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sc-ImmuCC: hierarchical
annotation for immune
cell types in single-cell RNA-seq

Ying Jiang †, Ziyi Chen †, Na Han, Jingzhe Shang and Aiping Wu*

State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of
Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou,
Jiangsu, China
Accurately identifying immune cell types in single-cell RNA-sequencing (scRNA-

Seq) data is critical to uncovering immune responses in health or disease

conditions. However, the high heterogeneity and sparsity of scRNA-Seq data,

as well as the similarity in gene expression among immune cell types, poses a

great challenge for accurate identification of immune cell types in scRNA-Seq

data. Here, we developed a tool named sc-ImmuCC for hierarchical annotation

of immune cell types from scRNA-Seq data, based on the optimized gene sets

and ssGSEA algorithm. sc-ImmuCC simulates the natural differentiation of

immune cells, and the hierarchical annotation includes three layers, which can

annotate nine major immune cell types and 29 cell subtypes. The test results

showed its stable performance and strong consistency among different tissue

datasets with average accuracy of 71-90%. In addition, the optimized gene sets

and hierarchical annotation strategy could be applied to other methods to

improve their annotation accuracy and the spectrum of annotated cell types

and subtypes. We also applied sc-ImmuCC to a dataset composed of COVID-19,

influenza, and healthy donors, and found that the proportion of monocytes in

patients with COVID-19 and influenza was significantly higher than that in

healthy people. The easy-to-use sc-ImmuCC tool provides a good way to

comprehensively annotate immune cell types from scRNA-Seq data, and will

also help study the immune mechanism underlying physiological and

pathological conditions.

KEYWORDS

immune cell identification, scRNA-seq, hierarchical annotation, immune cell signature
sets, ssGSEA
Introduction

The infiltration and quantity of immune cells in tissues are closely related to the

occurrence, treatment response, and development of diseases (1–3), such as cancer and

inflammatory disease (4). Quantitatively identifying immune cells in tissues can provide

new insights and methods for disease treatment and prevention. Traditional experimental
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methods, such as flow cytometry (5), affinity purification (6), and

immunohistochemistry (7), are capable of qualitatively and

quantitatively measuring immune cells. However, these methods

are of limited use when the markers for some cell types are not clear,

and they impractical in the case of large-scale samples due to their

time consumption (8).

Computational strategies have gradually been developed to

obtain the constitution of immune cells directly from tissue omics

data (9, 10). Computational methods have several advantages over

traditional experimental methods, including high throughput,

automation, and the recognition of unknown cell types (11).

Quantification of immune cells from omics data is an important

strategy to infer the number and proportion of different immune

cell subsets from high-throughput sequencing data. Previously, we

have developed ImmuCC and seq-ImmuCC to infer the relative

compositions of immune cell types in mouse tissues from

microarray mRNA expression or bulk RNA-seq data (12, 13).

These methods have been widely used to quantify the immune

cell compositions of mouse tissues. However, these bulk expression

profile-based methods for quantifying immune cells lack the ability

to analyze individual cells and therefore cannot help effectively

analyze immune cell heterogeneity.

Single-cell RNA sequencing (scRNA-seq) technology has

emerged as a powerful technique for studying the heterogeneity

and complexity of RNA transcripts within individual cells (14–16),

and for identifying the composition of cell types and functions

within different tissues, organs and organisms (17). The

advancements in scRNA-Seq technology now allow us to obtain

single cell gene expression and quantitative composition data of

various immune cells in tissues. To identify immune cells in

scRNA-Seq data, clustering followed by manual annotation is

commonly used (18, 19). However, this strategy is usually labor-

intensive and subjective with respect to the selection of signature

genes, which causes poor reproducibility of cell annotation by

different researchers. Moreover, some rare cell types cannot be

directly clustered, and some abundant cell types with different

anchor genes selected during integration can lead to

undetermined annotation results.

In recent years, an increasing number of automated cell type

annotation methods have been developed (20). These annotation

methods can be categorized into three types: (1) marker gene-based

methods, such as SCINA (21), scCATCH (22) and SCSA (23),

which use prior knowledge for cell type annotation; (2) similarity-

based methods, such as SingleR (24),which are based on

correlations between query cells and predefined reference cell

types, they assign the label of the type with maximum correlation;

(3) supervised classification-based methods, scPred (25) using a

combination of unbiased feature selection from a reduced-

dimension space, and machine-learning probability-based

prediction method to annotate cell types. Garnett (26) constructs

a reference cell type hierarchy and uses elastic net regression for cell

type prediction. Although these tools have provided powerful

annotation performance for single cell sequencing data, their

major limitation is the lack of specialized annotation tools for

immune cells. Achieving consistent annotations for immune cell
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types is a challenge, as the same immune cell is often not in the same

layer label in different tools. For instance, T cells belong to the major

cell type, whereas CD4 T cells and CD8 T cells are subtypes of the

former, the output of most tools is often a mixture of major cell

types and subtypes. Moreover, the similar gene expression profiles

of immune cell types cause difficulty in distinguishing them

accurately. As a result, it is difficult to obtain accurate annotations

and uniform output labels for immune cell types from scRNA-

Seq data.

To address this issue, we have developed a hierarchical immune

cell annotation method, namely sc-ImmuCC, based on the

hierarchical lineage differentiation of immune cells. The core

concept of sc-ImmuCC is to define the signature gene sets for

differential immune cell types and to recognize them based on the

enrichment scores of the signature genes. In sc-ImmuCC, the major

types of immune cells are first annotated, followed by annotation of

the subtypes of each cell type individually, which can reduce the

interference between similar cell types, such as T cells and NK cells,

and improve the accuracy of subtype annotation by avoiding

cluttered annotation labels. The hierarchical annotation strategy

of sc-ImmuCC can not only effectively distinguish immune cells

with defined signature genes, but also provides an open framework

for integrating more knowledge for future annotation.
Materials and methods

Summary of sc-ImmuCC

Briefly, sc-ImmuCC is a hierarchical method for annotating

immune cell types based on signature gene sets and ssGSEA [the

single-sample GSEA, an extension of Gene Set Enrichment Analysis

(GSEA)]. Our objective is to collect representative and

discriminative signature genes to the extent possible, and the

genes are retained for later calculation. There are three main steps

in the sc-ImmuCC model. The first step is signature gene selection.

For the first layer of the immune cell types, canonical cell markers

are mainly selected. For the second and third layers, not only the

canonical cell markers, but also some functional feature genes that

are highly expressed in RNA-Seq or scRNA-Seq data and some

signature genes from the disease data sources in Ingenuity Pathway

Analysis (IPA) are also included. The second step is calculation of

the enrichment scores. According to the defined gene sets, the

ssGSEA algorithm is used to calculate the immune cell enrichment

scores of each cell hierarchically. Finally, according to the

enrichment score, the cell types are annotated, and the largest

score value is selected and converted into a cell type label.
Hierarchical immune cell types

According to the differentiation lineage of the immune cells, we

divided the annotation process of immune cells into three layers

(Figure 1A). The first layer consists of nine major immune cell types:
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T cells, B cells, monocytes, macrophages, dendritic cells (DC), natural

killer cells (NK), innate lymphoid cells (ILC), mast cells, and

neutrophils. The second layer of cells is the subtype of the first layer

of cells, mainly including the ILC subtypes: ILC1, ILC2 and ILC3; B cell

subtypes: naïve B cells, memory B cells and plasma cells; T cell

subtypes: CD4 T cells and CD8 T cells; NK subtypes: NK_bright and

NK_dim; DC subtypes: plasmacytoid DC (pDC) and conventional DC

(cDC); monocyte subtypes: classic monocytes and non-classical

monocytes; and macrophage subtypes: M1 macrophage and M2

macrophage. There are a total of 16 cell subtypes in the second layer.

The third layer is a more specific subtype classification for the CD4 T

cells and CD8 T cells in the second layer. The CD4 T cells include

CD4_naive, CD4_central_memory, CD4_effector_memory, regulatory

T cell (Treg), T follicular helper cell (Tfh), T helper (Th) cell 1, Th2 and

Th17 subtypes, and the CD8 T cells include CD8_naive,

CD8_central_memory, CD8_effector_memory, cytotoxic cells, and

exhausted cells subtypes. The subsequent annotation process is

performed in each layer separately.
Frontiers in Immunology 03
Definition of signature gene sets

The signature genes for each immune cell type were obtained by

integrating the cell markers reported in the literature. Canonical

experimentally validated signature genes were used as the marker

genes for the first layer of cell types. Except to classical signature

genes collected from the literature, signature genes derived from

scRNA-seq, bulk RNA-seq data, and IPA were used as sources for

the signature genes of the second and third layer cells (Figure 1B).

Genes with low expression values were removed based on their

average expression among multiple datasets. After filtering the low

expressed marker genes, 11 gene sets were used to distinguish

different immune cell types (Tables S6-16), including the

signature gene sets used to distinguish immune and non-immune

cells, immune cells of nine major types, namely B cells, T cells,

macrophages, monocytes, neutrophils, mast cells, innate lymphoid

cells, dendritic cells and natural killer cells. The details of signature

gene sets (Tables S6-16) were shown in Supplementary Data.
B

A

FIGURE 1

Overview of sc-ImmuCC. (A) Immune cell types and layers in sc-ImmuCC. (B) Signature gene sets for each cell type were collected and screened
separately based on the cell types of different layers (left), and the process of sc-ImmuCC hierarchically annotating immune cells (right).
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Dataset and preprocessing

All single cell gene expression datasets used in this study were

obtained from public accessions, downloaded from the NCBI GEO,

10x Genomics, and EMBL-EBI ArrayExpress databases (Table S1).

We used the original cell type annotation provided by each

publication as ground truth, and systematically standardized the

original labels. The specific original labels and their corresponding

standardized labels can be found in Table S3 (see Supplementary

Data). For cells with ambiguous original annotations, such as

“Mono/Mac”, “NK/T”, and “T/B doublets”, we discard them and

retain only the cell type with a single annotation label.

To test the effectiveness and robustness of the method, 14

independent scRNA-Seq datasets were used, covering a wide range

of immune cell types and tissue sources. For the PBMC dataset, the

five common immune cell types, namely T cells, B cells, dendritic

cells, monocytes, and natural killer cells, were retained, and some rare

cell types such as platelets were removed from the testing dataset.

Considering the imbalance in the E-MTAB-11536 dataset, we

randomly sampled it for annotating the cell types in Figure 2B. For

cell types with more than 50,000 cells, we randomly selected 12,000

cells for testing. For cell types with more than 20,000 and less than

50,000 cells, we randomly selected 8,000 cells. For cell types with less

than 10,000 cells, we chose all of them to test (Table S4).

All the data used in the tests without any filtering, correction, or

normalization. For the datasets used in Figures 3 and 4, non-

immune cells were removed in advance if they were included,

without any additional processing. In the testing Figures 3 and 4,

the dataset GSE131907 underwent pre-filtering to exclude non-

immune cells, and the original data was directly used for testing in

Figure S5B.
Reference cell type annotation tools

We selected five existing methods for performance comparison

with sc-ImmuCC: SingleR, ImmClassifier, Garnett, SCINA and

scCATCH. SingleR is a similarity-based method; ImmClassifier

and Garnett are based on machine learning methods, and are

both based on hierarchy. SCINA and scCATCH are marker gene-

based methods. The former is based on a custom gene set, and the

latter is based on the marker gene database.

To perform the tool comparison, ImmClassifier was run with

default parameters. We ran SingleR with default parameters and ran

Garnett with the hsPBMC pretrained classifier. The SCINA R package

using precompiled immune cell signatures from the RCC patients, and

we labeled cell types which not included in the precompiled gene set as

“unknown”. scCATCH was used with default parameters, and we

choose the “Bone”, “Lung” and “Blood” tissue sources.

To balance the datasets and randomness of the methods, we

adopted a random sampling method for each of the four datasets.

We randomly selected 3,000 cells per cell type (>3,000 cell) each

time; if there were less than 3,000 cells per cell type, all of them were

included each time (Table S5). Five random samplings were carried

out in total, and the final results were the average of the five.
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Statistical analysis and visualization

The basic statistical analyses presented in Figures 4 and 5 were

performed with the “ggpubr” package. UMAP plots were obtained

by “Seurat” package (27, 28). For the datasets GSE144744 and

GSE131907, the top 2,000 most variable genes were used for PCA.

The top 15 principal components were used to generate the UMAP

and tSNE plots. Sankey plots were generated using “networkD3”

package (29). Boxplots were generated using “ggplot2” package

(30). Pheatmaps are drawn with the “pheatmap” package.

The Seurat R package is integrated into sc-ImmuCC as a

visualization tool to help users gain a more intuitive

understanding of the annotation results and gene expression in

the data. Seurat was not used as a data preprocessing tool. No

clustering was performed using Seurat. Seurat was employed for

principal component analysis of the data and added the annotated

cell types to the Seurat object. The annotation results were

visualized in UMAP and tSNE plots based on PCA and annotated

cell types.
Input and output of sc-ImmuCC

The input for sc-ImmuCC is a single-cell count matrix with cells

unique barcodes as column names and gene names as row names.

The input matrix does not require any filtering, correction, or

normalization. However, users have the option to perform these

operations if desired. From our testing, we found that normalization

does not affect the annotation results.

The output of sc-ImmuCC is a CSV file containing the

annotation results for each cell type at the first, second, and third

layer, along with corresponding tSNE, UMAP, DotPlot, and

Heatmap plots. For second and third-layer annotations, if the cell

number for a specific cell type is less than 50, graphical

representation is omitted, and only the CSV annotation file

is provided.
Codes and availability

Codes and scripts of the sc-ImmuCC method were written in R

version 4.1.1 and Bioconductor (31) version 3.14, installation

instruction, usage and example codes can be found at https://

github.com/wuaipinglab/scImmuCC. The ssGSEA enrichment

scores were calculated with the “GSVA” package (31). The

relevant images are drawn by the “Seurat” package.
Results

Overview of the sc-ImmuCC method

The stepwise differentiation of immune cells in nature provides

a good reference framework to identify immune cell types from

single-cell sequencing data hierarchically. By simulating as the
frontiersin.org
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hierarchical differentiation of immune cells, here we propose sc-

ImmuCC, a tool to annotate the immune cell types within scRNA-

seq data. The immune cell types included in sc-ImmuCC can be

hierarchically classified into three layers according to the

differentiation lineage trees, with nine major cell types in the first

layer, 16 cell subtypes in the second layer, and 13 T cell subtypes in

the third layer (Figure 1A).
Frontiers in Immunology 05
Cell differentiation is primarily driven by differential gene

expression, leading to the formation of a diverse range of cell

types. To identify specific cell types, it is crucial to identify the

signature genes that are highly expressed in each cell type. sc-

ImmuCC aims to identify immune cell types in scRNA-Seq data by

screening the signature gene sets of different cell types, calculating

the enrichment scores hierarchically through the ssGSEA
B

C D

A

FIGURE 2

Evaluation of sc-ImmuCC on some annotated datasets. (A) UMAP plot the PBMC dataset with the original cell label (left) and the cell label annotated
with sc-ImmuCC (right). (B) Pheatmap comparing the cell types from the original publication (rows) to those inferred by sc-ImmuCC (columns) for
E-MTAB-11536. The color represents the recall and precision score (as a percentage) of each original cell type predicted by sc-ImmuCC. (C) Sankey
plot for the sc-ImmuCC annotations on Layer 2. Cell type annotations by sc-ImmuCC (right) with the original cell type annotations in the dataset
(left). (D) Sankey plot for sc-ImmuCC annotations on Layer 3.
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algorithm, and providing annotations based on the scores. Three

key steps are included in the sc-ImmuCC model (Figure 1B, see

Methods for more details. First, we conducted expression screening

of all gene sets and select genes with higher average expression

across multiple datasets as signature gene sets (Figures S1B, C).

Second, we hierarchically identified nine major immune cell types

and their subtypes (Figure 1A). Third, to evaluate the robustness

and applicability of the method, we applied it to different datasets,

including PBMC datasets, enriched immune cell datasets, and

tumor tissue datasets.
Frontiers in Immunology 06
Performance of sc-ImmuCC on immune
cell datasets

The performance of sc-ImmuCC in the first layer was evaluated

on two different datasets. On a testing PBMC dataset, sc-ImmuCC

achieved an overall accuracy of 85%, and the accuracy of T cells, B

cells, DCs, NKs and monocytes were 86%, 99%, 75%, 92%, and 76%,

respectively (Figure 2A). Some labelled NK cells were annotated as

T cells in our model for their highly expressed CD3D, CD3E and

GNLY (Figure S2A), which suggests that our method may can
B

C D

A

FIGURE 3

Performance of sc-ImmuCC in comparison with other methods. Each dataset was generated by randomly selecting 3000 cells per cell type. If the
number of this type was less than 3000, we included all of them. Each dataset was randomly sampled five times; each tool was tested separately;
and the results were averaged over five times. (A) Boxplots show the accuracy on layer 1 in different cell types. (B) Boxplots show the recall and
precision score on layer 1 in different datasets. (C) Boxplots show the overall accuracy on layer 2 and layer 3 of sc-ImmuCC, SingleR and
ImmClassifier. (D) Boxplots show the recall and precision on layer 2 and layer 3 of sc-ImmuCC, SingleR and ImmClassifier. t.test was conducted for
sc-ImmuCC with other tools. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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correct some mis-annotations. Similarly, in the T cell-dominated

cluster, a small fraction of monocytes was relabeled as B cells by sc-

ImmuCC due to their highly expressed CD79A and CD79B but not

LYZ (Figure S2A).

To further assess the performance of sc-ImmuCC in annotating

complex datasets, an immune-enriched dataset consisting of 16

tissues was selected. We compared the annotation results of sc-

ImmunCC with the manually curated annotations of the original

paper. In the first layer, sc-ImmuCC achieved an overall accuracy of

88% (Figure 2B). The F1-score of T cells, B cells, DCs, NK cells,

monocytes, macrophages and mast were 91%, 94%, 71%, 91%, 81%,

90%, and 99%. However, there were relatively high rates of

misclassification in the innate lymphoid cells, with 31% of those

cells labelled as T cells and 53.7% as monocytes (Figure 2B). Upon

examining the expression levels of some known marker genes

associated with innate lymphoid cells in this cell cluster, it was
Frontiers in Immunology 07
observed that the expression of these genes was very low in most

cells (Figure S2B). Hence, we performed a secondary evaluation of sc-

ImmuCC’s performance in annotating ILC cells using the GSE146771

dataset. The results demonstrated an annotation accuracy of over 50%

for ILC cells in this dataset (Figure S2C). The distinction between the

GSE146771 dataset and the dataset depicted in Figure 2B lies in the

higher expression levels of signature genes associated with ILC cells in

the former (Figure S2D). This suggests that sc-ImmuCC did not

accurately identify the innate lymphoid cells in E_MTAB_11536

dataset due to their low expression of the signature genes.

At the second layer, the sc-ImmuCC demonstrates a high level

of annotation accuracy for T cells, B cells, DCs, NKs, monocytes,

macrophages and ILCs subtypes (Figure 2C), with an overall

accuracy rate of 78-90%, except for macrophages which had an

accuracy rate of 70% (Figure S2C). As expected, the performance of

sc-ImmuCC decreased at the third layer for the CD4 and CD8 T
B C

D E F

A

FIGURE 4

Performance of Garnett and SCINA with optimized gene sets and hierarchical annotations. (A) Overall accuracy comparison using SCINA’s original
gene set (three cell types) and optimized gene set (nine cell types) in layer 1. (B) Boxplots show the F1-score of SCINA with different gene sets in
layer 1. (C) Sankey plot of SCINA in layer 2. (D) Overall accuracy comparison using Garnett_pbmc classifier and Garnett train with optimized gene set
in layer 1. (E) Boxplots show the F1-score of Gernett with different classifier in layer 1. (F) Sankey plot of Garnett using the hierarchical train and one-
step train in layer 2. t.test was conducted for Optimized gene set with original gene sets. **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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cells. Though most subtypes of the CD8 T cells could be accurately

annotated, the overall accuracy for the CD4 T cell subtypes

decreased significantly (Figure 2D). This may suggest that further

optimization of gene sets for CD4 T cell and CD8 T cell subtypes to

improve discrimination is needed, as many signature genes do not

exist in the scRNA-Seq data. Besides, the original literature

annotation for subtypes may not be accurate, as the signature

gene expression of CD4 T cell subtypes is not clearly evident

based on the original annotations. For example, IL17A, IL17F,
Frontiers in Immunology 08
RORA, and RORC were not significantly expressed in Th17

(Figure S2D).
Comparison of sc-ImmuCC with
other methods

To further assess the performance of sc-ImmuCC, we compared

it with five representative methods for single cell annotation:
B C

D E

F

G

A

FIGURE 5

Applications of sc-ImmuCC. (A) tSNE plot colored by annotated cell types. (B) Stacked diagram of cell composition for each group. (C) Boxplots
show the cell proportion of each group in layer 1. T tests were conducted for each cell type between the disease and HD groups. *P < 0.05, **P <
0.01, and ***P < 0.001. (D) Fraction of cell types in COVID_Mild and COVID_Server in layer 1. (E) Cell proportion between the influenza and HD
groups in layer 2. (F) The dot plot showing the marker expression profiles of different groups under sc-ImmuCC annotation. (G) CD8 T cell subtypes
proportion between the disease and HD groups.
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ImmClassifier (32), Garnett, SingleR, SCINA, and scCATCH. The

reference methods were chosen as the representative ones from

hierarchical-based, correlation-based, and gene-based approaches.

All methods were used on four independent scRNA-Seq datasets

covering various tissue sources, including PBMC, metastatic lung

adenocarcinoma, and non-small-cell lung cancer. All methods were

compared using four metrics, namely overall accuracy, precision,

recall, and F1-score.

Overall, almost all methods performed well at the first layer, sc-

ImmuCC achieved an average overall annotation correctness of

71%, 80%, 85%, and 79% on the four datasets, respectively. It is

worth noting that, although our tool achieved only 71% accuracy on

the pbmc_68k dataset, all tools generated annotations for this

dataset that deviated from the original ones. The best-performing

method on this dataset, SingleR, achieved 73% accuracy (Figure

S3A). Apart from a slightly lower overall accuracy observed for DC

cells, the accuracy of sc-ImmuCC for other cell types exceeded 85%

(Figure 3A). sc-ImmuCC demonstrated achieves comparable

performance to other tools on the four datasets (Figure 3B).

Except for the pbmc_68k dataset, the F1-score on tumor datasets

and cross-tissue datasets outperformed other tools (Figure S3B).

At the second and third layers, we compared sc-ImmuCC with

the ImmClassifier and SingleR methods. sc-ImmuCC demonstrated

comparable accuracy for T cells, B cells and DC cells as SingleR and

ImmClassifier (Figures 3A, B). sc-ImmuCC exhibited significantly

superior annotation performance for some other cell types, such as

dendritic cells, monocytes, and macrophages (Figures 3C, D and

S3C, D). Due to the hierarchical annotation strategy, sc-ImmuCC

reduced the interference of some similar signature gene expressions

between cell types from different branches. At the third layer, sc-

ImmuCC outperformed the other two methods in identifying the

subtypes of CD8 T cells, but its performance for the CD4 T cells was

equally limited as of ImmClassifier and SingleR (Figures 3C, D

and S3E).
Optimized gene sets and hierarchical
annotation facilitate other tools

To assess the impact of gene set optimization and hierarchical

annotation on other tools, we applied these two strategies to two

methods, SCINA and Garnett. SCINA is a marker-based annotation

method that uses precompiled immune cell signatures from RCC

patients, including classical monocytes, CD19_B and NK_dim cell

types, and other cell types not included may be annotated as

“unknown”. With our defined first layer signature gene sets,

which included nine cell types, SCINA achieved a significant

improvement in the overall annotation accuracy. For the lung

adenocarcinoma and colorectal cancer datasets, the accuracy

improved by 6% and 15%, respectively, and our method exhibited

a comparable integrated performance to that of the original gene set

in the cross-tissue datasets (Figures 4A, B). Subsequently, we used

the second layer signature gene set on SCINA and found that almost

all subtypes could be identified except for the M1 macrophage and

natural killer cell subtypes (Figure 4C). Particularly, the precision
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for the subtypes of B cells and monocytes exceeded 75%. The recall

for the B cell subtypes is also exceeded 91% (Figure S4A).

Similar results were also observed when applying the optimized

gene set and hierarchical annotation to Garnett. By using our first

layer gene sets with Garnett, the accuracy improved by 8%-26%

(Figure 4D). Not only did the number of annotation types increase,

but also the overall performance has also improved (Figure 4E). For

the second layer annotation, we first integrated the optimized gene

sets to create a comprehensive gene set for one-step training.

Additionally, we trained classifier with each gene set separately to

achieve a hierarchical annotation. By comparing the annotated

results with those from the original literature, we found that the

hierarchically trained classifier had better annotations for most cell

subtypes. In contrast, the one-step-trained classifier assigned most

cells as first layer immune cell types and failed to obtain finer

annotations (Figure 4F). Except for NK_bright, the recall for most

subtypes exceeded 90%, and the precision rate for the DC and

monocyte subtypes was more than is over 80% (Figures S4B, C).

These results demonstrate that the strategies of optimized gene

sets and hierarchical annotation can not only identify more

immune cell types, but also generate more accurate annotation

results. Overall, our results highlight the potential of these strategies

for improving the accuracy and completeness of cell type

annotation in scRNA-seq data, even when the strategies are

applied to other annotation methods.
Immune-cell profiling in COVID-19 and
influenza using sc-ImmuCC

We employed sc-ImmuCC to annotate COVID-19 data (33) to

gain insights into cellular composition and immune responses

across various pathologies. A previous study examined the single-

cell transcriptome of PBMCs from COVID-19 and influenza

patients and presented a comprehensive overview of their

immunophenotypes at the single-cell level (34). However, by

focusing on some subset of immune cell types, the study did not

fully labelled immune cell subsets. To address this, we re-annotated

this dataset and conducted an in-depth analysis of immune cell

composition across different pathological states.

We identified five major cell types, namely T cells, B cells,

dendritic cells, monocytes, and NK cells, along with their subtypes

(Figures 5A and S5A). Due to the small number of DC cells, we only

annotated them at the first layer. The relative proportions of

immune cells in PBMCs from the disease groups were altered

compared to those in healthy donors (Figures 5B, C).

Interestingly, severe COVID-19 and influenza showed some

similarity in terms of a significant increase in monocyte

proportion compared to healthy donors (Figures 5C and S5B),

which is consistent with the literature, with subtle differences in

DCs. In severe COVID-19, the proportion of monocytes was

significantly increased, whereas the proportions of T cells and NK

cells were decreased (Figure 5C). The proportion of monocytes was

also significantly higher in severe COVID-19 patients compared to

mild COVID-19 patients (Figure 5D). In influenza, the proportion
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of CD8 T cells was significantly increased, and CD4 T cells were

significantly decreased (Figure 5E).

The expression profiles of immune cell markers in COVID-19,

influenza patients, and healthy donors showed that common

monocyte markers such as LYZ, VCAN and FCN1 were more

significantly expressed in influenza patients, which may reflect

stronger pro-inflammatory signals in influenza patients. Some

inflammation-related genes such as NFKB1, NFKB2, and TGFB1

were specifically upregulated in COVID-19, whereas genes such as

STAT3, STAT1, TLR4, NLRP3, and PYCARD were specifically

upregulated in influenza (Figure 5F). In addition, our results

provide annotation of NK cell subtypes that were not previously

identified in the literature.

Finally, we observed differences in the composition of CD8 T

cell subtypes between healthy and disease states (Figure S5C). In the

GSE149689 dataset, the proportion of CD8 central memory cells

was slightly lower in the COVID-19 and influenza groups compared

to the healthy group, whereas CD8 cytotoxic cells showed the

opposite trend, although not significant (Figure 5G). Nevertheless,

sc-ImmuCC allowed for the annotation of subtypes at every

hierarchical layer and was effective in annotating diverse source

datasets. Applying it to a tumor dataset demonstrated its ability to

accurately distinguish between immune cells and non-immune cells

(Figure S5D).
Discussion

Owing to the bias and uncertainty of the scRNA-Seq technology

in detecting the biological characteristics of immune cells,

accurately identifying immune cells and improving the accuracy

of recognition is critically important. In this study, we designed a

method called sc-ImmuCC to identify immune cell types from

scRNA-Seq data. The performance of sc-ImmuCC was validated on

various independent datasets with good robustness and accuracy.

Compared with similar existing tools, sc-ImmuCC provides a

hierarchical annotation for immune cells, which has several

benefits. First, the concept of hierarchy is based on simulating the

natural differentiation of immune cells. In the human body,

hematopoietic stem cells (HSCs) continuously replenish all types

of blood cells through a series of lineage-restricted steps. The

immune cells are classified by lineage stratification, which allows

for a more comprehensive annotation of the corresponding cell

types. Second, hierarchical annotation avoids interference from

similar gene expression profiles by not comparing them between

different branches. Finally, hierarchical annotation is an open

computational framework that can be continuously integrated

and extended to new immune cell types in the future.

Moreover, optimized gene sets and hierarchical strategies can

also improve the performance of other similar methods. For

example, although Garnett is hierarchical, its trained classifiers do

not provide proper output labels for some cell types, which makes it

difficult for users to obtain a simple and clear result. Using the

hsPBMC pretrained classifier will output T cells, CD4 T cells, and

CD8 T cells, which are not at the same layer, whereas using the

hsLung pretrained classifier cannot distinguish dendritic cells,
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monocytes, and macrophages. For users who want to understand

the specific composition of these cells in the data in detail, this may

be inconvenient. However, after using the optimized gene set to self-

train with Garnett, we can not only distinguish dendritic cells,

monocytes, and macrophages well in the first layer, but also train

each subtype of cells separately and then perform hierarchical

annotation with the dataset, thus greatly improving the

annotation performance of each subtype of cells. Hierarchical

annotation reduces errors in identifying cell subtypes, whereas

gene set selection simplifies complex gene data to highlight the

relevant genes. However, gene set selection may miss some relevant

genes due to differences in regulation and tissue specificity. To

improve accuracy, multiple tools should be used in hierarchical

annotation and diverse strategies should be applied in gene set

selection, such as utilizing diverse gene expression datasets,

biological pathway databases, and functional enrichment analysis

tools to cover a wide range of signature genes comprehensively.

Using the sc-ImmuCC method, we can effectively distinguish

immune cells and non-immune cells in healthy and disease data,

and quantify the composition of major immune cells across

different tissues or organs in human scRNA-Seq data. An

example is to use sc-ImmuCC to annotate immune cells in

COVID-19 patients. With a large number of clinical and

laboratory studies published on COVID-19 (35, 36), “omics”

approaches have played an important role in the study of

COVID-19 and generated massive amounts of data at an

unprecedented rate (37). Accurately identifying immune cell types

in COVID-19 patients and dissecting the immune response in

COVID-19 may aid the development of vaccines and antiviral

drugs (38). sc-ImmuCC can accurately identify immune cell types

hierarchically, thus providing a more precise understanding of cell

subtypes and enabling more accurate comparisons of the changes in

the cell composition and gene expression of interest across different

diseases. By identifying immune cells in different pathological

states, valuable immune cell background information can be

extracted, thus providing more reliable evidence for the diagnosis

and treatment of diseases.

Although using sc-ImmuCC to annotate the subtypes of cells at

the third layer is not yet perfect, we hope that this study can

promote the development of algorithms that can achieve this goal.

In the future, we will continue to improve the annotation for the

CD4 and CD8 T cell subtypes, such as optimizing gene sets,

assigning weights to genes in the corresponding cell type based

on their contribution values in the gene expression matrix, and

integrating other methods. For the selection of gene sets, we will

consider selecting genes according to the source of the data, and

testing whether there are tissue-specific differences in the gene sets.

Another limitation of sc-ImmuCC is that cannot detect new cell

types. It is an annotation method based on a given specific cell type

gene set and assigns cells to the cell type with the highest

enrichment score calculated. This limitation needs to be

addressed in future work, and for unidentifiable types, they can

be improved by being identified as “unknown”. Currently, our

method cannot fully annotate all immune cell types, such as gd T

cells, which are known to play a crucial role in tumor defense, were

not included in our signature gene set. In addition, some cell types
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with a small proportion, such as eosinophils and basophils, were

also not included due to too few datasets to test. Consequently, sc-

ImmuCC has limitations when studying these less common

immune cell types due to the absence of appropriate test datasets

for certain uncommon cell types. In the context of certain allergic

diseases or parasitic infection sequencing data, the cell types

annotated by our method may not possess sufficient accuracy and

comprehensiveness for practical utilization. Therefore, further

refinement of our method by including more cell types in the

signature gene sets and finding more available test datasets will be

an important future direction. Most of the previous research

including our own method, can only identify differentiated

terminal cells but cannot annotate immune cells undergoing

continuous differentiation. In the future, it may be possible to

construct a reference tree of immune cell evolution and project

cells directly onto the tree to obtain their specific location in the

differentiation path, to better understand the distribution and

function of immune cells for a comprehensive and accurate study

of immune cells.

Overall, the performance of sc-ImmuCCmainly depends on the

given signature gene sets currently. The public datasets of immune

cells were collected from different sources and tissues. If we further

divide each subtype according to different tissue sources, perhaps

there can be more accurate annotation of immune cells in scRNA-

Seq data. The study of precise identification of immune cell types

holds scientific significance and clinical application prospects, and

further research will promote immunology’s development.
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