expanding the diversity of peptide libraries and enhancing

screening techniques for positive clones. Ongoing research to

optimize conditions for mimotope selection and screening holds

the potential to further improve their utility in cholera toxins

detection. Despite the challenges, mimotopes present a promising

avenue for the development of safe and effective immunoassays.

While immunosensor mimotopes have shown promise in cholera

toxins immunoassays, some reported mimotopes have demonstrated
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only marginal improvements in assay performance. The use of phage

display peptides can lead to complex procedures, and laboratory-

synthesized mimotopes may lose binding activity in certain cases. To

address these issues, further investigation into the structure of

mimotopes and their interaction with receptors is essential. Site

mutagenesis could be introduced to enhance the characteristics of

mimotopes and optimize immunoassay performance.

This review delves into a pioneering avenue in the realm of

cholera toxin detection: phage display-based nano immunosensors.

Engineered bacteriophages, uniquely tailored with specific antibody

fragments or mimotopes, exhibit an exceptional affinity for cholera

toxin. This dynamic interplay orchestrates the generation of

quantifiable signals, enabling remarkably sensitive detection and

precise quantification. In the current landscape of cholera screening

and detection, animals and animal-derived products play a

significant role. Monoclonal antibody (mAb) based rapid

diagnostic tests (RDTs) are employed, although their sensitivity is

hindered by the presence of the common virulent bacteriophage

ICP1 (172). A study explores phage-displayed mimotopes for a

cholera vaccine, overcoming challenges posed by the toxic nature of

lipopolysaccharide (LPS) (173). In contrast, phage display-based

nano immunosensors emerge as an ethical and effective alternative

(174). This innovative method demonstrates heightened affinity for

cholera toxin, potentially transforming detection approaches, and

reflecting the evolving landscape of efficient methodologies. This

paradigm shift not only showcases the potential to revolutionize

cholera toxin detection but also underscores its promise in

advancing precision and efficacy in analytical methodologies (113,

173, 174).
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