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In recent years, biomedical research efforts aimed to unravel the mechanisms

involved in motor neuron death that occurs in amyotrophic lateral sclerosis (ALS).

While the main causes of disease progression were first sought in the motor

neurons, more recent studies highlight the gliocentric theory demonstrating the

pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the

pathological processes that take place in the central nervous system

microenvironment. From this point of view, microglia-astrocytes-lymphocytes

crosstalk is fundamental to shape the microenvironment toward a pro-

inflammatory one, enhancing neuronal damage. In this review, we dissect the

current state-of-the-art knowledge of the microglial dialogue with other cell

populations as one of the principal hallmarks of ALS progression. Particularly, we

deeply investigate the microglia crosstalk with astrocytes and immune cells

reporting in vitro and in vivo studies related to ALS mouse models and human

patients. At last, we highlight the current experimental therapeutic approaches

that aim to modulate microglial phenotype to revert the microenvironment, thus

counteracting ALS progression.
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1 Mechanisms of neurodegeneration in ALS

ALS is the most common adult-onset motor neuron disease, affecting the upper and

lower motor neurons (MN) in the brain and spinal cord. People with ALS develop muscle

weakness and atrophy, leading to paralysis and death from neuromuscular respiratory

failure, within 3 to 5 years after onset. Riluzole and the free-radical scavenger edaravone are

the only treatments approved to treat ALS patients, which act on survival and rate of

progression, respectively.

Traditionally, ALS has been classified as either the sporadic or familial form. Sporadic

ALS (sALS) is the most common form, accounting for around 90% of all cases (1–5).

Familial, or inherited, ALS (fALS) runs in families and accounts for the remaining 5-10% of

cases. Mutations in several genes have been implicated in fALS and contribute to the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1223096&domain=pdf&date_stamp=2023-07-26
mailto:stefano.garofalo@uniroma1.it
https://doi.org/10.3389/fimmu.2023.1223096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1223096
https://www.frontiersin.org/journals/immunology


Calafatti et al. 10.3389/fimmu.2023.1223096
development of sALS (e.g. superoxide dismutase 1 (SOD1), fused in

sarcoma (FUS), TAR DNA binding protein (TARDBP) and

chromosome 9 open reading frame 72 (C9orf72) (6–8). Proteins

encoded by these genes are involved in several aspects of MN

function and in ALS pathogenesis, including protein homeostasis,

axonal transport, DNA repair, RNA metabolism, vesicle transport,

inflammation, mitochondrial dysfunction, and glial cell function

(9–11). In 1994, Gurney et al. developed the first mouse model of

ALS, a transgenic model that over-expressed the ALS-associated

mutant SOD1G93A and recapitulate some of the key clinical features

of human ALS (12). These mice showed evident progressive motor

abnormalities and paralysis, microglia acquire an inflammatory

phenotype affecting MN death, and myeloid cells expressing

mutated SOD1 promote neurotoxicity (8, 13, 14). In another ALS

mouse model based on TDP-43 mutations, the TDP-43A315T mice

showed pathological aggregates of ubiquitinated proteins in specific

neurons and reactive gliosis, with the loss of both upper and lower

MNs (15, 16). Abnormal expansion of an intronic hexanucleotide

GGGGCC (G4C2) repeat of the C9orf72 gene is ALS’s most

frequently reported genetic cause (17–20). Several transgenic

mouse models containing the full-length C9orf72 gene show

decreased survival, paralysis, muscle denervation, MN loss, and

cortical neurodegeneration (21).

Despite the advance of knowledge of the ALS pathogenesis,

most of the molecular and cellular mechanisms involved in the

progression and development of the disease remain largely

unexplored. Recently, a majority of the evidence indicates that

ALS is a non-neuronal-autonomous disease (1, 2, 13). Indeed, in

this scenario, glia and immune cells build up a complex regulatory

network involved in ALS disease, exerting both neurotoxic and

neuroprotective effects on neurons. In this review, we summarize

the role of non-neuronal cells in ALS pathology, with a particular

focus on microglia interplay with astrocytes and peripheral immune

cells that orchestrates the ALS microenvironment. We discuss the

current therapeutic approaches that aim to modulate microglial

crosstalk with non-neuronal cells, and finally look to the future of

new therapeutic trials.
2 Microglial functions in health
and disease

Microglia, which represent ~5–12% of the Central Nervous System

(CNS) cells, are the resident macrophages of the CNS (22, 23), that

originate from myeloid precursor cells which enter into the CNS during

embryogenesis (24), becoming independent self-renewing population

(25, 26). The general definition of microglial role describes them as able

to perform three essential functions: sensing their environment,

maintaining physiological homeostasis, and protecting from self and

exogenous stimuli. Microglia are able to adopt a plethora of phenotypes,

depending on the surrounding environment, which can differ in the

healthy CNS and in various disease states (27–30). Recent in vivo

imaging studies clearly demonstrate that microglial thin processes

continually explore and sample the local environment at steady state

(31, 32). Consistently, in the healthy CNS, microglia are necessary for
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proper brain development, providing trophic support to neurons,

removing apoptotic cell debris, regulating neuronal and synaptic

plasticity, developmental myelination, and tissue regeneration (33–37).

In several pathological conditions, microglia lose their homeostatic

molecular signature, resulting in rapid modification of their

morphology, transcriptional profile, and phagocytic activity, acquiring

a pro-inflammatory profile (38–44); the persistent inflammation can lead

to neurotoxicity, and ultimately to neurodegeneration (45–47). Microglia

have also been described as active participants in host defense against

pathogens and protein aggregates, such as b-Amyloid (Ab), mutant

huntingtin, prions (PrPsc), a-synuclein, oxidized or SOD1 (48–50). In

response to CNS insults, microglia initiate a defense program to restore

brain homeostasis, through different pattern recognition receptors

(PRRs), including toll-like receptors (TLRs), scavenger receptors (SRs),

and complement receptor 3 (CR3) (51–58). Furthermore, neurotoxicity

dysregulates microglial immunological checkpoints (such as Trem2 and

CX3CR1) that normally prevent their overreaction and may help to

control inflammation (52). Dysregulation of these pathways increases the

risk for Alzheimer’s disease (AD), frontotemporal lobar degeneration

(FTLD), frontotemporal dementia (FTD), and ALS (59). Dysregulation

of the host-defense pathway further, may also be caused by mutations in

specific genes, such as Trem2, HTT, and TDP43, further, resulting in an

inflammatory response and neuronal damage (60–62).
2.1 Microglia in ALS

Evidence that detrimental microglia contribute to sustaining the

inflammation in ALS is observed in imaging studies in patients with

ALS, human post-mortem samples, and rodent models of ALS (63–65).

Microglia increase the expression of CD14, CD18, SR-A, and CD68 in

ALS spinal cord, and CD68+ microglial cells are detected in close

proximity toMNs (66), and in the brain of ALS patients using Positron

emission tomography (PET) imaging (67, 68). Notably, microglia

modify their phenotype with disease progression: adult microglia

isolated from ALS mouse models at disease onset show a protective/

anti-inflammatory phenotype, while microglia isolated from end-stage

disease are toxic/pro-inflammatory (69–74). Consistently, in familial

ALS (fALS) patients with SOD1 mutations, and in the SOD1-ALS

mouse models, microglia affect MN death (75) and promote

neurotoxicity (76), as well as regulate the feeding behavior and

overall metabolism (77). Microglial-mediated MN death in ALS

occurs through an NF-kB-dependent mechanism (75) and by

secreting reactive oxygen species and pro-inflammatory cytokines

(such as interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-a)
(78, 79). Although a number of studies are in line with the

neuroinflammatory and neurotoxic microglial role observed in SOD1

mutated ALS patients andmouse models (8, 13, 14), the functional role

of microglia in familial ALS or mouse models with mutated TDP-43 is

not clear. In post-mortem human brain tissue from ALS patients and

mouse models expressingmutated TDP43, were observed aggregates of

ubiquitinated proteins in MNs, astrocytes and microglia, loss of both

upper and lower MN and intestinal dysmotility that could induce

premature death (15). On the contrary, the suppression of mutated

human(h) TDP-43 protein in neurons, dramatically increased the

microglial proliferation and changed their morphology and
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phagocytic activity against neuronal hTDP-43 (15). The partial

depletion of microglia using PLX3397, a CSF1R and c-kit inhibitor,

failed to recover motor functions in hTDP-43 mice, revealing an

important neuroprotective role for microglia (80).

Recent work showed that C9orf72 expression is highest in

myeloid cells, and loss of function of the C9ORF72 protein in

mice disrupts microglial function and may contribute to

neurodegeneration in C9orf72 expansion patients (18, 20, 81–87).

Other disease mechanisms that occur in the ALS/FTD with C9orf72

gene mutation include a gain of toxicity mediated through either the

RNA itself (88, 89) and/or the translation of aberrant dipeptide

repeat (DPR) proteins by a non-canonical translation mechanism

called repeat associated non-AUG dependent (RAN) translation

(90, 91). Immunoreactive microglia and upregulation of

inflammatory pathways have been confirmed in patients with

mutated C9orf72 and correlate with rapid disease progression

(87). Anyway, since most C9orf72 mouse models do not show

ALS motor symptoms, neurodegeneration, or inflammatory

response, it is difficult to determine the relationship between

C9orf72-specific molecular pathology and ALS.
3 Microglial dialogue with
non-neuronal cells in ALS

In the CNS, non-neuronal cells play crucial homeostatic

functions both in health and diseases. The involvement of these

cells in the pathophysiology of ALS is being increasingly

characterized. Microglia crosstalk with peripheral immune cells

and astrocytes to exert either neuroprotective or adverse effects

through a broad range of cell-to-cell interactions.
3.1 Microglia – Astrocytes crosstalk

Similar to microglia, during ALS progression, astrocytes adopt

neurotoxic properties which actively contribute to disease pathogenesis

(92). In fact, both in vitro and in vivo studies demonstrated that in ALS

mouse models, astrocytes with mutated mSOD1 protein exert

neurotoxic effects on motor neurons, by releasing pro-inflammatory

factors (93). Moreover, reactive astrocytes were described in the post-

mortem CNS tissue obtained from ALS patients (94–96). This finding

was confirmed further in vivo via diagnostic imaging using PET

scanning demonstrating cerebral white matter and pontine

astrogliosis in ALS patients (97).

In recent years, the crosstalk between astrocytes and other non-

neuronal cells has been studied in more detail. The astrocytic transition

from neuroprotective to neurotoxic was accompanied by a shift in

microglial phenotype, suggesting that astrocytes may be important

regulators of microglia activation and neuroinflammation in ALS (98).

To date, several studies demonstrated that the detrimental microglia

shape astrocyte phenotype in ALS driving disease progression. Both in

human and mouse ALS tissues it was found the presence of neurotoxic

reactive (A1-like) astrocytes since the early phase of the disease (92, 99–

101). Moreover, microglia modify their phenotype as the disease

progression: indeed, adult microglia isolated from ALS mouse
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phenotype, while microglia isolated from end-stage disease are toxic/

pro-inflammatory (67–72).

However, controversial results have been obtained on which cell

population, between microglia and astrocytes, acquires a pro-

inflammatory/neurotoxic phenotype during ALS progression. Indeed,

Alexianu et al. reported that microglia activation precedes astrocyte

reactivity (102). On the contrary, another study suggested that

astrogliosis is present since the early symptomatic stage, while

prominent microgliosis is only evident at the late phase (103).

Astrocytes have been shown to shape the microglial phenotype

according to disease stage, modulating neuroprotective and neurotoxic

functions in the pre-symptomatic and symptomatic phases of ALS,

respectively (98). In the SOD1G93A ALS mouse model, astrocytic NF-

kB activation drove microglial proliferation and leukocyte infiltration

in the CNS (98). This response was initially beneficial by prolonging the

pre-symptomatic phase, but it became detrimental in the symptomatic

phase, accelerating disease progression. Specifically, in the pre-

symptomatic phase astrocytic NF-kB activation in SOD1 mouse

models induced a Wingless-related integration site (Wnt)-dependent

anti‐inflammatory microglial response via nuclear factor kappa-B

kinase subunit beta (IKK2), resulting in neuroprotective effects on

motor neurons which translated into a delay of motor symptoms (98).

However, in the symptomatic phase, NF-kB activation in astrocytes

promoted pro‐inflammatory microglial responses (via CD68, TGF‐b,
TNF‐a) which accelerated disease progression (98). A recent study

indicated astrocytic TGF-b1 as amajormolecule modulatingmicroglial

phenotype toward detrimental one (104). Astrocyte-specific

overproduction of TGF-b1 in SOD1G93A mice interfered with the

neuroprotective effects of microglia during the pre- and early

symptomatic stages and accelerated disease progression in a non-

cell-autonomous manner. This interference resulted in reduced

production of neurotrophic factors from microglia and a reduced

number of CNS infiltrating T cells. Consistently, the expression levels

of endogenous TGF-b1 in SOD1G93A mice negatively correlated with

overall life expectancy, while the administration of a TGF-b signaling

inhibitor extended it (104). These findings raise TGF-b1 to an

important determinant of disease progression in ALS.

On the other hand, many pieces of evidence suggest that

the activation of microglia precedes the reactivity of astrocytes in

ALS (105). Brites and colleagues demonstrated that microglia

respond earlier than astrocytes to cell stress or damage by

activating NF-kB and mitogen-activated protein kinase (MAPK)

signaling pathways, thus leading to the release of pro-inflammatory

cytokines (e.g., TNF-a and IL-1b) (105). These cytokines were shown
to exert an inhibitory effect on Cx-43 expression, the main

constitutive protein of astrocytes’ gap junctions, therefore

hampering communication between astrocytes, and possibly

interfering with their neuroprotective role (106). In addition, cell–

cell contacts and microglial-derived soluble mediators are necessary

for astrocytes to fully respond to lipopolysaccharide (LPS) insult and

Toll-Like Receptor (TLR) ligation (11413), suggesting that microglia

may exert a permissive effect on astrocyte pro-inflammatory

activation. Liddelow et al. demonstrated that the microglial

derived-pro-inflammatory cytokines IL-1a, TNFa and complement

component C1q42 are necessary and sufficient to induce pro-
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inflammatory astrocytes in mice (92). Consistently, a triple knock-out

of these factors in IL-1a−/− TNFa−/−C1qa−/− SOD1G93A mice led to a

drastic reduction in the number of reactive astrocytes, improving

lifespan and delayingmotor neuron loss and disease progression (92).

This finding further supports the hypothesis of a microglia-to-

astrocyte polarization.

Since an intimate interaction/communication between

microglia and astrocytes occurs in ALS, a better understanding of

their crosstalk could help to define potential therapeutic strategies

targeting the glia in ALS.
3.2 Microglia – Natural killer cells crosstalk

NK cells contribute to ALS progression by interacting with CNS

resident cells and peripheral immune cells. Increased numbers of

NK cells have been found in the peripheral blood and CNS of ALS

patients (107), and a rich infiltrate of NK cells has been described in

the CNS of SOD1G93A mouse models (5). The NK cells - microglia

crosstalk has been recently characterized, highlighting the

importance of this interaction in the pathogenesis of ALS. Indeed,

in NK cell-depleted hSOD1G93A and TDP43A315T microglia

acquired a typical neuroprotective morphology, covering a wider

parenchymal region and increasing the branches number (108).

Moreover, NK cell-depleted hSOD1G93A mice showed a reduction

in microgliosis, indicated as the number of microglia in the ventral

horns of the spinal cord (108). In the absence of NK cells, microglia

reduced the expression of genes associated to a pro-inflammatory

phenotype, including IL-6, IL-1b, TNF-a, with the simultaneous

increase of expression of the anti-inflammatory (Chil3, Arg-1, and

TGF-b), antioxidant (Msod1) and neuroprotective (P2yr12, Trem2,

Kcnn4, Bdnf, IL-15) markers (108). The molecular link that drives

the crosstalk between microglia and NK cells in ALS is the IFN-g
produced by infiltrated NK cells during the pre-symptomatic stage

of disease. Accordingly, the IFN-g immunodepletion (via IFN-g-
blocking antibody XMG1.2 administration) had consequences

similar to NK cell depletion on microglial phenotype, switching

them toward an anti-inflammatory phenotype (108). Lastly, this NK

cell-mediated modulation of microglia resulted in an increased

number of motor neurons in the ventral horn of spinal cord, and

affected survival and onset time both in SOD1G93A and TDP43A315T

mouse models (108), These results were further validated in an

elegant study (109) exploiting Natalizumab, a blocking antibody for

the a4 integrin (anti-VLA-4) (110, 111), to reduce the transfer of

peripheral immune cells to the CNS of the hSOD1G93A ALS mouse

model. In the lumbar spinal cord of Natalizumab-treated mice was

found a reduced number of NK cells and, accordingly, microglial

cells reduced the expression of pro-inflammatory markers (IL-6, IL-

1b and tnf-a), and IFN-g level was significantly reduced compared

to vehicle-treated hSOD1G93A mice (108). However, Natalizumab

treatment showed more effects on the modulation of the

inflammation in the ALS microenvironment, suggesting a more

complex scenario due to the role of different peripheral immune

cells infiltrated in the CNS. Overall, these results point toward the

importance of microglia-NK cells crosstalk modulation to reduce

motor neuron loss in ALS.
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3.3 Microglia - T lymphocytes crosstalk

Activated T cells are present in the CNS at a steady state to

perform immunological surveillance (112) and provide

immunological responses that are modulated by cell to cell

signaling (113). Infiltration of CD4+ and CD8+ T lymphocytes

has been documented in the brain and spinal cord of ALS patients

(114, 115). Specifically, perivascular and intraparenchymal CD4+

helper T cells were found to surround degenerating corticospinal

tracts, while ventral horns were enriched with both CD4+ helper

and CD8+ cytotoxic T cells. The lymphocytic infiltration did not

correlate with the rate of progression or stage of the disease in ALS

patients (115); on the contrary, in transgenic mice expressing

mutant SOD1G93A, the number of CD4+ and CD8+ T cells

infiltrating the spinal cord increased as the disease progressed

(116, 117). Multiple levels of evidence suggest that CD4+ helper T

cells exert neuroprotective functions, especially in the initial phases

of the disease process (116, 118), while CD8+ cytotoxic T cells

present at later phases of the disease are possibly neurotoxic (119,

120). T cell functional profiles are, at least in part, shaped by a

complex dialogue with microglia and neurons, as explained below.

3.3.1 Microglia - CD4+ T lymphocytes crosstalk
CD4+ T cells comprise multiple functionally distinct cell

populations that regulate different functions, classified as Th1,

Th2, regulatory T cells (Tregs), and Th17 cells (121). Although

the role of CD4+ T cells in ALS remains controversial, the putatively

protective effect of these cells on MNs is widely accepted (122–124).

A major insight into the role of CD4+ T cells came from Beers & al.,

who bred immunodeficient mice lacking functional lymphocytes or

functional CD4+ T cells with mSOD1G93A transgenic mice and

performed selective reconstitution experiments with bone marrow

transplants (116). The lack of functional CD4+ T lymphocytes

resulted in a faster disease progression characterized at the

molecular level by the upregulated expression of pro-

inflammatory functional markers like NOX2 and pro-

inflammatory cytokines, while reconstitution of CD4+ T

lymphocytes prolonged survival and inhibited the acquisition of

pro-inflammatory phenotype in microglia (116). The absence of

functional CD4+ T cells in mSOD1G93 mice reduced the mean

survival time, supporting the neuroprotective role of these

lymphocytes. The fractalkine receptor (CX3CR1), a chemokine

receptor expressed by microglia, monocytes, dendritic cells, and

subsets of T cells, was involved in microglial neurotoxicity (125),

and consistently, was reduced in mice lacking CD4+ T cells and

increased following bone marrow reconstitution (125).

Within the CD4+ T lymphocyte subsets, endogenous Tregs are

particularly associated to neuroprotection in ALS, with a time-

specific effect (122, 123). Tregs were found to be increased in spinal

cords of mSOD1 mice after disease onset, accompanied further by

increased expression of IL-4 and higher number of neuroprotective/

anti-inflammatory microglia (122). During the progression of the

disease, there was a loss of Forkhead box P3 (FoxP3) expression in

Tregs, with a concomitant reduction of IL-4 level (122). Passive

transfer of Tregs from donor mSOD1G93A mice in the early phase of

the disease, sustained IL-4 levels and anti-inflammatory microglia,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1223096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Calafatti et al. 10.3389/fimmu.2023.1223096
delaying the onset of symptoms and increasing the survival of

recipient mSOD1G93A mice (116, 122).

In ALS patients, neuroinflammation can be attributed to the

impaired suppressive function of Tregs in addition to their decreased

numbers (123, 126). Indeed, mutated SOD1 Tregs were less effective

in suppressing effector T cells (Teff) proliferation (123). With the

progress of diagnostic imaging, PET of activated microglia in ALS

patients offers a potential opportunity to assess Treg-mediated

neuroprotection (63, 67, 127). While Treg and anti-inflammatory

microglia increase in the early stage of ALS (128–130), Th1 and pro-

inflammatory microglia increased the inflammation in the

microenvironment in the later stage of ALS (131, 132).

Accordingly, a parallel shift from a neuroprotective Treg/anti-

inflammatory response to a neurotoxic Th1/pro-inflammatory

response has been postulated during ALS progression by Zhao

et al. (132). In the mSOD1 mouse model, a Treg/anti-inflammatory

response dominates the initial slowly progressing phase of the disease,

as Tregs suppress microglial toxicity and SOD1 T effector cells

through IL-4, IL-10 and TGF-b (132). During ALS progresses, the

immune response switches to a deleterious Th1/pro-inflammatory

response, where the interaction between Th1 and microglia enhances

pro-inflammatory responses, including the release of TNF-a, IL-6,
and IL-1b, and downregulates Treg suppressive functions (132).

Overall, these data support the concept of a well-orchestrated

and complex dialog among microglia and CD4+ T cells, suggesting

that different CD4+ T lymphocyte subsets play different roles in

shaping microglial functions during ALS progression.

3.3.2 Microglia – CD8+ T lymphocytes crosstalk
In the peripheral blood of ALS patients, cytotoxic CD8+ T cells

number was found to be significantly increased, suggesting a

systemic immune activation (133). However, the role of these

cells in the progression of ALS remains difficult to decipher (134).

Particularly, microglia-CD8+ T cell crosstalk is fundamental to

drive the inflammation in ALS affected regions (120). Specifically,

major histocompatibility complex I (MHCI) depletion in resident

microglia or the lack of CD8+ T cell infiltration in the spinal cord of b2
microglobulin-deficient hSOD1G93A mice (which express little if any

MHCI on the cell surface and are defective for CD8+ T cells) delayed

motor symptoms and prolonged the survival mean time, suggesting

that microglia interact with infiltrated CD8+ T cells through MHC

complex, promoting MN death in ALS. Moreover, the level of CD68+

microglia was lower in the spinal cord of b2 microglobulin-deficient

hSOD1G93A mice suggesting that the MN preservation is due to a lack

of interaction with CD8+ T cells (120). Interestingly, b2
microglobulin-deficiency in the peripheral nervous system (i.e.

sciatic nerve) impaired motor axon stability and anticipated the

onset of muscle atrophy, delineating regional differences in the role

of MHCI and CD8+ T cells in the pathogenesis of ALS (120).
3.4 Microglia – Monocytes/macrophages
crosstalk

In ALS patients, peripheral monocytes infiltrate the CNS (66), and

the monocytes isolated from peripheral blood of ALS patients show a
Frontiers in Immunology 05
pro-inflammatory profile (135). Furthermore, the degree of systemic

monocyte/macrophage activation directly correlates to the rate of

disease progression (136). In the hSOD1G93A mouse model,

inflammatory monocytes infiltrate the ALS affected regions (137),

and their progressive recruitment to the spinal cord correlates with

neuronal loss (137). Prior to disease onset, monocytes expressed a

polarized macrophage pro-inflammatory phenotype (M1 signature),

which included increased levels of chemokine receptor CCR2. This

receptor normally interacts with the ligand CCL2, controlling the

migration and infiltration of CCR2-expressing monocytes/

macrophages in a process implicated in multiple neurodegenerative

diseases. Butovsky et al. demonstrated that CCL2 expression by

microglia increases as ALS progresses (138). Mouse monocytes fall

into two phenotypically distinct subsets: Ly-6Chi (which are CCR2+)

and Ly-6Clo (which are CCR2−), corresponding to human

CD14hiCD16− and CD14+CD16+ monocytes, respectively (138).

Ly6C is a GPI-linked protein of the Ly6 family, which is found

mostly in inflammatory monocytes (139). Accordingly, hSOD1G93A

mouse treatment with anti-Ly6C monoclonal antibody reduced the

number of monocytes recruited to the spinal cord, diminished

neuronal loss, and extended survival (137).

Recently, a study by Chiot et al. (140) investigated the crosstalk

between peripheral macrophages and microglia in ALS. Targeted gene

modulation of the reactive oxygen species pathway in peripheral

myeloid cells of hSOD1G93A mice, reduced both peripheral

macrophage and microglial activation, and delayed the onset of

motor symptoms (140). Specifically, the chemotherapy agent

busulfan was used to induce myeloablation, followed by bone

marrow transplantation in which mutant SOD1-expressing

macrophages were replaced with macrophages genetically modified

with less neurotoxic properties (via downregulating of Nox2 or

overexpression of wild-type Sod1). In this model, resident microglial

cells acquired an anti-inflammatory/protective phenotype and a

reduction was found in microgliosis in the spinal cord (140). These

results indicate that the modification of infiltrating monocytes/

macrophages suppresses neurotoxic microglial responses in ALS,

suggesting direct or indirect crosstalk between these two cell

populations. The mechanisms underlying this crosstalk are not yet

clear, but the authors suggested that replacing of inflammatory

peripheral monocytes/macrophages could pave the way for a new

therapeutic approach for ALS patients.
4 Currently approved therapies in ALS

The complex pathogenesis in ALS, coupled with its clinical and

molecular heterogeneity, resulted in too many failed attempts at

drug discovery and development. The foundation for failure

includes the wrong target, route of administration, outcome

measures, and the many different pathogenic mechanisms at play

in different patients (141). Drugs undergoing clinical trials are

available on the ALS Association website (https://www.neals.org/

als-trials/search-for-a-trial/). To date, there are two FDA-approved

drugs for ALS: riluzole and edaravone. Both drugs have a relatively

small efficacy in delaying motor function deterioration, and their

effectiveness is limited during early stages of the disease (142).
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Riluzole was the first FDA drug approved for clinical use in 1995.

This drug blocks glutamate release and therefore glutamatergic

neurotransmission in the CNS, exerting neuroprotective function as

it dampens pathological excitotoxicity in ALS (143). Additional

proposed mechanisms of action include an indirect antagonism of

glutamate receptors in addition to the inactivation of neuronal voltage-

gated Na+ channel (144). Edaravone was the second FDA approved

ALS-specific drug, in 2017. Edaravone is a neuroprotective drug with

broad free radical scavenging activity that protect neurons, glia, and

vascular endothelial cells against oxidative stress (145).
4.1 Therapies targeting neuroinflammation
and microglial crosstalk with peripheral
immune cells

Multiple compounds with immune-modulatory properties have

been reported to affect the crosstalk between microglia and immune

cells. Although promising in the mouse models of ALS, preclinical

results have so far failed to translate into meaningful clinical outcomes

(146, 147). Most efforts in the development and application of

immune-modulatory drugs in ALS aimed at reducing pro-

inflammatory and neurotoxic immune responses. Among the

therapies recently developed to target neuroinflammation and

microglia phenotype in ALS, the following demonstrated significant

benefits in preclinical studies and have already or are soon to be

translated to clinical trials (Table 1).
Fron
- dl-3-n-Butylphthalide (NBP) is a small molecule compound

showing neuroprotective effects via multiple mechanisms,

including modulation of mitochondrial oxidative stress,

apoptosis and autophagy (148). In hSOD1G93A mice,

treatment with NBP extended survival by attenuating

microglial activation and motor neuron loss (149, 150). A

randomized trial (Chictr.org.cn Identifier: ChiCTR-IPR-

15007365) of NBP in the treatment of ALS patients was

conducted in China. The preliminary results indicated that
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NBP did not improve the ALS Functional Rating Scale

(ALSFRS)-R score in patients with ALS (151).

- Cannabinoids exert anti-glutamatergic, anti-oxidant and anti-

inflammatory actions through activation of the CB (1) and

CB(2) receptors, whereby receptor activation reduces pro-

inflammatory microglia, decreasing the microglial secretion

of neurotoxic mediators (152, 153). In hSOD1G93A mice,

treatment with WIN-55,212-2, a cannabinoid agonist with

higher affinity to the CB2 than the CB1 receptor (154), and

the Selective CB2 receptor agonist AM-1241 significantly

delayed disease progression and increased mean survival

time (155, 156). Although these promising results, a meta-

analysis of the studies conducted on murine models

concluded that animal studies have moderate to high risk

of bias and are highly heterogeneous. Therefore, more

standardized studies on cannabinoids are necessary before

bringing these compounds to the clinic (157).

- Ibudilast (MN-166) is a non-selective phosphodiesterase 4

inhibitor with a neuroprotective effect primarily mediated

by the inhibition of inflammatory mediators and the

upregulation of neurotrophic factors in pro-inflammatory

microglia (158). Two clinical trials with ibudilast have been

completed in ALS patients, and one is currently ongoing.

The first Phase II trial (ClinicalTrials.gov Identifier:

NCT02238626) evaluated the safety, tolerability and

clinical responsiveness of ibudilast co-administered with

riluzole. The study showed good safety and tolerability but

no overall difference in disease progression between

ibudilast and placebo treatment arms. Subgroup analysis

suggested that patients with bulbar or upper limb onset

might have more benefit from the compound (159). A

Phase IIb/III study, the COMBAT-ALS study is currently

recruiting on North America in order to evaluate the

pharmacokinetics, safety and tolerability and assess the

efficacy of ibudilast on function, muscle strength, quality

of life and survival in ALS (ClinicalTrials.gov Identifier:

NCT04057898).
TABLE 1 Therapies targeting neuroinflammation and microglial crosstalk with peripheral immune cells in ALS.

Drug Mechanism Target cells Trial number Phase

dl-3-n-Butylphthalide
(NBP)

Modulation of mitochondrial oxidative stress, apoptosis and
autophagy

Microglia, Motor
Neurons

ChiCTR-IPR-
15007365

II

Cannabinoids Anti-glutamatergic, antioxidant and anti-inflammatory actions Microglia N/A N/A

Ibudilast (MN-166) Anti-inflammatory and neurotrophic actions Microglia
NCT02238626
NCT04057898

II
IIb/III

Masitinib Anti-inflammatory; modulation of aberrant microgliosis Microglia
NCT02588677
NCT03127267

II/III
III

Minocycline Anti-inflammatory
Microglia, Motor

Neurons
NCT00047723 III

NP001 Anti-inflammatory Microglia
NCT01091142
NCT01281631
NCT02794857

I
II
II
front
N/A, not applicable.
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Fron
- Masitinib is a tyrosine-kinase inhibitor whose oral

administrat ion was shown to control aberrant

microgliosis, abrogate neuroinflammation and slow

disease progression in the hSOD1G93A mice (160). The

primary analysis of a randomized Phase II/III trial testing

masitinib in combination with riluzole for the treatment of

ALS patients (ClinicalTrials.gov Identifier: NCT02588677)

showed a significantly slowed functional decline, although

there was no discernible difference in overall survival

between the two arms (161). Long-term survival analysis

indicated that oral masitinib prolonged survival by over
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2 years as compared with placebo, provided that treatment

started prior to severe impairment of functionality (162). A

subsequent phase III clinical trial is currently ongoing

(ClinicalTrials.gov Identifier: NCT03127267).

- Minocycline is a second-generation tetracycline antibiotic, capable

to penetrate the blood-brain barrier, with anti-inflammatory

effects independent of its antimicrobial activity. The compound

has been demonstrated to dampen microglial activation (163)

and apoptosis by inhibiting mitochondrial permeability-

transition-mediated cytochrome c release (164). The

compound delayed disease onset and extended survival in the
FIGURE 1

Microglial dialogue with non-neuronal cells in Amyotrophic Lateral Sclerosis. Microglia (M) induce motor neuron (MN) degeneration in ALS by
secreting reactive oxygen species (ROS) and pro-inflammatory cytokines, such as Interleukin 1 beta (IL-1b), Interleukin 6 (IL-6) and Tumor Necrosis
Factor (TNF-a). Microglial crosstalk with non-neuronal cells shapes their phenotype, either skewing it towards a pro-inflammatory (red arrows) on
anti-inflammatory (green arrows) phenotype. Microglial-derived pro-inflammatory cytokines Interleukin 1 alpha (IL-1a), TNFa and complement
component C1q induce pro-inflammatory astrocytes (A). Conversely, activated astrocytes promote inflammatory microglial responses via
Transforming Growth Factor b (TGF-b) and TNF‐a. Reactive astrocytes also exert toxic effects on MNs by secreting inflammatory mediators such as
Prostaglandin E2 (PgE2), Leukotriene B4 (LBT4) and nitric oxide (NO). Chemokine ligand 2 receptor (CCR2)-expressing macrophages (M1) are
recruited by the Chemokine Ligand 2 (CCL2) released by microglia. ROS pathway in classically activated macrophages induces microglial activation.
Regulatory T cells (Treg) suppress microglial toxicity as well as other immune cells (not shown) through Interleukin 4 (IL-4), Interleukin 10 (IL-10) and
TGF-b. Notably, TGF-b effect on microglia is context- and cell-dependent. Microglia-CD8+ Effector T cell (Teff) crosstalk drives neuroinflammation
in ALS, with Interferon gamma (IFN-g) secreted by the latter likely playing a role. Infiltrated Natural Killer Cells (NKC) instruct microglia towards an
inflammatory profile by the release of IFN-g. Additionally, NKCs are neurotoxic to MNs via NKG2D - NKG2D ligand (MULT1) interaction.
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hSOD1G93A and hSOD1G37R transgenic models of ALS (164–

166). However, a subsequent randomized placebo-controlled

phase III trial (ClinicalTrials.gov Identifier: NCT00047723)

disproved any efficacy of the compound in patients, reporting

an ALSFRS-R score deterioration faster in the minocycline

group than in the placebo group, along with a higher

incidence of adverse events (167).

- NP001 is a highly purified form of sodium chlorite, targeting

inflammatory macrophages by down-regulating the

Nuclear Factor kB (NF-kB) inflammatory pathways (168).

Preliminary studies in hSOD1G93A mice showed a

significant increase in life expectancy compared to control

(169). A phase I trial in ALS patients (ClinicalTrials.gov

Identifier: NCT01091142) showed that NP001 was

generally safe and well tolerated, and caused a dose-

dependent reduction in expression of the pro-

inflammatory marker CD16 (170). Two subsequent

randomized phase II trials (ClinicalTrials.gov Identifier

NCT01281631, NCT02794857) suggested that NP001

slowed the progression of ALS symptoms in a subset of

patients with marked neuroinflammation (171). Combined

post hoc analysis did not show significant differences

between placebo and active treatment but identified a 40‐

to 65‐y‐old subset in which NP001‐treated patients

demonstrated slower declines in ALSFRS‐R score

compared with placebo (172).
5 Conclusions

The crosstalk between immune cells and glia contribute to MN

degeneration in ALS. Despite the advance in the scientific findings

aimed to unravel the molecular and cellular mechanisms that

induce MN to death, ALS persists without effective therapy that

improves motor symptoms and increases the life of patients. In ALS

microglia promote a pro-inflammatory microenvironment,

supported by neurotoxic astrocytes and infiltrated lymphocytes

and macrophages that exert an effective immune reaction against

MNs (Figure 1) (92, 96–108, 120, 140, 173).

Here we review the state-of-art regarding this fascinating cellular

communication, highlighting the current hypothesis that modulating

the interaction of microglia with astrocytes and immune cells could

represent a promising therapy. It is crucial to keep improving the

biological knowledge of ALS and the interplay with resident and

infiltrating immune cells in order to understand the cell-to-cell
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communication mechanisms and their role in driving disease

pathogenesis. At last, we discuss the current experimental

approaches that aim to modulate microglial phenotype to modulate

the inflammation in the CNS counteracting ALS progression.

The possibility to integrate these exciting discoveries with new

combination therapies will open new tools to treat this

devastating disease.
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