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Guangdong, China
T-helper 22 (Th22) cells represent a novel subset of CD4+ T cells that exhibit

distinctive characteristics, namely the secretion of IL-22 while abstaining from

secreting IL-17 and interferon-g (IFN-g). These cells serve as the primary source

of IL-22, and both Th22 cells and IL-22 are believed to play a role in maintaining

intestinal mucosal homeostasis in inflammatory bowel disease (IBD). However,

the precise functions of Th22 cells and IL-22 in this context remain a subject of

debate. In this work, we aimed to elucidate their impact on the integrity of the

intestinal mucosal barrier by presenting an overview of the molecular structure

characteristics and functional effects of Th22 cells and IL-22. Furthermore, we

would explore targeted treatment approaches and potential therapeutic

strategies focusing on the Th22 and IL-22 pathways.
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Introduction

Inflammatory bowel disease (IBD) encompasses a collection of disorders marked by

persistent inflammation within the gastrointestinal tract, notably ulcerative colitis (UC)

and Crohn’s disease (CD). The global incidence of IBD continues to rise annually, with a

current estimate of approximately 5 million affected individuals worldwide (1, 2). Although

the precise etiology of IBD remains elusive, numerous investigations have identified three

principal causative factors: individual genetic susceptibility, heightened immune activation,

and compromised intestinal mucosal barrier function (3).

The intestinal mucosal barrier, encompassing the physical, chemical, immune, and

biological components, holds immense significance in maintaining intestinal homeostasis

and overall bodily health. It serves not only to prevent the invasion of intestinal pathogens

but also to actively modulate immunity and the intestinal microbiota in a reciprocal

manner (4).

In the context of IBD patients, immune cells assume a pivotal role in preserving the

functionality of the intestinal mucosa. The activation of the immune response in these

individuals leads to heightened intestinal permeability, disruption of the structural integrity

of the intestinal barrier, and imbalance in the composition of the intestinal flora.

Consequently, this triggers a more pronounced immune response. Increasingly, research

is acknowledging damage to the intestinal mucosa as a fundamental mechanism underlying
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the onset of IBD. An aberrant immune response specifically targets

the intestine, eventually precipitating changes in the intestinal

milieu. Thus, it is crucial to gain a comprehensive understanding

of the regulation of immune responses in relation to the intestinal

barrier in order to unravel the pathogenesis of IBD.

Th22 cells, a subtype of CD4+T cells, have recently gained

considerable attention in the field of immunology. These cells have

been observed at sites of infection and in various autoimmune

diseases. However, their precise molecular characteristics and

functional roles remain largely unknown. Upon specific

stimulation, Th22 cells secrete interleukin 22 (IL-22) while

abstaining from producing IL-17 and interferon-g (IFN-g).
Among all cell types, Th22 cells are considered the primary

source of IL-22. It is widely believed that Th22 cells are associated

with the intestinal mucosal barrier (5), but the specific mechanisms

underlying this relationship have not been extensively explored.

Consequently, our research aimed to investigate the connection

between Th22 cells and the intestinal mucosal barrier, shedding

light on the underlying mechanisms involved.
Physiology of Th22 cells

Upon the initial discovery of Th22 cells, researchers have noted

several similarities between these cells and Th17 cells. However,

subsequent experiments have provided new insights. It is observed

that a particular subset of CCR6+ CD4+ T cells, which is typically

associated with Th17 cells, selectively secretes IL-22 while

abstaining from producing IFNg and IL-17. This distinctive

characteristic sets Th22 cells apart from Th17 cells and justifies
Frontiers in Immunology 02
their classification as Th22 cells (6). Furthermore, experimental

evidence demonstrates that during their development, Th22 cells do

not express IL-17A-related proteins. As a result, they are recognized

as a separate lineage distinct from Th17 cells (7).

Th22 cells are generated from naive CD4+ T cells in response to

various cytokines, including IL-6, IL-23, IL-1b, and TNF-a (6, 7).

Once matured, Th22 cells exhibit robust secretion of IL-22, along

with concurrent production of TNF-a and IL-13. Notably, Th22

cells do not produce IL-17 or IFN-g (6). Basu et al. have

demonstrated that IL-6 is crucial for the differentiation of IL-22-

producing CD4+ T cells (8). Although IL-23 also plays a pivotal role

in promoting Th22 cell maturation, its function is mediated

through IL-6 production (9). The combined action of IL-6 and

IL-23 significantly enhances IL-22 secretion by Th22 cells, whereas

IL-23 alone is insufficient to induce Th22 cell differentiation.

Transforming growth factor-beta (TGF-b), which is indispensable

for Th17 cell differentiation, exerts an inhibitory effect on Th22 cell

differentiation (9, 10).

The involvement of the aryl hydrocarbon receptor (AHR) in

inducing Th22 cell differentiation and IL-22 secretion has been well

established (6, 9, 11). Additionally, RORgt has been identified as a

promoter of Th22 cell differentiation, although its effect is less

pronounced compared to its role in Th17 cells (6). The role of T-bet

in this process remains debatable. Some studies suggest that T-bet

can inhibit Th22 cell differentiation in vitro, and researchers, such

as Maximilian and colleagues, have identified RORgt and T-bet as

positive and negative regulators, respectively, of Th22 cells (7).

However, it is important to note that there are opposing viewpoints,

with some researchers arguing that T-bet and AHR synergistically

promote IL-22 secretion in vitro (8) (Figure 1).
FIGURE 1

Schematic representation of Th22 cell secreting IL22. Th22 is differentiated from CD4+ naïve T cells. Th22 secretes IL-22 through the STAT3
pathway, in which AHR, RORgt, and T-bet play significant roles. After binding to IL-22 receptors, IL-22 induces phosphorylation of JAK1 and TYK2
through STAT3, STAT1, STAT5, and p38 MAPK pathways and then activates downstream reactions.
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Structure and physiology of IL-22

The secretion of IL-22 serves as the primary distinguishing

characteristic of Th22 cells, and their functions are primarily

mediated through the effects of IL-22. Mature IL-22 protein, like

other members of the IL-10 family, is a secreted a-helical molecule.

The biological effects of IL-22 are mediated by its binding to class 2

cytokine receptors, which are composed of heterodimeric complexes

consisting of IL-10R2 and IL-22R1 (9, 12). Importantly, the IL-22R1

receptor is exclusively expressed in non-lymphoid tissues, including

the skin, respiratory epithelial cells, digestive system matrix cells,

liver, pancreas, synovial tissue, and mammary tissue. Consequently,

unlike other cytokines, IL-22 does not directly regulate immune

cells (13).

In addition to the cell surface IL-22 receptor complex, there

exists a soluble single-chain IL-22 receptor referred to as IL-22

binding protein (IL-22BP) or IL-22RA2. IL-22BP has the ability to

antagonizes IL-22 by occupying the binding site of IL-22 to IL-22R1

(14). Consequently, the direct binding of IL-22 to IL-22BP inhibits

the actions of IL-22.

It has been confirmed that various immune cell types, including

Th22, Th17, Th1, natural killer (NK) cells, gdT cells, innate immune

cells, and certain non-lymphoid-like cells, are capable of producing

IL-22 (15). Among these, Th22 cells are recognized as the main

source of IL-22. Innate lymphoid cells (ILCs) predominantly produce

IL-22 during the early stages of infection through an IL-23-dependent

pathway, whereas CD4+ T cells secrete IL-22 during the later stages of

infection via an IL-6-dependent pathway (8).

Clinical samples from patients with active UC and CD have

demonstrated increased levels of IL-22 and an abundance of IL-22-

expressing cells. In active UC patients, IL-22-secreting cells are

primarily located in the lamina propria, while they are dispersed

throughout the submucosal layer in CD patients. Despite its pro-

inflammatory properties, IL-22 plays a crucial role in protecting the

host from bacterial infections at barrier sites (16).
Signaling pathway of IL-22

The JAK1/TYK2-STAT pathway serves as the primary signaling

pathway for IL-22, with STAT3 playing a crucial role in this process.

Minor involvement of STAT1 and STAT5 pathways has also been

observed (17). The following is a detailed description of the signal

transduction process.

When IL-22 binds to the IL-22R1-IL-22R2 complex, JAK kinases

become phosphorylated. This phosphorylation event triggers the

phosphorylation of specific amino acid residues within the

cytoplasmic region of IL-22R1, enabling these residues to bind to

STAT3. Subsequently, upon recognition by the corresponding sites on

IL-22R1, STAT3 undergoes phosphorylation by JAK1. Phosphorylated

STAT3 then translocates into the cell nucleus, where it regulates gene

expression. The ultimate impact of IL-22 signaling is the inhibition of

target cell differentiation or the enhancement of their proliferation.

Inhibition of the IL-22-related STAT3 pathway leads to significant

reductions in genes associated with apoptosis regulation (mcl1 and
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survivin), proliferation (myc, Reg3b, and Pla2g5), and wound healing

(Smo). This suggests that the STAT3 signaling pathway in epithelial

cells plays a role in the regulation of mucosal wound healing

(17) (Figure 1).

IL-22 and IL-10 exhibit both similarities and differences in their

signaling pathways. While both cytokines can activate STAT3 and

induce its tyrosine phosphorylation, there are notable distinctions

between them. IL-22, unlike IL-10, can trigger the activation of the

ERK, JNK, and p38 MAPK pathways. This indicates that IL-22 has

the ability to stimulate additional signaling cascades beyond STAT3

activation. Furthermore, IL-22 can also induce the serine

phosphorylation of STAT3 through the MAPK-independent

pathway. This serine phosphorylation of STAT3 represents

another unique feature of IL-22 signaling, further distinguishing it

from IL-10 (18).
Intestinal mucosal barrier

The intestinal mucosal barrier comprises three main layers: the

mucus layer, the epithelial cell layer, and the immune cell layer (19).

The mucus layer, serving as the first line of defense for the intestinal

barrier, is primarily composed of highly glycosylated mucins. It forms

a gel-like mesh structure on the intestinal epithelium, preventing

direct contact between bacteria and the epithelium while also

influencing the gut microbial community. The transport of

molecules across intestinal epithelial cells (IECs) is regulated by

various junctional complexes, with the most important ones being

tight junctions (TJs), adherens junctions (AJs), and desmosomes. TJs,

located at the apical region, are adhesive complexes responsible for

sealing intercellular gaps. They consist of transmembrane proteins

(such as claudins and occludins), peripheral membrane proteins

(such as occludens, ZO-1, and ZO-2), and regulatory proteins. AJs

are positioned below TJs and play a crucial role in the assembly of TJs.

AJs, along with desmosomes, provide robust adhesive connections

that contribute to maintaining epithelial integrity (20).

The intricate functionality of Th22 cells and IL-22 has

led to conflicting claims regarding their effects on mucosal

barriers (Table 1).
Role of Th22 and IL-22 in
mucosal barrier

IL-22 increases mucin secretion

MUC1 is a critical component of mucins, and the proper

glycosylation of MUC1 is essential for maintaining the

functionality of the mucus barrier. Hence, the integrity of the

mucus barrier depends not only on the expression of MUC1 but

also on the complete glycosylation of MUC1 (27). MUC2, on the

other hand, reduces direct contact between bacteria and epithelial

cells and can also regulate the abundance and diversity of the gut

microbiota. In MUC2 knockout mice, which lack the MUC2 gene,

higher levels of IL-22 are expressed, and the IL-22-STAT3 pathway
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plays a vital role in maintaining mucosal barrier homeostasis in

these mice. This suggests a compensatory regulatory response (28).

The current literature on the impact of IL-22 on mucin

composition presents conflicting results. One study indicates that IL-

22 does not increase the number of cells expressing MUC2 and has no

direct effect on MUC2 expression (22). However, another published

study suggests that IL-22 induces the mRNA expression of MUC1,

MUC4, and MUC13 while reducing the mRNA expression of MUC2

(21). The discrepancies in these findings may be attributed to

differences in experimental methodologies. It is worth noting that

MUC2 polysaccharides can be degraded by intestinal bacteria, and

there are other factors influencing MUC2 expression. Consequently,

there may be variations between in vivo and in vitro experiments (29).

Due to these contradictory statements, it is challenging to draw a

definitive conclusion regarding whether the mucosal changes mediated

by IL-22 are beneficial for patients with IBD.
IL-22 increases the production of
antimicrobial peptides

Antimicrobial peptides, which include defensins, S100 proteins,

and REG family proteins, are secreted by Paneth cells and are abundant

in the intestinal mucus (30). They bind to mucus and mucins, acting as

a defense mechanism against pathogen invasion. IL-22 plays a role in

inducing Paneth cell differentiation through the PI3K/AKT/mTOR

axis (23). By stimulating stem cells, IL-22 promotes the expression of

defense genes, such as REG1A, REG1B, and DMBT1, leading to

increased levels of RegIIIb and RegIIIg. Consequently, this results in
the production of antimicrobial peptides by IECs (30, 31).

Furthermore, IL-22 has been shown to influence the composition

and structure of the gut microbiota (32). While the clinical application

of antimicrobial peptides as therapeutic agents is not yet a reality, these

studies provide potential opportunities for the development of

antimicrobial peptides as novel antibiotics and bacterial modulators

for the treatment of IBD.
IL-22 affects TJs

Changes in the composition of TJ proteins can have two distinct

effects on barrier function. Firstly, it can lead to increased diffusion
Frontiers in Immunology 04
of water and solutes into the intestinal cavity, resulting in diarrhea

and the elimination of most intestinal pathogens. Secondly, it can

enhance the permeability of intestinal pathogens, thereby triggering

and sustaining immune responses (33). Claudins, which are the

primary transmembrane proteins of TJs, primarily regulate the

permeability of the barrier structure. Alterations in their

expression can impact signaling pathways. While claudin-2 is

upregulated by IL-22, the expression of other TJ proteins like

claudin-1, ZO-1, and ZO-2 remains largely unaffected (21). The

upregulation of claudin-2 elevates epithelial permeability (25),

which is believed to promote inflammation. However, recent

research has revealed the protective role of claudin-2, indicating

that its upregulation serves as a positive defense mechanism. Studies

have demonstrated that claudin-2 not only inhibits colitis-induced

cell death but also suppresses colitis-induced immune activation

and signal transduction (24). While it is generally accepted that the

upregulation of claudin-2 and the subsequent increase in intestinal

permeability contribute to inflammatory responses, its role extends

beyond this. Claudin-2 also regulates epithelial cell proliferation

(34), indicating that it may have both pro-inflammatory and anti-

inflammatory functions, playing diverse roles in different contexts.

The complex role of claudin-2 in maintaining intestinal mucosal

homeostasis offers potential opportunities for the treatment

of colitis.
IL-22 affects epithelial proliferation
through STAT3

Previous studies have demonstrated that IL-22 activates the

proliferation of intestinal stem and epithelial cells via the STAT3

pathway, thereby contributing to the maintenance and repair of the

mucosal barrier (21, 26, 35). However, a recent study has challenged

this conclusion by providing evidence that IL-22 does not induce the

proliferation and expansion of intestinal stem cells (ISCs) (23). Early

investigations suggested an increase in the number of ISCs and

epithelial cells with organelle-like properties, implying that IL-22

promotes IEC proliferation. However, it is important to note that the

previous research relies solely on the observed increase in the

proportion of ISCs and the volume of organoid epithelial cell

populations. Yet, an increase in the proportion and volume of ISCs

does not necessarily translate to an increase in epithelial cell
TABLE 1 Some points and related references on the role of IL-22 in the intestinal mucosal barrier.

Mucosal barrier Opinion Reference

chemical barrier IL-22 reduces the expression of MUC2 Patnaude et al., 2021 (21)

IL-22 had no effect on MUC2 expression Zha et al., 2019 (22)

IL-22 increases the production of antimicrobial peptides He et al., 2022 (23)

physical barrier IL-22 has a positive effect by upregulating claudin-2 Ahmad et al., 2014 (24)

IL-22 has a negative effect by upregulating claudin-2 Wang et al., 2017 (25)

biological barrier IL-22 promotes the proliferation of epithelial cells Patnaude et al., 2021 (21); Lindemans et al., 2015 (26)

IL-22 had no effect on epithelial cells He et al., 2022 (23)
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proliferation. The enlargement of the volume of intestinal-like cells

may be linked to the upregulation of claudin-2 expression.

Consequently, further exploration is needed to determine whether

IL-22 indeed promotes the proliferation and expansion of IECs and

subsequently aids in the healing of the intestinal mucosa.
Clinically relevant therapeutic approaches

Given the role of Th22 cells and IL-22 in maintaining the

mucosal barrier, it can be inferred that pathways enhancing Th22 or

IL-22 levels may hold therapeutic potential, particularly for IBD.

Experimental approaches such as microinjection of IL-22 and the

development of DNA vaccines containing IL-22 loci have

demonstrated efficacy in reducing inflammatory cell infiltration

into intestinal tissues in disease models (33). Furthermore, targeted

therapies aimed at increasing IL-22 secretion from Th22 cells have

been employed for IBD patients. For example, infliximab (IFX), a

prominent anti-TNF monoclonal antibody (MAb), binds to soluble

TNF and transmembrane TNF (tmTNF) with high affinity, offering

an effective treatment strategy for patients with active CD. Anti-

TNF therapy promotes IL-22 secretion in an AHR-dependent

manner and facilitates the differentiation of Th22 cells, resulting

in elevated IL-22 levels produced by CD4+ T cells. This evidence

demonstrates that anti-TNF treatment promotes Th22 cell

differentiation in CD4+ T cells of CD patients. Notably, TNF-

alpha converting enzyme (TACE) has been found to inhibit anti-

TNF-induced IL-22 production in CD4+ T cells, suggesting a

potential link between varying TACE levels and the lack of

response to IFX observed in some CD patients. If confirmed,

TACE can serve as a promising target for the treatment of IBD

patients who do not respond to anti-TNF therapy.
Conclusion

Th22 cells are primarily responsible for secreting IL-22, making

IL-22 the main product of Th22 cells. We propose that the in vivo

mechanism of Th22 cells primarily operates through the actions of

IL-22. IL-22 plays a critical role in preserving mucosal immunity

against specific pathogens. It achieves these effects by facilitating the
Frontiers in Immunology 05
recruitment of neutrophils to combat bacterial invaders, promoting

the repair of the mucosal barrier by stimulating epithelial

proliferation and increasing the production of TJs, as well as

inducing the synthesis of antimicrobial proteins, such as beta-

defensins. IL-22 has a complex and significant role in the body.

While it is believed to protect against colitis, it can also contribute to

intestinal inflammation. However, the impact of Th22 cells on the

mucosal barrier beyond IL-22 remains unclear, and further

investigation is required to understand the precise role they play

in the pathogenesis of UC and CD.
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