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Tripartite motif (TRIM) proteins are involved in development, innate immunity,

and viral restriction. TRIM gene repertoires vary between species, likely due to

diversification caused by selective pressures from pathogens; however, this has

not been explored in birds. Wemined a de novo assembled transcriptome for the

TRIM gene repertoire of the domestic mallard duck (Anas platyrhynchos), a

reservoir host of influenza A viruses. We found 57 TRIM genes in the duck, which

represent all 12 subfamilies based on their C-terminal domains. Members of the

C-IV subfamily with C-terminal PRY-SPRY domains are known to augment

immune responses in mammals. We compared C-IV TRIM proteins between

reptiles, birds, and mammals and show that many C-IV subfamily members have

arisen independently in these lineages. A comparison of the MHC-linked C-IV

TRIM genes reveals expansions in birds and reptiles. The TRIM25 locus with

related innate receptor modifiers is adjacent to the MHC in reptile and marsupial

genomes, suggesting the ancestral organization. Within the avian lineage, both

the MHC and TRIM25 loci have undergone significant TRIM gene reorganizations

and divergence, both hallmarks of pathogen-driven selection. To assess the

expression of TRIM genes, we aligned RNA-seq reads from duck tissues. C-IV

TRIMs had high relative expression in immune relevant sites such as the lung,

spleen, kidney, and intestine, and low expression in immune privileged sites such

as in the brain or gonads. Gene loss and gain in the evolution of the TRIM

repertoire in birds suggests candidate immune genes and potential targets of

viral subversion.
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1 Introduction

Tripartite motif (TRIM) proteins comprise a large family with important roles in

development (1, 2), cell cycle (3), immunity (4–7), autophagy (3, 7), and various other

intracellular functions (7, 8). Comparisons of TRIM proteins across species demonstrate a

rapidly expanding repertoire during eukaryote evolution. Humans have more than 80 TRIM

genes, while mice have approximately 60, zebrafish have approximately 208, worms have

more than 20, and flies have more than 10 (5, 9–12). No avian TRIM repertoire has been
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systematically analyzed. An early estimate identified 37 in the chicken

(9), but this has not been updated with improved genomic resources.

The ambiguity of TRIM gene number in each species arises from

their locations on many different chromosomes, each evolving

independently, responding to pressures from pathogens and

undergoing species-specific expansions (13–15).

TRIM proteins are characterized by the presence of three

domains: the really interesting new gene (RING) domain, one or

two B-box domains, and a coiled-coil (CC) domain. These domains

together are termed the RBCC motif. TRIM proteins possess E3

ubiquitin ligase activity due to their RING domain, which helps

conjugate polyubiquitin to target proteins (16, 17). B-Box domains

can also perform E3 ligase activity (18–20), higher order

multimerization, and binding substrate proteins (21–24). The CC

domain is involved in homo- or heteromeric assemblies (25, 26).

The C-terminal domains are often responsible for substrate

recognition. Substrates can range from intracellular proteins,

pathogen proteins, or nucleic acids (27–30).

TRIM proteins are commonly categorized into 11 subfamilies

defined by variable C-terminal domains, termed C-I to C-XI (5, 12,

31, 32). Sardiello and colleagues suggested that the TRIM family

broadly separates into two groups (9). Group I is more conserved

through evolution and is composed of all 11 subfamilies. Group II

contains only TRIM proteins belonging to the C-IV subfamily,

which contain C-terminal B30.2/PRY-SPRY domains. The

combined B30.2/PRY-SPRY domains arose later in evolution than

the SPRY domain and is often associated with immune function

(33). Members of group II appear to evolve faster than members in

group I (9). Marıń and colleagues demonstrated that the evolution

of TRIM proteins is more complex and classified TRIM proteins

into nine subfamilies, based on when the TRIM proteins arose in

eukaryotes (8). The C-IV subfamily dramatically expanded in

vertebrates. Members of the C-IV subfamily are regulated by

immune responses (6, 9, 34), and many C-IV type TRIMs have

direct roles in immunity and viral restriction (4, 5). Several C-IV

type TRIM genes are present in the MHC locus of humans (35),

chickens (36), ducks (37), and fish (38, 39). This suggests that TRIM

genes were part of the ancestral MHC and have undergone

duplication events in different species.

Many TRIM proteins are modulators of innate immunity and

mediators of direct viral restriction. The repertoire of the mallard

duck (Anas platyrhynchos) is of interest, as they are the reservoir

host of influenza A viruses (40, 41). A comparison of the duck

repertoire to chickens (Gallus gallus) is of value, since chickens are

an important agricultural species and an established model for

vertebrate development. Functional studies of individual TRIM

proteins of birds demonstrate their importance in immunity.

TRIM25 is functionally characterized in chicken (42–45), duck

(46, 47), and goose (48). In mammals and ducks, TRIM25

catalyzes the addition of polyubiquitin for the activation of

retinoic-acid-inducible gene I (RIG-I) in antiviral signaling (46,

49). Duck TRIM29 was identified as a negative regulator of the RIG-

I signaling pathway (50). A gene described as TRIM39 in chicken is

predominantly expressed in the spleen, but has not yet been
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functionally characterized (51). Chicken TRIM62 has been

characterized (52) and shown to have antiviral activity against

reticuloendotheliosis virus (53) and avian leukosis virus subgroup

J (54). TRIM32, known for its antiviral activity in mammals (55–

57), can restrict influenza (58) and Tembusu virus in ducks (59).

Here, we characterized the duck TRIM gene repertoire by

utilizing NCBI databases and de novo transcriptome assembly to

identify candidates. We investigated TRIM protein domain

architecture and phylogenetic relationships. We compared the

duck repertoire to the chicken, to look at species-specific

differences. We performed phylogenetic analyses of the C-IV

subfamily members of reptiles, birds, and mammals, which

allowed us to designate orthologous TRIM genes in ducks. We

show that ducks have 57 TRIM genes, compared to 54 in chickens.

Ducks and other birds have TRIM genes specific to their respective

lineages. Finally, we investigated both abundance and relative

expression of these TRIM gene sequences in duck tissues. While

some TRIM genes were ubiquitously expressed in duck tissues,

other TRIM genes had tissue-specific expression.
2 Materials and methods

2.1 Data mining

To generate a master transcriptome of duck sequence reads, the

NCBI Short Read Archive (SRA) database (ht tps : / /

www.ncbi.nlm.nih.gov/sra) was mined for projects involving

domestic mallard ducks (Anas platyrhynchos). Wild mallard and

Muscovy ducks (Cairina moschata) were excluded. Project numbers

and individual samples included in this study are listed in

Supplementary File 1. In addition to assembling a master duck

transcriptome, a chicken (Gallus gallus) transcriptome was

assembled using SRA project numbers listed in Supplementary

File 1. SRA libraries were uploaded to the Digital Research

Alliance of Canada’s research computing environment (formerly

Compute Canada) (https://alliancecan.ca/en). SRA files with

ambiguous descriptions, questionable content, or failed quality

checks (i.e., more than 50% of reads were unpaired, or the files

were corrupt) were excluded. To generate a reference dataset of all

known avian TRIM sequences, we searched the NCBI protein

databases for TRIM sequences. Redundant and misannotated

sequences were removed. From the curated avian TRIM list, we

made two additional databases, one composed of duck TRIM

proteins and one composed of chicken TRIM proteins.

Members of the C-IV TRIM protein subfamily were also mined

from NCBI to infer homology among TRIM proteins. We searched

for each TRIM protein by name in mammals and generated a

library of TRIM proteins from human, an additional placental

mammal, and marsupial. For each avian TRIM protein, we

ensured that there were at least three representative species.

Reptile TRIM proteins were mined for a representative lizard

species and a representative turtle species. C-IV protein accession

numbers can be found in Supplementary File 2.
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2.2 Transcriptome assembly

SRA libraries were checked for quality and adaptor content

using astQC Version 0.11.9 (60). Samples used passed fastQC

analysis and were between 100 and 150 bp in length. Reads were

trimmed using Trimmomatic version 0.36 (61) with the following

parameters: a sliding base window size of 4 (bases removed if phred

score is below 20) in a 15-base window and a minimum read length

of 33 bp.

A total of 216 duck libraries and 107 chicken libraries were

assembled using 7 Kmer values from 25 to 85 using TRANS-ABYSS

2.0.1 (62). Individual libraries were assembled and binned by tissue

type, and duplicate contigs within each tissue type were collapsed

into a consensus contig using CAP3 (63) with a cutoff value of 95%

identity and CD-HIT-EST version 4.8.1 (64) with a cutoff value of

97% identity. Tissue-type assemblies were collapsed into one master

assembly using CAP3 assuming 95% similarity. Singlet files were

merged separately to reduce loss of genes due to excessive reduction

in putative duplicate contigs. Merged singlet contigs were then

compared back to the master transcriptome for a final master

assembly. Sequences <200 bp were pruned from the master

assembly using in-house scripts published at https://github.com/

rmpeery/dataProcessing. Two quality control measures were

employed to assess the final assembly. We checked the number

and average size of contigs using the abyss-fac command in ABYSS

v 2.0.1 (62). To ensure that transcriptome collapsing was not

impacting gene content, BUSCO version 3.0.2 (65) was used to

determine common orthologous gene content. To remove duplicate

copies of genes (putative orthologs remaining due to assembly

strategy), we used reciprocal blast hits (RBH) and applied a leave-

one-out method to remove contigs with ≥ 97% similarity (perl script

published at https://github.com/rmpeery/dataProcessing).
2.3 Duck TRIM gene identification

The master duck and chicken assemblies were each translated

into all six reading frames using EMBOSS 6.6.0 (66). Avian TRIM

reference proteins were compiled into a BLAST+ database using the

makeblastdb command in BLAST+ version 2.7.1 (67). We ran

BLASTp (BLAST+) against the assembled duck transcriptome,

and all hits were parsed from the master transcriptome using in-

house scripts (published at https://github.com/rmpeery/

dataProcessing). Our newly identified, putative avian TRIM

proteins were aligned to the reference TRIM proteins, and

neighbor-joining (NJ) phylogenetic trees were inferred using

CLUSTAL OMEGA (68). We compared full-length transcriptome

contigs to the assembled list of annotated duck TRIM proteins to

both confirm identity and validate the master assembly. TRIM

proteins detected by the BLAST search but were not present in

ducks were aligned against the avian TRIM protein database to

confirm identity. Other ambiguous hits were submitted to SMART

(69) to verify protein domain composition. To identify TRIM genes

missing in birds or ducks, TRIM sequences from various species

were aligned using COBALT (https://www.ncbi.nlm.nih.gov/tools/
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cobalt/) and submitted to HMMER (v3.3.2) (HMMER.org) to

search for these missing TRIMs in our master assembly. Hits

were further analyzed using HMMER (70), UniProt (71), and

SMART (69). Domain composition of amino acid sequences were

verified using SMART. Duck TRIM genes found in this analysis are

summarized in Supplementary Table S1, and nucleotide sequences

used in downstream analyses can be found in Supplementary File 3.

Duck TRIM amino acid sequences used in these analyses were

derived from translating the nucleotide sequences and can be found

in Supplementary File 4. All sequences used for the duck TRIM

analysis resulted from interrogating the de novo transcriptome

assembly, unless otherwise noted in Supplementary Table S1.

Some sequences obtained from NCBI were used because the

contigs pulled from the de novo transcriptome assembly appeared

to be chimeric reads. Genes and proteins currently annotated in the

genome and their corresponding accession numbers are compiled

into Supplementary Table S1.
2.4 Comparison between duck and
chicken TRIM protein repertoires

The newly identified duck TRIM nucleotide and protein

sequences, generated from our de novo transcriptome assembly,

were compared to chicken TRIM protein sequences from NCBI.

Sequences present in the duck but presumed missing in the chicken

were submitted to BLASTn and queried against the current chicken

genome (version bGalGal1.mat.broilerGRCg7b, unpublished direct

r e l e a s e ) u s ing the BLAST+ on l ine por t a l (h t tp s : / /

blast.ncbi.nlm.nih.gov/Blast). We used HMMER to further

interrogate our chicken transcriptome for missing TRIM genes.

TRIM genes found in the chicken transcriptome are available in

Supplementary File 5. Annotations and identification numbers of

these genes were compiled into Supplementary Table S2, and amino

acid sequences were downloaded or added to (Supplementary File

5). Sequences were acquired from the annotations listed in

Supplementary Table S2 unless otherwise noted.
2.5 Mapping to chromosomes

To find chromosomal location of all duck TRIM genes, we

queried nucleotide sequences against the current NCBI duck

genome [assembly ZJU1.0, published (72)] using the online

version of BLASTn. Chromosome lengths were taken from the

reference duck genome, and locations were assigned from the start

of the TRIM gene. Any genes not in the NCBI duck genome were

submitted to blast against the Ensembl rapid release domestic Anas

platyrhnchos genomes (GCA_017639305.1, GCA_015476345.1 and

GCA_017639285.1). Genes present around any TRIM hits were

compared back to the NCBI Pekin duck assembly to try to infer

possible genomic locations. TRIM genes were assigned

chromosomal location using karyoploteR (73) in the R studio

environment (74). The resulting map was edited using Adobe

Illustrator for clarity.
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Approximate location and composition of MHC-linked TRIM

genes were compared between duck, mouse (Mus musculus),

human (Homo sapiens), Tasmanian devil (Sarcophilus harrisii),

yellow pond turtle (Maurenys mutica), and Eastern fence lizard

(Sceloporus undulatas) from data on NCBI. Genomic size and

location of TRIM genes were extracted from reference genomes

ZJU1.0 (Pekin duck), GRCm39 (mouse), GRCh38.p14 [human,

published (75)], mSarHar1.11 [Tasmanian devil, published (76)],

ASM2049712v1 (yellow pond turtle), and SceUnd_v1.1 [Eastern

fence lizard, published (77)]. TRIM genes were assigned

chromosomal location using karyoploteR (73) in the Rstudio

environment (74). The resulting maps were edited graphically

using Adobe Illustrator for clarity and readability.

Sizes and locations of TRIM genes located in the MHC-B locus

of mallard ducks, tufted ducks (Aythya fuligula), chickens, kākāpō

(Stringops habroptilus), barn swallow (Hirundo rustica), and

European golden plover (Pluvialis apricaria) were approximated

from genomic data on NCBI. Data were extracted from reference

genomes ZJU1.0 (Pekin duck), bAytFul2.pri [tufted duck, published

(78)], bGalGal1.mat.broiler.GRCg7b (chicken), bStrHab1.2.pri

[kākāpō, published (79)], bHirRus1.pri.v2 (barn swallow, https://

vertebrategenomesproject.org/), and pPluApr1.pri (European

golden plover, https://vertebrategenomesproject.org/). The

European golden plover genome is not yet annotated, so TRIM

gene approximate locations were found using the NCBI blastn

against the genome and coding genes predicted using GENSCAN

(http://hollywood.mit.edu/GENSCAN.html). The resulting

distances and approximations of gene sizes were edited using

Adobe Illustrator.

Sizes and locations of TRIM genes located in the TRIM25 locus

of duck, chicken, kākāpō, barn swallow, Adelie penguin (Pygoscelis

adeliae), and Eastern fence lizard were approximated from genomic

data on NCBI. Data were extracted from reference genomes ZJU1.0

(mallard duck), bGalGal1.mat.broiler.GRCg7b (chicken),

bStrHab1.2.pri (kākāpō), bHirRus1.pri.v2 (barn swallow),

ASM69910v1 (Adelie penguin), and SceUnd_v1.1 (Eastern fence

lizard). The resulting distances and estimates of gene sizes were

edited using Adobe Illustrator.
2.6 Phylogenetic trees and minimum
spanning networks

Wemade two alignments of TRIM proteins, the first aligning all

duck TRIM proteins and the second aligning both duck and chicken

TRIM protein sequences. A third alignment was made using C-IV

subfamily members from representative species. The species used

were human, a representative placental mammal, marsupial, turtle,

and lizard. Avian TRIM genes not found in chicken or duck were

also added to our alignments. We mined two representative reptile

species, the Eastern fence lizard and the yellow pond turtle, for

MHC-linked TRIM proteins, by manually scanning the

chromosomes containing MHC and collecting accession numbers

for TRIM genes. Accession numbers for C-IV protein sequences

used can be found in Supplementary File 2. TRIM proteins were

aligned using the online MAFFT alignment program (80).
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Alignments used the L-INS-I refinement method and were

further refined by eye in Unipro UGENE (81). The best protein

model was determined for each tree using ModelFinder (82) in the

IQTree environment. Maximum-likelihood (ML) phylogenetic

trees of these alignments were inferred using IQTree (83)

generating a tree for the duck TRIM protein; a tree for the duck

and chicken TRIM proteins; a tree for all C-IV TRIM proteins in

mammals, reptiles, and birds; and a tree for C-IV TRIM proteins in

mammals, reptiles, and birds excluding the non-orthologous

expansion of MHC-linked TRIM genes in reptiles. The Ultrafast

bootstrap algorithm (84) was run with 10,000 bootstrap replications

on the duck only and duck and chicken TRIMML phylogenies. The

Ultrafast bootstrap algorithm was run with 5,000 bootstrap

replications on the C-IV TRIM protein subfamily trees. The

consensus of these replicates was visualized in FigTree v1.4.3

(http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic trees were

then further edited using Adobe Illustrator for clarity and to add

additional information.

To make minimum spanning networks (MSN) with duck TRIM

proteins, the duck TRIM protein alignment (as described above)

was converted to a distance matrix using msa (85) and seqinr (86) in

the Rstudio (v4.0) environment. A MSN was created using the prim

algorithm provided by the RGBL r package (87) and visualized

using ggplot2 (88).
2.7 Assigning names to duck TRIM genes

To resolve ambiguous names and incorrect NCBI annotations,

we assigned names to TRIM genes based on homology, determined

through phylogenies. As many avian TRIM genes did not have

orthologs in mammals, we assigned these TRIM genes numbers

starting at 200. The C-IV subfamily of TRIM proteins is expanded

in vertebrates, and many of the putative TRIM proteins have

redundant descriptions and names on NCBI. Many names of the

C-IV TRIM proteins needed to be resolved through phylogenetic

analysis comparing these proteins to TRIM proteins from other

species. The new names and previously published annotations can

be found in Supplementary Table S1 for ducks and Supplementary

Table S2 for chickens.
2.8 Read mapping and differential
expression of TRIM genes

Our newly identified TRIM contigs were pruned to CDS regions

and were concatenated into a multi-FASTA file and used as the

reference for read mapping. We aligned RNA-seq reads to the

reference TRIM genes using Bowtie2 v2.3.4.3 (89). We used

featureCounts to summarize, count reads, and assign features (90)

from the BowTie2 mapped outputs. Reads were normalized to

individual library sizes using the EdgeR (91) trimmed mean of M

values (TMM) method. Reads were compared using

plotMDS.DGElist in the Rstudio environment. Normalized log2

counts per million log2(CPM) were visualized using the cim

function in R (92). Raw data of normalized read counts for each
frontiersin.org
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sample can be found in Supplementary File 6. We analyzed relative

patterns of tissue distribution by setting the matrix intercept as the

overall mean and using the generalized linear model quasi-

likelihood test (glmQL) to determine log2 fold change (FC) values

of individual tissues when compared to the mean in EdgeR. All log2

(FC) values were visualized using a heatmap using the gplots

heatmap.2 function (93) in the Rstudio environment.

Dendrograms were added using heatmap.2 function in gplots in

the Rstudio environment. All data for these experiments, including

log2(FC) and false discovery rate (FDR), can be found in

Supplementary File 7. To determine the highest and lowest

relatively expressed TRIM genes in different duck tissues, we

sorted the relative expression results for each tissue by false

discovery rate FDR (<0.05) and filtered out any TRIM genes

above this threshold. We then sorted these data by log2(FC) and

summarized the top 5 highest and top 5 lowest relatively

expressed genes.
3 Results

3.1 Ducks have 57 genes in their
TRIM repertoire

To determine how many TRIM genes are present in the

domestic mallard duck (Anas platyrhynchos), we first mined the

NCBI genome and protein databases for all annotated avian TRIM

proteins. From this list, we identified TRIM proteins annotated in

the duck and chicken. We made a de novo transcriptome assembly

for ducks using 216 SRA libraries. We used both BLAST+ (67) and

HMMER (hmmer.org) searches of our transcriptome to identify 57

TRIM genes in the duck. We used a neighbor-joining tree to cluster

putative TRIM contigs with known avian TRIM proteins to verify

identity and identify outliers. A flow chart of the workflow can be

found in Supplementary Figure 1. Genes that were found to be one

to one orthologs of human TRIM genes were identified and named

to reflect that ancestry. Duck TRIM protein annotations were

assembled into a table (Supplementary Table S1). All but four of

the TRIM sequences that we identified were previously annotated

on NCBI. TRIM28 and fibronectin III and SPRY domain containing

proteins 1 (FSD1) are annotated in the rapid release Ensembl duck

genomes (TRIM28 in GCA_017639305.1 and FSD1 in both

GCA_017639305.1 and GCA_017639285.1). TRIM39 and RING

finger protein 39 (RNF39) are not yet annotated in any

duck genome.

We included 11 genes classified as TRIM-like in this analysis, in

that they do not have the traditional “tripartite motif” domain

structure that the TRIM family is named for. Some of these, such as

RNF207, FSD1 and FSD2, B-box and SPRY domain containing

(BSPRY), and NHL repeat containing E3 ubiquitin protein ligase 1

(NHLRC1) are ancestral TRIM genes, which have lost domains

during speciation events (8). RNF135, with the protein referred to

as RIPLET, contains a RING, CC, and PRY-SPRY domains, and is

lacking B-box domains. These TRIM-like genes will be included in

our analyses of the duck TRIM repertoire. Sequences discovered to

be butyrophilin (BTN) proteins were omitted, although we
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acknowledge that many BTN proteins are highly similar in C-

terminal domain composition to C-IV subfamily TRIM proteins,

and thus, TRIM proteins and BTN proteins may share

evolutionary ancestry.

Many TRIM genes identified did not appear to be direct

orthologs to annotated mammalian TRIM genes and were

renamed. Several non-orthologous TRIM genes are located in the

MHC region of the duck. Additionally, NCBI annotations

suggested ancestry to mammalian TRIM genes that our

downstream analysis determined to be inaccurate. We renamed

these genes TRIM200–213 to reflect their distinct sequences. For

example, two genes (NCBI gene ID 101805457 and 101804875)

were both described as TRIM39-Like on NCBI. Gene 101805457

was previously annotated as TRIM39.2 by Blaine and colleagues

(37). Gene 101804875 was described as TRIM39-Like in ducks

(NCBI) and TRIM39 in chickens (51). However, neither of these

genes are an ortholog of TRIM39, so we amended the names to

TRIM202 and TRIM212 (for gene 101805457 and 101804875,

respectively). Our transcriptome interrogation did find a direct

TRIM39 ortholog in the duck that is not present or annotated in

Ensembl or NCBI genomes. Likewise, Gene ID 119718713 was

annotated as RNF39-like in the NCBI duck genome. This gene does

not appear to be orthologous to mammalian RNF39, so we

renamed it TRIM200. Ducks do have an ortholog of RNF39;

however, this gene is only present in the duck transcriptome and

not in genomic resources. Supplementary Table S1 indicates the

duck TRIM genes with direct mammalian orthologs and the genes

without clear mammalian orthologs that we renamed, and we will

use these assigned names throughout.
3.2 The duck TRIM gene repertoire
spans 21 chromosomes

To determine chromosomal locations of the 57 domestic

mallard duck TRIM genes, we interrogated the Pekin duck

genome (assembly ZJU1.0) using our newly generated TRIM

genes. We assigned chromosomal locations to 54 of 57 TRIM

genes, on 21 different duck chromosomes (Figure 1). Most duck

TRIM genes are present in unique locations throughout the

genome. However, two interesting clusters of genes are found on

chromosomes 17 and 19. Ducks also have a duplication of

promyelocytic leukemia protein (TRIM19/PML), resulting in two

similar genes on chromosome 11 in opposite orientation.

A cluster of TRIM genes are found in the duck MHC region on

chromosome 17 (Figure 1, inset). We placed 10 TRIM or TRIM-like

genes on chromosome 17, with nine of these found in the duck

MHC region. All MHC-linked TRIM or TRIM-like proteins have

C-terminal PRY-SPRY domains (Supplementary Table S1). We

previously compared this region in ducks to the syntenic region

in chickens and turkeys (37). The newest assembly of the Pekin

duck genome allows TRIM207, another of the MHC-linked TRIMs,

to be placed in this region. This gene was defined as a BTN in

chicken (94); however, our analysis suggests that it is a TRIM-like

gene. These data support the expansion of a group of related TRIM

genes in the MHC region of birds.
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A smaller cluster of TRIM genes is located on chromosome 19.

The TRIM-like gene RNF135 is located on between TRIM25 and

TRIM65. We will refer to this location as the TRIM25 locus. This

region also includes a related gene, TRIM47. Another nucleotide

sequence distantly related to TRIM25 is found on chromosome 14,

which we have named TRIM211. However, the duck TRIM211 gene

had premature stop codons in the sequence, suggesting that it may

be a pseudogene. Indeed, its annotation on NCBI includes it in the

3′ untranslated region of a separate gene, described as PPARGC1B

(GeneID: 101790707). Whether this is due to mistakes in genome

assembly/sequencing or gene fusion resulting in loss of function

is unknown.
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We identified TRIM28, TRIM39, RNF39R, and FSD1 within the

duck transcriptome data but were unable to map them to

chromosomes on the NCBI duck genome. TRIM28 is present in

one and FSD1 is present in two of the Ensembl rapid release

genomes (GCA_017639305.1 and GCA_017639285.1); however,

neither of these genomes are chromosome level assemblies. In the

Ensembl rapid release genomes, FSD1 is located in between the

genes SH3GL1 and YJU1. Both these genes appear on chromosome

29 in the NCBI duck genome, suggesting that FSD1 is located on

chromosome 29, and this chromosome is currently misassembled in

the NCBI Pekin duck genome. We were unable to find TRIM39 or

RNF39 in either the NCBI or Ensembl rapid release duck genomes.
FIGURE 1

Genomic locations of TRIM or TRIM-like genes in the duck. TRIM and TRIM-like genes were submitted to NCBI blast, and locations in the duck genome
were mapped using karyoploteR in the R studio environment. Chromosome 17 is magnified to allow for visualization of the expansion of the TRIM genes
in the duck MHC (B) locus. The gene FSD1 is followed by a"?" to reflect a presumed location due to data available in other genomic resources. The
cluster of related genes on TRIM25 will be referred to as the "TRIM25 locus.
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The current NCBI Pekin duck genome assembly has 33

chromosomes in addition to the sex chromosomes (72), and

karyotyping shows 2N=40 for ducks (72, 95), suggesting that

many chromosomes may still be unassembled.
3.3 Chicken and duck TRIM homologues
split into two distinct clades

To compare the chicken and duck TRIM gene families, we

searched for chicken orthologs for our 57 duck TRIM protein

sequences using NCBI BLASTp. This search yielded 52 chicken

TRIM or TRIM-like proteins (Supplementary Table S2). We created

a de novo transcriptome assembly for chickens using 107 SRA

RNA-seq libraries, and our interrogation of the transcriptome

found RNF39R, TRIM39, and TRIM46, which were not present

in the chicken genomes on NCBI or Ensembl rapid release. While

many chicken TRIM proteins shared high percent identities to duck

TRIM proteins (>90% identity), there were some exceptions. The

TRIM19 paralogs were divergent at 75% and 55% identity, for

TRIM19.1 and TRIM19.2, respectively. TRIM25 (71% identity),

TRIM47 (81% identity), and TRIM65 (69% identity) were also

divergent. Many of the MHC-linked TRIM proteins have also

diverged between ducks and chickens, except TRIM201, which

shares 97% amino acid identity. Both TRIM39 and RNF39R are

significantly different between duck and chicken with 60.08% and

48.92% amino acid identity, respectively. However, the latter genes

are only present in the duck or chicken transcriptomes and not yet

confirmed in their genomes, so misassembly could contribute to

sequence differences.

To compare the relationships of TRIM proteins within the duck

and chicken repertoires, we aligned all duck and chicken amino acid

sequences, then built an ML tree using 10,000 Ultrafast bootstrap

replications. The sequences divide into two major clades (clades A

and B) (Figure 2). In clade A, there are two subclades (clades C and

D), clade D containing C-I and C-II TRIM proteins and clade C

containing C-IV proteins. C-I subfamily members first arose in

animals (8) and are defined as having both COS and FN3 domains

and only a SPRY or both PRY and SPRY C-terminal domains. SPRY

domains are present in animals, fungi, and plants, while PRY

domains arose during vertebrate evolution (33). Some members

of the C-I subfamily have both PRY-SPRY domains, while the more

ancient members have only SPRY domains. TRIM9 is present in

animals, including invertebrates, and has a C-terminal SPRY

domain but not PRY domain in shrimp (96, 97), human (98),

and ducks (Supplementary Table S1). The C-IV TRIM proteins,

which expanded in vertebrates (8, 9) and have both PRY and SPRY

C-terminal domains, split into two distinct subclades (clades E and

F), clade E containing the MHC-linked TRIM proteins and clade F

containing genes which cluster with members of the TRIM25 locus,

to be referred to as the "TRIM25 cluster". While this suggests that

the C-IV subfamily diverged from a common ancestor of the C-I

subfamily, the bootstrap values are too low to support this

hypothesis. In clade B, most duck proteins have direct orthologs

with chicken on short branches. The duck and chicken TRIM19/
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PML paralogs (TRIM19.1 and TRIM19.2) appear distant from their

orthologous counterparts. This could be due to significant

divergence in sequences or misassembly of these sequences. Many

bootstrap values were too low to resolve distant ancestry of these

TRIM proteins, for example the common ancestors of clades A and

B, suggesting that further analysis using more taxa is needed.

We found some TRIM proteins only in chicken or only in duck.

The TRIM-like gene RNF135 has previously been described as

absent in chicken (99), quail (100), penguins, falcons, and petrels

(101). We also did not find RNF135 in the chicken transcriptome.

Two TRIM proteins found in chicken were without mammalian

orthologs, so we named them TRIM210 and TRIM211.

Phylogenetic analysis places TRIM210 and TRIM211 within clade

F with the TRIM25 cluster, a group including RNF135, TRIM14, 25,

and 65, known for RIG-I-like receptors (RLR) pathway

modification (102–104). Ducks are missing TRIM210, and

TRIM211 is likely a pseudogene, while the genes are intact and

adjacent in the chicken genome. A closer inspection of the syntenic

region on duck chromosome 14 revealed a deletion in that section.

The deletion could be due to genomic misassembly; however,

HMMER searches of our duck transcriptome did not find any

contigs matching TRIM210. Duck and chicken TRIM29 also

clusters within the clade containing the RLR pathway modifiers.

There were four TRIM genes that we did not find in chickens

that we found in ducks: TRIM200, RNF135, TRIM213, and

TRIM206. We did not find these genes in our chicken

transcriptome. We previously noted TRIM206 to be absent in

chickens and turkeys (formerly named TRIM27L) (37). We

believe that TRIM213 is missing due to deletions in the chicken,

from our analysis of the syntenic regions of the chromosome.
3.4 Subfamily classification of human,
duck, and chicken TRIM proteins

To compare the duck TRIM repertoire to human and chicken,

we grouped the subfamilies of TRIMs by the standard C-terminal

domain nomenclature (5, 31, 32). Many TRIM proteins are shared

between humans, chickens, and ducks, but there are some repertoire

differences between species (Figure 3). All TRIM subfamilies are

represented in the duck and chicken TRIM proteins, with most

groups containing clear orthologs. Domain composition from duck

TRIM proteins was analyzed using SMART, and missing domains

are indicated by the color of the protein name. Additional

information on duck TRIM domain composition can be found in

Supplementary Table S1.

The C-IV subfamilies of birds and humans not only share

presumed orthologs but also have many unique proteins. Humans

have a cluster of MHC-linked TRIMs not present in birds including

TRIM31, 40 15, 26, and 38 (105). Human C-IV family TRIM genes,

including TRIM5, 6, 22, and 34, appears absent from avian

genomes. Humans and ducks have RNF135, which belongs in the

C-IV subfamily, and it is missing in chickens. Chickens, however,

have additional members of the TRIM25 lineage as they have

TRIM210 and TRIM211.
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Several members of the C-V family with an uncharacterized C-

terminal domain are not present in birds; however, both duck and

chickens have two paralogs of TRIM19, co-orthologs to mammalian

TRIM19. Ducks and chickens have an additional member of the C-

XI family, without mammalian homologues, thus named TRIM215.

The C-XI subfamily is classified by a C-terminal transmembrane
Frontiers in Immunology 08
domain; however, both duck TRIM215 and TRIM13 appear to be

missing this domain (Supplementary Table S1). TRIM215 appears

distantly related to TRIM59 and TRIM13. The group C-II orthologs

are missing the C-terminal domains for which they are classified in

humans. Duck TRIM54, 55, and 63 appear to be missing the COS

and acid domains that their human orthologous counterparts have.
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FIGURE 2

Most duck TRIM proteins have chicken orthologs. Phylogenetic relationships between the duck and chicken TRIM protein sequences were
investigated using maximum likelihood (ML) trees with 10,000 Ultrafast bootstrap replications. External nodes were color-coded to indicate species
of origin for each TRIM protein. Clades A and B represent the two major subclades. Clade C represents the C-IV subfamily. Clade D represents the
C-I and C-II subfamily. Clade E includes the MHC-linked TRIM proteins. Clade F represents genes present in the TRIM25 locus and related genes
located elsewhere, referred to as the "TRIM25 cluster". Initial ML tree was referred using. IQTree and visualized using FigTree. The resulting tree was
edited for clarity using Adobe Illustrator.
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3.5 Birds, reptiles, and mammals
have independent expansions of
MHC-linked TRIM genes

To examine the expansion within the C-IV subfamily in higher-

order vertebrates, we assembled protein sequences from human,

mouse (or other placental mammal if mouse TRIM protein was
Frontiers in Immunology 09
non-existent), marsupial, three birds, and two reptiles from the

NCBI protein database. We aligned these sequences and inferred a

ML phylogenetic tree with 5000 UltraFast bootstrap replications

(Supplementary File 8). This tree shows both turtles and lizards

appear to have independent expansions of C-IV TRIM genes in the

MHC region, which were excluded from subsequent analysis. To

assess shared and unique TRIM proteins between species, we
FIGURE 3

Classification of TRIM proteins by their C-terminal domains in human, duck, and chicken. RING, really interesting new gene; COS, C-terminal
subgroup one signature; FN3, fibronectin, type III; SPRY, SPla, and Ryanodine receptor domain; PHD, Plant Homeo Domain; BROMO, Bromodomian;
MATH, meprin and TRAF homology domain; TM, transmembrane domain; FIL, filamin domain; NHL, NCL-1, HT2A, and Lin-41 repeats; ARF, ADP
ribosylation factor-like; UC, uncharacterized.
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created a phylogenetic tree of C-IV subtype TRIM proteins from

representative mammalian, reptile, and avian species (Figure 4). We

combined external nodes when all members of the clade were clear

orthologs and color-coded these branches by the group of higher-

order vertebrates. Many TRIM C-IV subfamily genes are conserved

in all vertebrate species, while some are present in only mammals

and some unique to birds and/or reptiles. The C-IV subfamily

broadly splits into two clades (clades A and B). Clade A splits into
Frontiers in Immunology 10
two subclades (clades B and C), and clade C contains some highly

conserved TRIM proteins, such as TRIM35, 50, and 63. Within

clade A is the nested clade D, which contains the MHC-linked

TRIM genes from vertebrates; however, these MHC-linked TRIM

genes cluster separately between diapsids (clade G) and mammals

(clade H). The human MHC-linked TRIM proteins, TRIM10, 15,

26, and 40, cluster closely with orthologs from both mouse and

marsupial but not with any TRIM proteins from birds or reptiles.
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FIGURE 4

TRIM protein C-IV subfamily has direct orthologs among species and unique expansions within species. Phylogenetic relationships between C-IV
subfamily members from human, non-primate placental mammal, marsupial, bird, lizard, and turtle protein sequences were investigated using
maximum likelihood (ML) tree with 5,000 Ultrafast bootstrap replications. External nodes were combined when direct homology was inferred
between species. Clades A and B represent the two major subclades. Clades C and D represent the two subclades within clade A. Clade E represents
the location of MHC-linked TRIM genes, and clades G and H represent the separation of diapsid and mammalian MHC-linked TRIM proteins
(respectively). Clade F represents the expansion of mammalian C-IV TRIM proteins. Initial ML tree was inferred using IQTree and visualized using
FigTree. The resulting tree was edited for clarity using Adobe Illustrator.
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Our results suggest lineage-specific expansions of TRIM genes

in higher-order vertebrates and that the expansions of avian and

mammalian MHC-linked genes diverged from an ancestor of

TRIM7. The cluster of MHC-linked TRIM genes in mammals

(clade H) appears to have expanded from a common ancestor

shared with TRIM7. Many of the avian MHC-linked TRIM genes

(clade G) expanded from a common ancestor shared with

TRIM201, found in diapsids but not mammals. Our analysis also

suggests that previous annotations of the avian MHC-linked TRIM

genes were incorrect. Genes that we have assigned names TRIM203,

205, and 206 were previously designated as TRIM27.2, 27.1, and

27L, respectively (37). Our results demonstrate that these genes are

not orthologous to human TRIM27. TRIM202 and TRIM204 were

called TRIM39.2 and TRIM39.1, respectively. TRIM202 and

TRIM204 exist in both birds and reptiles and appear to be

missing in mammals. TRIM202 has been published under the

name TRIM39 in chickens (51); however, we found a gene in the

chicken and duck transcriptomes, which clusters with TRIM39

from other species. TRIM209 is in clade G with the avian MHC-

linked TRIM genes and appears in both lizards and turtles. A single

avian ortholog was found in the Kiwi (Apteryx rowi), but we were

unable to locate an ortholog of this gene in other birds. TRIM213 is

not located in the MHC region of ducks but clusters tightly with the

other avian MHC-linked TRIM genes. Our results suggest that the

diapsid TRIM genes in clade G are distant paralogs, expanding from

a common ancestor shared with TRIM201, while the mammalian

TRIM genes in clade H are distant paralogs originating from a

common ancestor shared with TRIM7. These results suggest the

diapsid and mammalian MHC-linked genes located in clades G and

H are not co-orthologs but arose from distinct lineage-specific

duplications. Reptiles appear to have lineage-specific duplications

of TRIM genes in the MHC without orthologs in other vertebrates.

We found 67 TRIM genes adjacent to the MHC class I genes in the

eastern fence lizard and 228 in the yellow pond turtle. Many of these

turtle and lizard TRIM genes appear not to have orthologous genes

in birds or mammals and appear to be inparalogs within their

lineages. It appears that independent duplications and

diversification of the MHC-linked TRIM genes have happened

often in reptilian, avian, and mammalian lineages.

Mammals have a large expansion of TRIM proteins in clade F.

Many of these TRIM proteins are known to have expanded in

eutherian mammals such as the expansion of the TRIM5/6/22/34

locus (15, 106, 107). Ducks have two TRIM proteins in this minor

clade, TRIM39 and TRIM212. TRIM212 appears to be a result of

lineage-specific duplication, as it appears present in diapsids only.

Clade B contains the TRIM25 cluster, C-IV TRIM proteins

present in all animals surveyed, including TRIM14/16/25/47/65 and

RNF135. This clade also includes TRIM210, which we could only

find examples of in birds and TRIM211, which is present in birds

and reptiles but not in mammals. This clade contains a TRIM

protein found only in reptiles, which we have named TRIM214

(Supplementary File S8) and shares ancestry with TRIM47 and 65.

Notably, RNF135 appears absent in species of bird, which also

appear to be missing RIG-I (101) but is found in other birds,

reptiles, and mammals. TRIM16 appears absent in chicken and
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duck but is present in other birds, reptiles, and mammals. This

TRIM25 cluster has remained conserved throughout vertebrate

evolution, with additional TRIM genes in birds and reptiles.
3.6 The MHC-linked TRIM gene repertoire
of birds, reptiles, and mammals has
dramatically changed over time

To explore the evolution of TRIM genes in the MHC region, we

generated maps of chromosomal locations of MHC-linked TRIM

genes for representative vertebrate species (Figure 5), including

duck, mouse, human, Tasmanian devil, yellow pond turtle, and

Eastern fence lizard. The duck MHC-linked TRIM genes include

orthologs of mammalian TRIM7 and TRIM41, and the diapsid

lineage-specific TRIM200, 201, 202, 203, 205, 206, 207, and 208

(Figure 5A). MHC-linked TRIM genes show orthology between

humans and mice. Mice have TRIM39, 26, 15, 10, 40, and 31, and

RNF39 in the MHC region (Figure 5B), which humans share

(Figure 5C). As previously reported, humans have TRIM38 and

27 telomeric to the TRIM cluster (35). To ascertain which MHC-

linked TRIM genes predate eutherian mammal speciation, we

examined the MHC region of a marsupial and two reptiles.

Marsupials are an ancient mammal, diverging from eutherian

mammals approximately 160 million years ago (108). Tasmanian

devils have orthologs to MHC-linked TRIM genes present in either

placental mammals or duck. Like humans and mice, Tasmanian

devils have TRIM39, 26, 15, and 10, and RNF39 (Figure 5D). Like

ducks, Tasmanian devil MHC-linked TRIM genes also include

TRIM7 and 41, suggesting that these genes were lost from the

mammalian MHC region during eutherian speciation. Different

from birds and placental mammals, TRIM25, 47, and 65 are also

located adjacent to the MHC-linked orthologous TRIM genes on

Tasmanian devil chromosome 4. To see if this is an ancestral

organization, we compared the Tasmanian devil to reptile MHC

regions. Recent phylogenetic analysis suggests that turtles share a

clade with birds and crocodiles, while lizards form a separate clade

(109). We found a large expansion of 226 TRIM genes in the MHC

region of the yellow pond turtle (Figure 5E) (Supplementary File

S2). Many of these TRIM genes do not share obvious orthology to

mammalian or avian TRIM genes. Like mammalian MHC-linked

TRIM genes, the yellow pond turtle has RNF39 and TRIM39 in the

MHC locus. Turtles appear to have an expansion of RNF39 co-

orthologs, composed of six RNF39R genes. Some genes orthologous

to avian MHC-linked TRIM genes also appear in turtles, including

two TRIM206 genes, TRIM7, 41, 201, and 202. TRIM209, a TRIM

gene that appears in reptiles and kiwi birds, is also in this region.

Like the Tasmanian devil, the TRIM25 locus is adjacent to MHC-

linked TRIM genes in turtles. We found 77 TRIM genes in the MHC

locus and the TRIM25 locus in the Eastern fence lizard (Figure 5F).

The Eastern fence lizard, more distantly related to birds than

the yellow pond turtle, has two paralogs of TRIM206 and an

ortholog of TRIM201, suggesting that TRIM201 and 206 are

ancestral to the other MHC TRIM genes of birds. Like the yellow

pond turtle and Tasmanian devil, the Eastern fence lizard MHC-
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linked TRIM repertoire also contains RNF39, TRIM7, 39, and 41

orthologs. Similar to the Tasmanian devil and yellow pond turtle,

the Eastern fence lizard TRIM25 locus is adjacent to the MHC-

linked TRIM genes. TRIM211 and TRIM214, both TRIM proteins

that clustered with TRIM25, 47, and 65, are in this region in lizard.

There were more TRIM genes downstream of the TRIM25 locus in

the Eastern fence lizard; however, we decided to limit this

comparison to the MHC and TRIM25 loci. Our results suggest

the TRIM25 locus may have evolved alongside the MHC locus in

lower vertebrates. As this is conserved between marsupials and
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reptiles, it suggests that the TRIM25 locus moved away from the

MHC independently in avian and placental mammals. Our results

suggest that RNF39, TRIM7, 39, and 41 are ancestral MHC-linked

TRIM genes with conserved orthologs in reptiles, birds,

and mammals.

To investigate differences in the MHC-linked TRIM genes within

the avian lineage, we compared the genomic arrangement of the MHC-

linked TRIM genes of mallard duck, tufted duck, chicken, kākāpō, barn

swallow, and European golden plover (Figure 6). Tufted duck and

chicken both contain TRIM204, while this gene appears to be missing in
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FIGURE 5

Orthologs of TRIM7, TRIM39, TRIM41 and RNF39 are present in all orders, but have been relocated from the MHC of humans and mice. MHC-linked
TRIM genes from duck (A), mouse (B), human (C), Tasmanian devil (D), yellow pond turtle (E), and Eastern fence lizard (F) locations were mapped
using karyoploteR in the R studio environment. TRIM genes without distinct homologs or names are shaded in gray.
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mallard duck. We can find the corresponding sequence of TRIM204 in

the 5′-UTR of TRIM205 in the mallard duck, which suggests a

misassembly. However, there are no detectable transcripts of this gene

expressed in any mallard tissues, indicating that it may no longer be

expressed in mallard ducks. Both species of mallard ducks have

TRIM206, which is missing in chicken, kākāpō, and barn swallow.

Barn swallows have lost TRIM206 and two TRIM genes downstream of

TRIM41. We observe a species-specific expansion of the MHC-linked

TRIM genes in the European golden plover between TRIM205 and 206,

with two to three additional predicted TRIM-like genes. These TRIM
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genes are closely related paralogs and do not appear to have direct

orthologs in birds or reptiles. Phylogenetic analysis of these paralogs

found the golden plover TRIM genes cluster in a clade with TRIM203

and TRIM205 and not with any of the reptile-specific MHC-linked

TRIM genes (data not shown), suggesting that this may be a lineage-

specific expansion. As the current golden plover genome is not

annotated and has no accompanying transcriptome data, it is

unknown how many of these genes are expressed. Our analysis of the

MHC-linked TRIM genes in birds demonstrates these genes are

continuously changing over time.
FIGURE 6

MHC-linked TRIM gene repertoire in birds has expanded and contracted during avian evolution. Genomic locations and direction of transcription of
the MHC-linked TRIM genes from mallard duck, tufted duck, chicken, kākāpō, barn swallow, and European golden plover. All sizes of genes and
chromosome length were normalized to the size of mallard duck gene TRIM208. Break shows gap of indicated size.
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3.7 The TRIM25 locus has undergone gene
loss and gain during diapsid evolution

The TRIM25 locus has gone through s ign ificant

rearrangements during avian evolution (Figure 7). In the duck,

genes are arranged TRIM25/RNF135/TRIM65/TRIM47, while in

the chicken, they appear in the gene order of TRIM65/47/25.

RNF135 was noted as missing in chickens (99, 110), and we could

not find it in our chicken transcriptome interrogation. The
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inactivation of chicken RNF135 appears to be independent of

the chromosomal rearrangement, as only RNF135 is missing,

while the surrounding genes ADAP2 and RHOT1 are still

present. Like chickens, Adelie penguins appear to be missing

RNF135; however, RHOT1 and ADAP2 are still present and

near each other. Interestingly, Adelie penguins have an ortholog

of TRIM16, which only appears in penguin, ostrich, kiwi, and

hoatzin genomes (NCBI). A TRIM16 ortholog is also present in

lizard and turtle genomes, suggesting that many birds, including
FIGURE 7

The TRIM25 locus has undergone rearrangement during diapsid evolution. Genomic locations and direction of transcription of TRIM genes in the
TRIM25 locus from mallard duck, chicken, kākāpō, barn swallow, Adelie penguin, and Eastern fence lizard. All chromosome lengths were normalized
to the size of the total TRIM25 locus length in mallard duck.
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both chickens and ducks, may have lost TRIM16. Barn swallows

appear to be missing TRIM65, which is present in all other birds

that we surveyed in this study, and in reptiles. Reptiles have a

novel TRIM gene in the TRIM25 locus, which we have named

TRIM214, as it has no clear ortholog in mammals. In addition,

Eastern fence lizards appear to have a duplication of TRIM25.

The TRIM25 locus appears to have undergone significant

rearrangement in both repertoire and gene placement throughout

avian evolution.
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3.8 Duck TRIM proteins cluster
within TRIM subfamilies

To infer ancestry in the duck TRIM protein repertoire, we

aligned all duck amino acid sequences and generated a ML tree. We

color coded the tree based on the subfamily assigned by the C-

terminal domain possessed by each TRIM protein or their

orthologous TRIM protein in humans (Figure 8A). TRIM

proteins segregate into two major clades, with one clade largely
B

A

FIGURE 8

Duck TRIM and TRIM-like proteins cluster within subfamilies. Phylogenetic relationships between the duck TRIM protein sequences were
investigated using maximum likelihood (ML) trees with 10,000 Ultrafast bootstrap replications (A). The distances between protein sequences were
also investigated using a minimum spanning network to infer similarity and function (B). Each external node was color-coded according to TRIM
subfamily designation. ML tree was made using IQTree, visualized using FigTree, and edited for clarity using Adobe Illustrator. MSN was made using
msa and seqinR in RStudio and edited for clarity using Adobe Illustrator.
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composed of the C-IV proteins. As previously mentioned, The C-IV

subfamily is often associated with immune responses in mammals.

TRIM8, 29, and 42 also cluster in this clade. TRIM8 and 29 belong

to the C-V subfamily. The C-V subfamily has an unclassified C-

terminal domain. TRIM42 is the sole member of the C-III subfamily

and has a COS and FN3 C-terminal domain.

Within the second major clade, many of the subfamilies are

represented, which supports the hypothesis that these subfamilies

originated from a common ancestral TRIM gene. Typically,

members of a subfamily group together in a clade. Subfamilies C-

I and C-II appear to have descended from the same common

ancestor, as they segregate into one large clade. Members of

subfamily C-V do not share clades and are distant. This is

perhaps not unexpected as the C-V subfamily is classified as

RBCC domain containing TRIM proteins with unclassified C-

terminal regions. The TRIM-like gene NHLRC1 and TRIM32 do

not share a clade with the other C-VII subfamily members,

suggesting they could have arisen through exon shuffling events

independently from the other C-VII family members TRIM2, 3, and

71. We only included TRIM or TRIM-like genes that coded for full-

length proteins in this analysis. TRIM211 had premature stop

codons throughout the sequence and, as such, was excluded.

To assess the structural similarity of the TRIM proteins, we

generated a minimum spanning network (MSN) (Figure 8B), which

connects protein sequences (nodes) based on the distance between

proteins without inferring ancestry and instead can infer shared

function between these proteins (111). Most members of a

subfamily cluster closely together, including members of the C-IV

and C-VI subfamilies. Many C-V members are quite distant in the

MSN, reflecting their disparate C-terminal domains and likely

dissimilar functions. Most of the C-IV subfamily of TRIM

proteins all cluster together in the center of the MSN. The MHC-

linked C-IV TRIM mostly form the inner branches and cluster

closely, apart from TRIM200, 207, and 208, which are quite far away

from the other MHC-linked TRIM proteins on outer nodes.

Proteins from the TRIM25 cluster group tightly together,

expanding from the TRIM25 node, with the exception of

TRIM14, which remains close but branches off of TRIM39 on a

separate node. TRIM29, a C-V subfamily member, branches closely

with TRIM25, 47, and 65, and RNF135. TRIM212, present in

diapsids but appears missing in mammalian lineages, also clusters

closely with the TRIM25 expansion. TRIM200 and TRIM213, both

found in ducks but appear to be missing in chickens, share a distinct

branch with TRIM203.
3.9 While most duck TRIM genes
are ubiquitously expressed, some
are tissue specific

To visualize the expression of TRIM genes in duck tissues, we

mined the NCBI SRA database for RNA-seq reads from various

tissues and aligned these reads to our 57 TRIM or TRIM-like

sequences. We analyzed pairwise differences in TRIM differential

expression (DE) between tissues using an MDS plot and most

tissues clustered together (Supplementary Figure S2). Muscle and
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heart cluster very closely together when TRIM gene DE is compared

between tissues. While all samples cluster together closely with like

tissue samples, some tissues such as brain and testes tissues, for

example, have more distinct clustering patterns. These results

suggest that some TRIM genes are tissue specific, leading to

distinct MDS plot clustering of tissues.

To visualize abundance and relative expression of TRIM genes in

each duck tissue, we generated heatmaps from the analysis of our

normalized read counts (Figure 9). While many of the 57 duck TRIM

genes are ubiquitously expressed in the tissues sampled, with varying

levels of read counts per gene, there are some which are more specific

(Figure 9A). TRIM54, 55, and 63, FSD2, and RNF207 have more

reads mapped to muscle and heart than to other tissues. TRIM36 and

TRIM42 were abundantly expressed in testis. TRIM9 appears to be

highly expressed in brain tissues. TRIM201 and 41, two of the MHC-

linked TRIM genes, had high read counts in all tissues sampled. In

contrast, TRIM29 had very few averaged reads counted in any tissues

sampled. Although TRIM211 encoded a sequence with a premature

stop codon, it was still expressed at a low level in all tissues sampled,

suggesting that the promoter is still active.

To determine the relative expression of TRIM genes sampled in

each tissue, we compared the expression of TRIM genes from each

tissue to the average expression in all samples. White or near zero

log2 fold change (FC) values denote average expression of the gene

in that tissue when compared to all other tissues, while negative

(blue) or positive (red) log2(FC) values suggest lower or higher

relative expression (respectively) when compared to all other

tissues. The resulting heatmap visualizes the relative expression of

TRIM genes in each tissue and demonstrates some of the more

subtle differences in TRIM gene expression between the tissues

(Figure 9B). Hierarchical clustering separates the expression pattern

of TRIM genes into two major clades. The first major clade contains

testis, then branches into two smaller subclades. The first subclade

contains the immune tissues: kidney, intestine, liver, spleen, and

lung. The MHC-linked TRIM genes TRIM202 and 203 have higher

relative expression in these tissues than in any of the other tissues

sampled. The second subclade contains brain and adipose tissues,

fibroblasts, and ovaries. Muscle and heart form the second major

clade, with the pattern of TRIM expression between these two

tissues being very similar. Notably, TRIM7, 207, 208, and 212, and

FSD1L have high relative expression in the muscle, and only average

or low relative expression in the heart.

We summarized the five highest and lowest statistically

significant [false discovery rate (FDR) < 0.05] relatively expressed

TRIM genes in each duck tissue analyzed (Figure 10). The C-IV

subfamily of genes are often associated with inflammation and

immune responses. Immune relevant tissues such as the lung,

spleen, and intestine had a predominance of C-IV family

members expressed at a higher level than in other tissues. Many

MHC-linked genes also have higher relative expression in these

immune relevant tissues. TRIM205, 207, and 202 have higher

relative expression in lung. TRIM203 and 202 have higher relative

expression in the spleen. TRIM202, 203, and TRIM7 have higher

relative expression in the intestine. Immune privileged tissues such

as brain and gonads, the C-IV subfamily genes, are among the least

relatively expressed. Fibroblasts had low relative expression of many
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C-IV family members. TRIM35 and 47 are C-IV subfamily

members with higher relative expression in duck fibroblasts, while

TRIM55, 63, and 66 have higher relative expression in fibroblasts

but are not C-IV subfamily members. TRIM29 was flagged as

having higher relative expression in the adipose tissue; however,

on closer inspection, two duck adipose samples had an over-

representation of reads mapped to TRIM29. As the adipose

tissues sampled clustered together when analyzed for TRIM gene
Frontiers in Immunology 17
expression (Supplementary Figure S2), it is likely that two of the

birds sampled for this tissue were outliers.
4 Discussion

Here, we identify TRIM and TRIM-like genes in the duck by

mining the SRA, gene, and protein NCBI databases and generating
B

A

FIGURE 9

Many duck TRIM genes are ubiquitously expressed and abundant, while some demonstrate tissue-specific expression. The 57 duck TRIM or TRIM-
like genes were used as a reference to align RNA-seq reads from the heart, muscle, testes, brain, fibroblast, ovary, kidney, liver, intestine, spleen,
adipose, and lung tissues collected from domestic mallard (Anas platyrhynchos). Mapped TRIM gene reads were normalized to library size, and
averages of log read counts per million (CPM) were visualized in a heatmap (A). Reads mapped to each tissue were then compared to the average
read count across all tissues to determine relative tissue expression (B). All analyses were conducted by EdgeR in the Rstudio environment.
Heatmaps were created using ggplot2 in Rstudio, and all heatmaps were edited in Adobe Illustrator for clarity.
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and interrogating a de novo transcriptome assembly. We found 57

duck TRIM genes, classified by their C-terminal domains, and

compared them to mammalian and chicken TRIM repertoires.

Most duck TRIM proteins are similar to their chicken orthologs.

The duck TRIM sequences were aligned, and phylogenetic

relationships between the TRIM proteins were inferred.

Phylogenetic analyses show expansion of the C-terminal PRY-

SPRY containing C-IV TRIM subfamily. Many duck MHC-linked

C-IV TRIM genes lack mammalian orthologs, and this repertoire
Frontiers in Immunology 18
has expanded during diapsid evolution. The TRIM25 locus has also

undergone rearrangement during vertebrate evolution, and our

analyses suggest that this locus was adjacent to the MHC locus

but separated onto different chromosomes in birds and eutherian

mammals. Finally, we aligned RNA-seq reads from different duck

tissues to the TRIM gene sequences to determine relative expression

levels of these TRIMs in each tissue.

To our knowledge, only one study has previously classified the

TRIM family genes in birds. Sardiello and colleagues listed 37
FIGURE 10

Immune relevant tissues have higher relative expression of C-IV TRIM family members. The relative expression of 57 duck TRIM or TRIM-like genes
fibroblast, lung, liver, spleen, kidney, intestine, adipose, muscle, heart, brain, ovary, and testes were sorted by statistical significance (FDR<0.05) and
then organized into top 5 highest or lowest relatively expressed TRIM genes per tissue. Dots next to TRIM gene are colour-coded according to TRIM
subfamily designation.
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chicken TRIM genes during their analysis of the evolution of group

I and group II TRIM genes in vertebrates (9). Other reports on

avian TRIM genes characterized the expanded B30.2/PRY-SPRY

TRIM genes in chickens (36, 94), turkeys (112), and ducks (37).

Outside of birds, lineage-specific expansions of B30.2/PRY-SPRY

TRIM genes have also been noted in fish (113, 114). Teleost fish had

three separate expansions of B30.2/PRY-SPRY TRIM genes, with

some specific to teleost fish as they are not found in amphibians,

birds, or mammals. Zebrafish have 208 TRIM genes (Danio rerio),

pufferfish have 67 (Tetraodon nigroviridis) (39), and grass carp

(Ctenopharyngodon idella) have 42 TRIM genes (115). The

differences in TRIM gene repertoire numbers in fish are partly

due to the whole genome duplication events (116). Here, we

document what appears to be a similar expansion of MHC-linked

TRIM genes in reptiles, with many of these genes lacking direct

orthologous counterparts in birds.

From our transcriptome interrogation, we found 57 TRIM

genes in the duck. Of these TRIM genes, 54 could be found on

their respective chromosomal locations in the NCBI Pekin duck

genome (assembly ZJU1.0), and the location of FSD1 was inferred

from synteny of surrounding genes in Ensembl rapid release

genomes (GCA_017639305.1 and GCA_017639285.1). The duck

TRIM gene repertoire spans 21 chromosomes, suggesting that many

of these genes have evolved independently. Similar expansions can

also be seen in human (9) and fish (39, 113, 115). As previously

described, there is an expansion of PRY-SPRY containing TRIM

genes within the MHC-B locus on chromosome 17 in the duck (37).

The humanMHC-linked TRIM genes are tightly linked and include

TRIM10, 15, 26, 31, 39, and 40, and RNF39, while TRIM27 and 38

are telomeric to this region (35). In mice, TRIM27 and 38 are on

chromosome 13 in the A3.1 region, while TRIM10, 15, 26, 31, 39,

and 40, and RNF39 are located on chromosome 17 in the B1 region

(105). In chickens, the MHC-B locus is located on chromosome 16

and contains many of the same TRIM genes found on chromosome

17 in ducks in syntenic organization, including TRIM 7, 201, 202,

203, 205, 207, 208, and 41 (36, 37, 94, 117). These genes were

previously named to what was presumed to be orthologous human

TRIM genes due to synteny and closest BLAST identity hits. Here,

we updated the names of these genes to reflect that phylogenetic

analysis suggests that they do not have clear orthologous genes in

mammals. Previously, the chicken MHC-linked TRIM genes were

named TRIM7.2, 7/7.1,39/39.2, X/27.2, BR/39.1, 27/27.1, 41, B30.2-

1/BTN-1, and B30.2-2/BTN-2 (36, 94). Ruby and colleagues

presumed that synteny of the TRIM genes in the MHC-B locus of

chicken was conserved with human and used exon-based identity to

infer ancestry, although their phylogenetic analysis suggested that

TRIM27 and TRIM39 in chicken did not share ancestry with their

presumed human orthologs. With the inclusion of TRIM genes

from genomes of other vertebrates in the phylogenies, we show that

many avian MHC-linked TRIM genes arose independently from the

human MHC-linked TRIM genes. While mammalian MHC-linked

TRIM genes appear to have arisen from a duplication event

involving the common ancestral gene shared with TRIM7, avian

MHC-linked TRIM genes appear to have arisen from an ancient

duplication event involving the common ancestor shared with

TRIM201. Both lizards and turtles have TRIM7, 41, and 206,
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while turtles, presumed to be a closer relation to birds than

lizards (109), also have orthologs to duck TRIM201 and 202.

While eutherian mammals do not share direct orthologs to duck

TRIM genes in their MHC-locus, the Tasmanian devil has TRIM7

and 41 in their MHC locus, suggesting that TRIM7 and 41 are

ancestral MHC-linked TRIM orthologs. TRIM206 appears missing

in galliform lineages (37) but is present in ducks and many other

birds. We document that TRIM204 appears to be missing in

mallard duck and is present in chickens. This gene is annotated

in tufted ducks and shares synteny with the chicken TRIM204 gene.

Thus, it appears that the TRIM genes associated with MHC can

change over time (117). Our results support a “birth and death”

model of evolution of the MHC-linked TRIM genes (118), with

lineage-specific duplication events increasing the TRIM diversity,

and previously existing genes being removed by deletion, mutation,

or inactivation (as in the case with TRIM204). We demonstrate that

some MHC-linked genes have changed significantly between

reptiles, birds, and mammals. It appears that TRIM7, 41, and

RNF39 are ancestral to the MHC-linked TRIM genes in higher-

order vertebrates.

Our phylogenetic trees show that ducks and chickens have

direct orthologs for 53 TRIM genes, which segregate into distinct

clades. Ducks have four proteins, which appear absent in chickens

RNF135, TRIM200, 213, and 206. Chickens have TRIM204, 211,

and 210, which are either incomplete or missing in ducks. TRIM211

orthologs are found in both birds and reptiles, while TRIM210

appears to be present only in birds. Duck RNF135, chicken

TRIM211, and TRIM210 all fall within the clade containing

TRIM14, 25, 47, and 65. No functions have yet been published

for TRIM211 and TRIM210; however, due to their phylogenetic

location, they may bind to helicase domains similar to the function

of members of this clade in mammals (104). Some avian genes have

been notoriously difficult to identify due to high GC content and

lack of representation of these regions in genomic libraries (119).

Indeed, this may be the reason that RNF39R is unannotated and

unplaced in the chicken and the duck genomes. The newly

identified RNF39R sequences have 72% and 74% GC content in

the duck and chicken (respectively), making the contig harder to

assemble and place in the genome.

Species-specific differences in TRIM repertoires are seen in other

non-avian vertebrates, especially when comparing C-IV TRIM genes.

There is a large expansion of C-IV TRIMs on chromosome 11 in

primates (120), including TRIM5, 6, 22, and 34. TRIM5 and 22

restrict retroviral replication in primates (13, 14, 121, 122). Humans

have a single copy of TRIM5, cattle have five co-orthologs of TRIM5,

while TRIM5 is deleted in dogs (15). Primates have additional TRIM

duplications on chromosome 11 close to the TRIM5/6/22/34 cluster,

including TRIM49 and 64 (120). Bats host many types of viruses

(123–125) and have duplications of TRIM5 and 22 (107, 126). There

are other species-specific differences of C-IV members in bats,

including duplications of TRIM25, 41, 60, and 75 (126).

Duplication and deletion events of these genes may be a response

to selective pressures from viruses. Large duplication events have

occurred in fish C-IV TRIM proteins, and the number of these TRIM

gene vary greatly, even within orders offish. For example, Perciformes

(perch-like fish) have from 107 to 672 C-IV TRIM genes in their
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genomes, depending on species (114). It is unknown if the fish C-IV

TRIM expansions are duplicating from a similar common ancestor or

expanding from different common ancestors in different types of fish.

TRIM repertoires in vertebrates are likely rapidly evolving due to

selective pressures from pathogens.

Our identification of two TRIM19 co-orthologs in ducks and

chickens prompted us to search available avian genomes, which

indicate two paralogs of TRIM19. In mammals TRIM19/PML is a

key component of PML nuclear bodies (127). PML nuclear bodies

regulate many important processes in mammals, such as the DNA

damage response, apoptosis, and gene expression (128–130). PML

is also involved in immune responses to viruses, by regulating

signaling pathways during infection (131, 132), and are targeted by

viruses to inhibit this signaling (133, 134). PML has not been

annotated in any published fish (39, 113) or amphibian lineages

(NCBI). The PML co-orthologs, however, appear in both birds and

reptiles, suggesting this duplication happened in the common

ancestor of diapsids. It is unknown if either of the avian TRIM19

paralogs form PML nuclear bodies or has antiviral activity.

Our phylogenetic tree of duck TRIM proteins demonstrated

that most TRIM subfamilies form separate clades. The C-IV

subfamily, the largest and most diverse of the subfamilies, has

two major clades, the first containing the MHC-linked TRIM

proteins. The avian-specific TRIM213 also clusters in the MHC-

clade. This TRIM potentially translocated to or from the MHC

region earlier in vertebrate evolution. TRIM39 and RNF39R are

unplaced in the duck and chicken genomes, however, are located in

the MHC-region in reptiles, mammals, and, in the case of TRIM39,

also in the kākāpō. This suggests that RNF39 and TRIM39 may also

be located in the MHC region of the duck and chicken. The MHC

region has rapidly duplicated and expanded throughout vertebrate

evolution, and many genes in this region are involved in adaptive or

innate immune responses (135, 136). In chickens, the MHC region

was dubbed as the “minimal essential MHC” due to it being much

more compact and simpler than MHC regions found in mammals

(137, 138), and our comparisons of this region between duck and

chicken demonstrate that the chicken MHC region is more

condensed than in ducks. Reptiles have large expansions of

uncharacterized TRIM genes in the MHC region without any

obvious orthologs in birds or mammals.

In humans, the MHC-linked TRIM genes attenuate innate

immune signaling pathways (105), thus regulate responses to

infection. As the avian MHC-linked TRIM genes are closely

linked, they likely have co-evolved and may also be involved in

innate immunity. Duck TRIM206 and TRIM205 both modulate

signaling downstream of constitutively active RIG-I CARD

domains when overexpressed in chicken cells, with TRIM206

increasing IFNb promoter activity and TRIM205 decreasing it

(37). It is not yet clear which components in the innate signaling

pathway are targeted by these TRIM proteins. In birds, an ortholog

of human TRIM41 was found in the MHC-B locus of chicken, with

orthologs later found in the turkey (112) and duck (37) MHC-B

locus. We also found TRIM41 in the MHC region of reptiles and

marsupials. Human TRIM41 is not found in the MHC and is

instead located on chromosome 5. TRIM41 in humans is known to

restrict viral replication by selective targeting and ubiquitination of
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viral proteins (139, 140) and by augmenting antiviral signaling

pathways (141). It is unknown if the avian ortholog of TRIM41 can

restrict virus; however, TRIM41 is well conserved between birds,

reptiles, and mammals.

A second group of duck TRIM genes within C-IV subfamily

having PRY-SPRY domains includes the closely related TRIM25,

47, and 65, and RNF135. Our phylogenies support TRIM14, 25, 47,

and 65, and RNF135 all originating from the same common

ancestral TRIM gene in birds, reptiles, and mammals, which is

consistent with what other groups have found when analyzing these

TRIM proteins in mammals (104). Our analysis also suggests that

TRIM29, a member of the C-V subfamily, belongs in this clade. In

mammals, RNF135, TRIM14, 25, and 65 bind helicases involved in

immune signaling using their PRY-SPRY domains, while the

function of TRIM47 is unknown (104). Duck TRIM29 inhibits

signaling pathways downstream of these helicases by catalyzing the

addition of K29-linked ubiquitin to the signaling adaptor MAVS,

resulting in a decrease in IFN signaling downstream of MAVS (50).

RNF135 has previously been excluded from TRIM repertoires

because it does not have the classical RBCC motif, as it is missing

the B-box domain. Previous studies performed in our lab could not

locate a RING domain in RNF135, and we had suggested that this

protein would be largely inactive (110). However, the recent duck

genome assembly and HMMER searches of the sequence obtained

from our de novo transcriptome indicate that duck RNF135 does

have a RING domain. The minimum spanning network places

RNF135, TRIM25, 29, 47, and 65 on the same branch, while

TRIM14 is branched separately, but still in proximity. While

there is no documented function of TRIM47 as a modifier RLR

pathways, the phylogenetic relationships and the placement in the

MSN suggest that this protein may be involved in immune function

in lower vertebrates. We demonstrated that the TRIM25 locus is

adjacent to the MHC locus in reptiles and remains adjacent to the

MHC locus in Tasmanian devils, thus likely was the ancestral

organization. The TRIM25 locus is no longer adjacent to the

MHC of birds or eutherian mammals because of genomic

rearrangement during vertebrate evolution. Penguins and reptiles

have TRIM16, which appears to be missing in many other birds,

including chicken and duck. This suggests that the TRIM25 locus

has undergone significant rearrangement throughout evolution.

Many viruses target TRIM25 (142–145) and RNF135/RIPLET

(45, 146) in order to evade antiviral responses in mammals. It is

possible that the changes in this locus are due to selective pressures

from pathogens targeting TRIM proteins.

Modifiers of the RIG-I signaling pathway appear missing in

avian lineages. RNF135 was reported missing in chicken (110),

Japanese quail (Coturnix japonica) (100), Procellariiformes (petrel),

Sphenisciformes (penguin), and Falconiformes (falcon) genomes

(101). RIG-I, the cytoplasmic detector of single-stranded RNA

viruses, also appears missing in chickens (147), other Galliformes,

petrels, penguins, and falcons (101). RIG-I is stabilized by

ubiquitinylation by RNF135/RIPLET in mammals to increase

type I interferon signaling during infection (104, 148–150). The

loss of RNF135 corresponds with the loss of RIG-I in birds (101).

Recently, Krchlıḱová and colleagues identified remnants of the

RNF135 gene with partial exons with frameshifts in chickens.
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Pseudogenization of RNF135 has happened in many galliform

birds, which have lost RIG-I, while the intact gene is present in

two basal galliform birds that also have RIG-I. TRIM206 augments

the RIG-I signaling pathway when cotransfected with constitutively

active RIG-I in chicken cells; however, the mechanism is unknown

(37). Kākāpō and barn swallow both also appear to be missing

TRIM206; however, both species have RIG-I (NCBI). Penguins

appear to be missing RNF135 but have TRIM206, and most species

of penguin also appear to be missing RIG-I (101) with the exception

of the Adelie penguin, which has RIG-I (NCBI). Falcons also appear

to be missing RIG-I (101); however, we found an ortholog of

TRIM206 in the Saker Falcon. While the loss of RIG-I and

RNF135 appears to be linked in most bird species, the loss of

TRIM206 and RIG-I does not seem to be correlated; however, a

thorough search of avian genomes should be done to confirm this. It

is important to note that while many genes appear missing in avian

genomes, our data suggests that even with new long read genomic

sequencing technology, some avian genes remain “hidden” in dark

DNA (119) and can only be detected in transcriptome data. This

should also be taken into consideration when analyzing avian

genomic resources.

Many duck TRIM genes are ubiquitously expressed in all tissues

sampled; however, some do show tissue-specific expression. Muscle

and heart tissues in the duck had the most similar expression of TRIM

genes of any of the tissues sampled. TRIM54, 55, and 63 are also

known as muscle-specific ring finger (MURF) genes and are primarily

expressed in muscle fibers in mammals (151, 152). Duck muscle and

heart tissues highly express TRIM54, 55, and 63. TRIM9, 46, and 67

are all associated with neuronal development and brain tissues in

humans (1, 152–154), and this pattern of higher relative expression in

brain tissue is consistent with what we see in the duck. TRIM42 has

the highest relative expression in the testis of the duck, which is

consistent with human (152). We reported that duck TRIM71 has

higher relative expression in both testis and ovary, compared to other

tissues. In human, TRIM71 is highly expressed in testis but not ovary

(152), suggesting that even with highly conserved TRIM genes such as

TRIM71, tissue specificity can change during evolution.

Immune-relevant tissues had higher relative expression of the

C-IV TRIM subfamily members. TRIM14, 202, 205, and 207 had

the highest relative expression in lung tissues, while TRIM203, 202,

and 213 had the highest relative expression in both the spleen and

intestine. TRIM202, 203, and 213 are not yet functionally

characterized, making them potential candidates for future

immunological studies. TRIM genes which encode immune

modulating proteins, had much less relative expression in

immune privileged sites such as the brain and gonads. TRIM25,

for example, which is known to help increase RIG-I signaling

during viral infection in mammals (49) and ducks (46, 49), had

much less relative expression in brain. TRIM206, known to increase

IFN-b signaling when cotransfected with RIG-I in chicken cells

(37), had lower relative expression in the testes. Immune privileged

sites also had most C-IV subfamily TRIM genes expressed at a lower

relative level than other tissues. It is possible that these transcripts

have lower expression in immune-privileged sites to prevent

inflammatory responses. Ducks have high relative expression of
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TRIM14 in both the lung and liver. TRIM14 has not been

functionally characterized in ducks but is an antiviral protein in

mammals, which can target multiple viruses for degradation such as

hepatitis B virus (155) and influenza A virus (30). Ducks act as the

natural host and reservoir to influenza A virus (40, 41, 156) and

usually have reduced symptoms when infected with low pathogenic

strains (40, 157). Highly pathogenic strains of IAV, however,

replicate in the lungs of infected ducks and can cause disease

(158–160). Young ducks are also susceptible to duck hepatitis

virus (DHV), which replicates in the liver and results in liver

damage and mortality (161–163). Potentially, the higher

expression of duck TRIM14 in the lung and liver is a conserved

protective mechanism that allows a quick response to viral

infections from RNA viruses such as IAV and DHV.

Some TRIM genes are notably absent in birds, as they were not

found in our genome searches or transcriptome. These include the

cluster of C-IV TRIM genes located on chromosome 11 in humans,

including TRIM6, 5, 22, and 34 (15). Many of these genes have

direct antiviral activities, first noted in TRIM5alpha, shown to

restrict HIV in non-human primates (23, 121). TRIM22 is known

to restrict influenza virus in mammals (164). TRIM6 augments

antiviral signaling pathways (165). These genes have undergone

expansion and contraction in the mammalian genome, presumably

in response to pathogen pressures (15). Our phylogenies suggest

that the TRIM5/6/22/34 expansion in mammals happened within

the expansion of other mammalian specific TRIM genes including

TRIM21, 27, 38, 58, and 68. Birds also appear to be missing

TRIM20/PYRIN, a C-V TRIM with a PYRIN domain in the N-

terminus. TRIM20 has a proinflammatory role in mammals due it

its interactions with the inflammasome component apoptosis-

associated speck-like protein containing caspase recruitment

domain (ASC) (166, 167). We found no TRIM20 ortholog in our

duck transcriptome or in genomes of other birds. We also did not

find an ASC protein in our transcriptome or on NCBI, suggesting

that the “pyrin-inflammasome” may be absent in ducks.

More TRIM genes may be present in the duck but have greatly

diverged and were not detected by our transcriptome interrogation.

The incompleteness of the duck genome paired with an incomplete

set of tissues to use for de novo assembly, leaves the possibility that

we have missed some TRIM genes. Our study lacks tissues from the

eye, stomach, pancreas, and bursa. If these tissues have tissue-

specific expression of TRIM genes, we likely would not be able to

find them in our transcriptome. TRIM genes are highly regulated

during development, and screening embryonic tissues at various

stages of development might help to classify TRIM genes

predominantly expressed during development that would

otherwise be rare. Additionally, recent duplications or highly

similar genes cannot be resolved using de novo transcriptome

assembly. If highly similar genes are not annotated in the

available genomes, we would have missed them.

Throughout our analysis of TRIM genes, the issue of mis- or

improper annotations arose. Many of the diapsid TRIM genes are

assigned locus numbers and have computer-generated descriptions.

Many gene names are used redundantly to describe multiple

independent TRIM genes (i.e., TRIM39L, RFPL, etc.). We suggest
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that pipeline-assigned gene names should not be taken as proper

annotations, especially in lower vertebrates, as these gene names are

assigned on most similar human hit, which often is a human TRIM

gene of low similarity. Naming of TRIM genes in non-human

vertebrates has relied on BLAST, identity analysis, and presumed

synteny to humans. Our results demonstrate that TRIM gene

evolution is too complex to rely on these methods alone,

especially when naming the C-IV TRIM subfamily members. To

determine orthology, phylogenetic analysis should include

characterized TRIM members from multiple taxa. We have

implemented new rules in naming TRIM genes in non-human

vertebrates and offer some suggestions when naming newly found

TRIM genes in non-human species. We assigned diapsid TRIM

genes without orthology to human TRIM genes as TRIM2##. The

start at TRIM200 was to ensure there was no overlap in names

between current TRIM annotations. TRIM genes with close

paralogs should be given the same name, with numbers

identifying them. For example, we named the TRIM19 paralogs

TRIM19.1 and TRIM19.2. This will help inform the ancestry of

these genes and preserve numbers for new genes. With the

increasing number of non-model organism genomes available on

public databases, it has become much easier to compare complex

gene families between species.

We found 57 TRIM genes in the duck, with evidence that one

of these genes is a TRIM-like pseudogene. We found key

differences between the duck and chicken TRIM gene

repertoires that highlight the complex and understudied

mechanics of TRIM gene evolution. We show evidence that

TRIM proteins in the C-IV family are rapidly changing in

avian species, with important differences in the organization of

MHC-linked genes and TRIM25 locus between species.

Remarkably, these two regions are adjacent in a marsupial and

reptiles, suggesting that they were linked in the ancestral

vertebrate MHC region. This is the first major study in TRIM

gene classification in birds, where species of birds were

compared. As more complete genomes in other birds and

vertebrates are sequenced and become available, we can better

trace the expansions and deletions of TRIM genes in the

vertebrate lineages.
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