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Tumor-mediated
immunosuppression and
cytokine spreading affects the
relation between EMT and
PD-L1 status

Carlijn M. Lems, Gerhard A. Burger and Joost B. Beltman*

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University,
Leiden, Netherlands
Epithelial-mesenchymal transition (EMT) and immune resistance mediated by

Programmed Death-Ligand 1 (PD-L1) upregulation are established drivers of

tumor progression. Their bi-directional crosstalk has been proposed to facilitate

tumor immunoevasion, yet the impact of immunosuppression and spatial

heterogeneity on the interplay between these processes remains to be

characterized. Here we study the role of these factors using mathematical and

spatial models. We first designed models incorporating immunosuppressive

effects on T cells mediated via PD-L1 and the EMT-inducing cytokine

Transforming Growth Factor beta (TGFb). Our models predict that PD-L1-

mediated immunosuppression merely reduces the difference in PD-L1 levels

between EMT states, while TGFb-mediated suppression also causes PD-L1

expression to correlate negatively with TGFb within each EMT phenotype. We

subsequently embedded the models in multi-scale spatial simulations to

explicitly describe heterogeneity in cytokine levels and intratumoral

heterogeneity. Our multi-scale models show that Interferon gamma (IFNg)-
induced partial EMT of a tumor cell subpopulation can provide some, albeit

limited protection to bystander tumor cells. Moreover, our simulations show that

the true relationship between EMT status and PD-L1 expression may be hidden at

the population level, highlighting the importance of studying EMT and PD-L1

status at the single-cell level. Our findings deepen the understanding of the

interactions between EMT and the immune response, which is crucial for

developing novel diagnostics and therapeutics for cancer patients.

KEYWORDS

epithelial-mesenchymal transition (EMT), PD-L1, immunoevasion, ordinary differential
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1 Introduction

Activating invasion and metastasis, and avoiding immune

destruction are core hallmarks of cancer, i.e., acquired capabilities

that are crucial for the formation of malignant tumors (1). A

comprehensive understanding of the interplay between these

hallmarks is imperative for developing novel diagnostic and

therapeutic approaches. Still, few studies to date have focused on

the interaction between metastatic dissemination and

immunoevasion, and hence its biological basis remains in large

part unexplored.

Epithelial-mesenchymal transition (EMT), a process during

which cells transition from an adhesive epithelial to a motile

mesenchymal phenotype (2), is of critical importance for invasion

and metastasis (reviewed in (3–5)). This phenomenon is

increasingly referred to as epithelial-mesenchymal plasticity

(EMP), because emerging evidence suggests that this transition is

often incomplete, resulting in the manifestation of intermediate

epithelial/mesenchymal (E/M) phenotypes (6). Such partial EMT

programs in particular are associated with enhanced metastatic

dissemination as well as therapy resistance (7, and reviewed in (8)).

Moreover, EMT has been proposed to facilitate tumor immune

escape (reviewed in 9).

A well-established mechanism through which cancer cells

acquire immune resistance involves co-opting immune

checkpoint pathways (10). Under normal physiological

conditions, these pathways are pivotal for modulating the

immune response and maintaining self-tolerance. As a case in

point, tumor cells often upregulate the immune checkpoint

protein Programmed Death-Ligand 1 (PD-L1) (11), either in

response to inflammatory cytokines, such as Interferon gamma

(IFNg), or through constitutive oncogenic signaling (10).

Interaction of PD-L1 with its receptor Programmed Death-1 (PD-

1) on the membrane of T cells suppresses the survival, proliferation,

and effector functions of these cells, including their cytokine

release (12).

The literature reports numerous links between immunoevasion

mediated by PD-L1 and EMT (reviewed in 13). One mechanism

proposedly underlying the crosstalk between EMT and PD-L1-

mediated immune resistance is that PD-L1 is post-transcriptionally

regulated by the microRNA-200 (miR-200)–Zinc Finger E-Box

Binding Homeobox 1 (ZEB1) axis (14–16), which is part of the

‘core’ EMT regulatory machinery (6). The binding of miR-200 to

PD-L1 mRNA inhibits translation of the checkpoint ligand, and

such binding can generally promote degradation of the miRNA–

mRNA complex (17, 18). To investigate this mechanism, we

recently presented a mathematical model connecting a model for

the core EMT network to a model for IFNg-induced PD-L1

expression (19), considering mutual inhibitory feedback between

miR-200 and PD-L1. Model analysis showed that this interaction

gives rise to tristability in PD-L1 levels, with a mesenchymal state

corresponding with high PD-L1 expression, an epithelial state with

low PD-L1 expression, and an E/M state with intermediate (albeit

still relatively low) PD-L1 expression. Stimulation with IFNg further
amplifies the difference in PD-L1 expression between the stable
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EMT states. Furthermore, the bi-directional crosstalk between miR-

200 and PD-L1 reduces the amount of inducing signal required to

undergo EMT in the presence of IFNg.
Despite displaying interesting dynamics relevant for tumor

progression, our prior model of EMT–PD-L1 dynamics (19) did

not take into account several mechanisms and factors affecting

EMT and PD-L1 expression. First, an important missing

mechanism was the negative feedback of PD-L1 on the IFNg
secretion of T cells, which results from the PD-L1–PD-1

interaction (20). Second, our prior model did not explicitly

describe Transforming Growth Factor beta (TGFb) as an EMT-

inducing signal, and as a central player in tumor immune evasion

(reviewed in 21). Of particular relevance here is the ability of TGFb
to inhibit IFNg release both directly and indirectly by inhibiting T

cell proliferation and differentiation. Third, our regulatory EMT–

PD-L1 network model did not consider the potential role of spatial

effects, such as the spatiotemporal and potentially localized

spreading of cytokines within the tumor microenvironment

(TME). Fourth, the model described the behavior of an average

tumor cell and therefore did not account for intratumoral

heterogeneity, which was recently demonstrated to contribute to

resistance to PD-(L)1 blockade (22).

In the present study, we extended the model presented by

Burger et al. (19) to explore the role of immunosuppression

through PD-L1 or TGFb, and of intratumoral heterogeneity on

the crosstalk between EMT and PD-L1 expression. Analysis of our

models with immunosuppression shows that negative feedback of

PD-L1 on IFNg only decreases the difference in PD-L1 expression

between EMT phenotypes, whereas TGFb-mediated IFNg
inhibition gives rise to a negative correlation between TGFb and

PD-L1 levels within EMT phenotypes. By subsequently embedding

the above networks in multi-scale cell-based spatial simulations

with cytokine spreading and intratumoral heterogeneity, we show

that partial EMT of a tumor cell subset induced by IFNg offers

bystander tumor cells limited protection from IFNg. Moreover, we

demonstrate that a study at the cell population level may hide the

underlying relation between PD-L1 expression and EMT status.

Overal l , our analysis i l lustrates how tumor-mediated

immunosuppression and cytokine spreading can affect the

complex relationship between EMT and PD-L1 status.
2 Results

2.1 PD-L1-mediated IFNg inhibition limits
PD-L1 primarily for mesenchymal cells

Within our previously modeled PD-L1–EMT network

(Figure 1A, black, solid arrows), we did not consider the influence

of immunosuppression. One way through which such suppression

is expected to take place is the inhibition of IFNg production

following the interaction of tumor-expressed PD-L1 with T cell-

expressed PD-1 (20). To study how this negative feedback of PD-L1

on IFNg production affects the relationship between EMT and

IFNg-induced PD-L1 expression, we extended the model of
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Burger et al. (19) with this regulation (Figure 1A, red,

dashed arrow).

We examined the behavior of the modified network (i.e., with

PD-L1-mediated IFNg inhibition) for various levels of SNAIL1

(considered to be activated via, e.g., TGFb) and baseline IFNg
production rates (Figure 1). The model with inhibition displays
Frontiers in Immunology 03
similar tristability in PD-L1 expression on the cell membrane as the

model without inhibition (Figure 1B), resulting from several saddle-

node bifurcations. In both models, mesenchymal cells have the

highest PD-L1 level and epithelial cells the lowest. Notably, the

negative feedback loop does not cause additional bifurcation points,

hence the qualitative behavior of the two models is the same.
B

C D

E

A

FIGURE 1

PD-L1-mediated IFNg inhibition only quantitatively affects PD-L1 expression and EMT. (A) Schematic depiction of the EMT–PD-L1 regulatory network
(black, solid arrows) extended with negative feedback of PD-L1 on IFNg (red, dashed arrow). (B–D) Bifurcation (B, D) and continuation (C) diagrams
illustrating how, in the absence (solid lines) and presence (dashed lines) of PD-L1-mediated IFNg inhibition, the steady-state expression of PD-L1 on
the membrane (B) and ZEB1 mRNA (D) depend on SNAIL1, considering a fixed basal IFNg production rate of 0.1 nM h−1, and the steady-state
expression of PD-L1 on the membrane depends on the basal IFNg production rate, considering a fixed SNAIL1 level of 1.95 × 105 molecules (C).
Colors represent the different stable equilibria (representing E, E/M, and M phenotypes) and unstable equilibria (indicated in legend). (E) Phase
diagram showing how the presence of stable equilibria (colored regions, indicated in legend) depends on the basal IFNg production rate and SNAIL1
in the absence (left) and presence (right) of PD-L1-mediated IFNg inhibition. Vertical dashed lines in (B, D, E) show the SNAIL1 level used in (C), while
horizontal dashed lines in (E) show the basal IFNg production rate used in (B, D).
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However, the feedback does decrease PD-L1 expression for all EMT

phenotypes, thereby reducing the absolute and relative differences

in PD-L1 expression between phenotypes. The inhibition affects the

equilibrium PD-L1 level for all phenotypes when the IFNg
production rate is low, but only the mesenchymal phenotype for

intermediate IFNg production rates (Figure 1C). At high IFNg
production rates, the feedback has no effect on PD-L1 expression

for any phenotype because the IFNg level is still sufficiently high to

closely approach the maximal transcription rate of PD-L1.

We subsequently investigated the impact of PD-L1-mediated

IFNg inhibition on ZEB1 expression and EMT phenotype stability.

The inhibition causes a rightward shift of the upper part of the

bifurcation diagram of ZEB1 as dependent on SNAIL1 input signal

(Figure 1D), because a reduced PD-L1 expression leads to an

increased amount of miR-200, in turn affecting EMT. To further

characterize this effect, we created a phase diagram showing how

the stability of EMT phenotypes depends on SNAIL1 levels and

baseline IFNg production rates (Figure 1E). Compared to the model

without IFNg inhibition, in the presence of such inhibition the

IFNg-induced leftward shift occurs for higher IFNg production

rates and is no longer parallel for the different bifurcation points.

These bifurcation point shifts remain similar upon adjustment of

the model parameters implementing the negative feedback, i.e., a

sensitivity analysis (Figure S1, left panels). In conclusion, our model

predicts that negative feedback of PD-L1 on IFNg has a quantitative,
but not qualitative, effect on the relationship between EMT and PD-

L1 expression.
2.2 TGFb-mediated IFNg inhibition causes
PD-L1 expression to correlate negatively
with TGFb within EMT phenotypes

Apart from PD-L1-mediated IFNg inhibition leading to

immunosuppression, such suppression can also be invoked by

TGFb. In order to separately study the impact of this alternative

inhibition on the crosstalk between EMT and IFNg-induced PD-L1

expression, we explicitly described TGFb in our model as a driver of

SNAIL1 expression (Figure 2A). Moreover, we extended this model

with the inhibition of IFNg production by TGFb, in a similar

manner as for PD-L1-mediated IFNg production.
Using this modified model (i.e., with TGFb-mediated IFNg

inhibition), we studied how the system responds to different levels

of TGFb and baseline IFNg production rates (Figure 2). As was the

case for PD-L1-mediated IFNg inhibition, the model extension with

TGFb-mediated IFNg inhibition does not affect the tristability of

PD-L1 expression on the membrane (Figure 2B). However, TGFb-
mediated IFNg inhibition leads to a complicated relation between

PD-L1 expression and TGFb. Specifically, PD-L1 levels tend to

correlate negatively with TGFb within each EMT phenotype,

especially for low IFNg production rates. Across EMT

phenotypes, there is still a primarily positive correlation between

TGFb and PD-L1 expression

Next, we investigated the influence of TGFb-mediated IFNg
inhibition on ZEB1 and the stability of EMT phenotypes. In the

bifurcation diagram of ZEB1, as dependent on the TGFb
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concentration (Figure 2C), it causes a rightward shift of the

bifurcation point separating the {E/M, M} and {M} states

compared with the model without inhibition. Consequently, the

total range of TGFb for which the hybrid E/M phenotype can (co-)

exist is strongly increased. This is reminiscent of the influence of

other proteins such as OVOL on the core EMT regulatory network

(23, 24), although contrary to OVOL expression, TGFb-mediated

IFNg inhibition does not lead to a range in which the hybrid E/M

phenotype is the only possible phenotype. The increase occurs for a

range of IFNg production rates, as visualized in a phase diagram

depicting the various stability regimes (Figure 2D). Interestingly,

upon increasing the IFNg production rate, the same bifurcation

point undergoes a leftward shift, leading to a part of the curve

gradually splitting off and eventually disappearing (Figure S2). This

phenomenon also occurs for the bifurcation point separating the {E,

E/M, M} and {E/M, M} states (Figure S2). Nevertheless, this only

occurs for very limited ranges of IFNg production rates.

Importantly, also this model extension exhibits good robustness

with respect to changes in inhibition-related parameter values

(Figure S1, right panels). Moreover, when we combined both PD-

L1- and TGFb-mediated IFNg inhibition, the effects observed for

the separate inhibition mechanisms were retained (Figure S3). In

summary, TGFb-mediated IFNg inhibition mainly results in a

negative correlation between TGFb and PD-L1 expression within

EMT phenotypes, yet a positive correlation across phenotypes.
2.3 IFNg-induced partial EMT of a tumor
cell subset can provide limited protection
to bystander tumor cells

In practice, the outcome of the crosstalk between EMT and

IFNg-induced PD-L1 expression is likely to also depend on the (an)

isotropy of the TME with regard to the involved cytokines IFNg and
TGFb. Therefore, we embedded our models describing IFNg
inhibition by either PD-L1 or TGFb, or without such IFNg
inhibition, in multi-scale spatial simulations using the cellular

Potts model (CPM) (25, 26). These 2D simulations comprise

tumor cells, IFNg-secreting CD8+ T cells, and a partial differential

equation (PDE) layer describing the spatiotemporal spreading of

IFNg. The production and cellular uptake rates of IFNg were

derived from the literature (see Methods for details). Our

simulations additionally include a static TGFb field that is either

uniform or has a gradient with the highest concentrations at the

tumor edge. The latter mimics the accumulation of TGFb at the

invasive front which has been experimentally observed (27, 28).

Discussion is ongoing concerning how far CD8+ T cell-derived

IFNg can spread within the TME. Specifically, mathematical

simulations predict cytokine gradients in dense, cytokine-

consuming environments to range between one and a few cell

diameters (29). However, these predictions are contradicted by

experimental findings showing that IFNg produced by activated

CD8+ T cells diffuses substantially from the site of tumor cell-

T cell interaction (30, 31). Since both extremes are likely relevant

and can depend on tumor-secreted factors such as galectins (32),

we investigated two extreme spreading scenarios by modifying
frontiersin.org
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the rate of cellular uptake of IFNg. For these short- and long-

range spreading scenarios, the IFNg concentration in molecules

cell−1 decreases by a factor of 2.7 within one and six cell

layers, respectively.
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We first employed our multi-scale models to study a long-range

IFNg spreading scenario within a T cell-infiltrated tumor embedded

in a uniform TGFb field (Figure 3A and Video S1). We considered

tumor cells to be either homogeneous or heterogeneous with regard
B

C

D

A

FIGURE 2

TGFb-mediated IFNg inhibition causes PD-L1 expression to correlate negatively with TGFb within each EMT phenotype. (A) Schematic depiction of
the EMT–PD-L1 regulatory network (black, solid arrows) extended with TGFb-mediated IFNg inhibition and SNAIL1 stimulation (red, dashed arrows).
(B, C) Bifurcation diagrams illustrating how, in the absence (solid lines) and presence (dashed lines) of TGFb-mediated IFNg inhibition, the steady-
state expression of PD-L1 on the membrane (B) and ZEB1 mRNA (C) depend on TGFb, considering fixed basal IFNg production rates of 0.06 nM h−1

(B, left), 0.11 nM h−1 (B, middle, and C), and 0.16 nM h−1 (B, right). Colors represent the different stable equilibria (representing E, E/M, and M
phenotypes) and unstable equilibria (indicated in legend). (D) Phase diagram showing how the presence of stable equilibria (colored regions,
indicated in legend) depends on the basal IFNg production rate and TGFb concentration in the absence (left) and presence (right) of TGFb-mediated
IFNg inhibition. Horizontal dashed lines in (D) show the basal IFNg production rates used in (B, C).
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to their model parameter values (see Methods), with the latter

scenario likely being the most realistic for human cancers. We

simulated limited heterogeneity so that no epithelial tumor cells

spontaneously underwent EMT in the absence of IFNg. Under this
condition, cells also did not undergo a complete transition to a

mesenchymal state in the presence of IFNg.
IFNg has a dual role in cancer immunity (reviewed in 33) and is

implicated in tumor immune surveillance through the induction of

tumor cell cycle arrest, senescence, and death. The presence of

intratumoral heterogeneity makes it plausible that a subset of tumor

cells is resistant to the antitumorigenic effects of IFNg, yet is

sensitive to other IFNg-driven responses, including partial or full

EMT. Because these transitions could in turn affect PD-L1

expression, inhibiting further IFNg production, bystander tumor

cells might indirectly be protected by EMT of a tumor

subpopulation. We therefore investigated this potential impact of

EMT triggered in a tumor subpopulation on bystander tumor cells.

As anticipated, our model predicts the entire tumor to be

exposed to IFNg due to the substantial IFNg spreading

(Figure 3A). Notably, the tumor cell subset that converts to an
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intermediate E/M state in response to IFNg (12%) has a higher PD-
L1 expression than cells remaining epithelial. In tumors with PD-

L1-mediated inhibition of IFNg secretion by neighboring T cells,

this increased PD-L1 level gives rise to a clear subset of T cells with a

low IFNg production rate (Figure 3B). Consequently, epithelial

tumor cells have on average a 7.0% lower IFNg exposure in

heterogeneous versus homogeneous tumors with PD-L1-mediated

IFNg inhibition (Figure 3C). Note that this small difference in

sensed IFNg by tumor cells between the homogeneous and

heterogeneous scenario does not occur for tumors without IFNg
inhibition or with TGFb-mediated IFNg inhibition. In the scenario

without IFNg inhibition, the epithelial subpopulation is even

exposed to a slightly higher (5.6%) IFNg concentration in

heterogeneous compared to homogeneous tumors. This is because

several hybrid cells escape the tumor (Figure 3A), thereby no longer

inhibiting IFNg production of intratumoral T cells, and causing the

remaining epithelial cells to reside close to the IFNg-rich tumor

center. This implies that the true effect of E/M hybrid cells on IFNg
reduction caused by the inhibition of IFNg by PD-L1 is in fact larger

than the net 7.0%. In summary, our spatial simulations provide
B C

A

FIGURE 3

An IFNg-induced hybrid tumor subset can provide limited protection to bystander epithelial tumor cells. (A) Still images of a CPM simulation of IFNg-
secreting T cells within a tumor with long-range IFNg spreading, intratumoral heterogeneity, and PD-L1-mediated IFNg inhibition. Left color scheme:
lattice sites are colored according to IFNg level; T cells are black, and epithelial (E) and hybrid (E/M) tumor cells are red and green, respectively.
Other color schemes: T cells are black, and tumor cells are colored according to IFNg (middle-left), PD-L1 (middle-right), and ZEB1 (right) levels.
Elapsed simulation time is 2410 minutes. (B, C) Violin and box plots showing the IFNg production rate of T cells (B) and the IFNg concentration
sensed by epithelial tumor cells (C). In (B), results are shown for a tumor with negative feedback of PD-L1 on IFNg, and in (C) for tumors without
IFNg inhibition (left), inhibition of IFNg by PD-L1 (middle) or by TGFb (right). Colors denote heterogeneous (blue) or homogeneous tumors (red; only
median is shown in (B)). Plots are based on data 2100-2410 minutes after initialization and 5 simulations per condition.
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evidence for a potential protective effect provided by a small

subpopulation of hybrid tumor cells towards the remainder of the

tumor population owing to PD-L1-mediated immunosuppression.
2.4 Population-level responses may hide
the relationship between PD-L1 expression
and EMT status

In al l invest igated ODE models with or without

immunosuppression, we found a clear relation between EMT and

PD-L1 status, predicting PD-L1 to be lowest for epithelial cells,

intermediate for hybrid E/M cells, and highest for mesenchymal

cells. However, it is unclear whether this relation can be uncovered

in experimental data when studying tumor cells at population level.

Therefore, we investigated the relation between EMT status, ZEB1,

and PD-L1 within spatial simulations implementing scenarios with

short-range IFNg spreading at the invasive front of a tumor. Note

that we utilized scenarios without intratumoral heterogeneity in

order to prevent this source of heterogeneity from detecting

relationships between markers. Because TGFb accumulation may

occur at the invasive front in carcinomas (27, 28), we simulated

tumors with either a homogeneous TGFb field or a TGFb gradient

(Figure 4A and Videos S2, S3), in the absence or presence of IFNg
inhibition (either by PD-L1 or by TGFb).

Within tumors with homogeneously distributed TGFb or with a
TGFb gradient, the overall relationship between PD-L1 membrane

and ZEB1 expression is as expected, with a higher PD-L1 expression

being accompanied by a higher ZEB1 expression (Figures 4B–D).

For instance, for tumors with a TGFb gradient, those without IFNg
inhibition have both the highest PD-L1 and ZEB1 levels. However,

between these two TGFb tumor types, the relationship between PD-

L1 and ZEB1 expression is not as straightforward. Specifically, when

there is no IFNg inhibition or PD-L1-mediated IFNg inhibition,

tumors obtain a similar level of PD-L1 expression regardless of the

shape of the TGFb field (Figure 4B; blue and orange), whereas

tumors with a TGFb gradient reach a much higher ZEB1 expression

(Figure 4C; blue and orange). Moreover, in the case of IFNg
inhibition by TGFb, tumors with a TGFb gradient obtain a

considerably lower PD-L1 (Figure 4B; green) but a similar ZEB1

level compared to those with a uniform TGFb field

(Figure 4C; green).

We subsequently examined the temporal relationship between

PD-L1 membrane expression and EMT status on a single-cell level.

For all tumors that are isotropic with regard to TGFb, our models

predict that the number of hybrid cells continues to increase over

time (Figure 4E). This coincides with an increase in ZEB1

(Figure 4C), yet PD-L1 levels approximately reach a steady state

(Figure 4B). This also applies to tumors with a TGFb gradient and

IFNg inhibition by TGFb (Figures 4B, C, E), although in that case

the number of hybrid cells reaches a steady state. There is a minor

continued increase in the number of fully mesenchymal cells in this

setting (Figure 4E). Only in tumors with a TGFb gradient and no

immunosuppression or PD-L1-mediated IFNg inhibition, PD-L1

expression continues to increase over time (Figure 4B). To

conclude, an increase in the number of hybrid E/M or
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mesenchymal cells coincides with an increase in EMT marker

ZEB1 in all studied scenarios, yet PD-L1 expression does not

always keep increasing along with ZEB1. For individual tumor

cells, however, we do observe the expected positive correlation

between PD-L1 and ZEB1 expression in each scenario (Figure S4).

This relation is most evident at high IFNg levels (i.e., the top edge in
each panel) in tumors with a TGFb gradient. This implies that

studying tumors at a population level may conceal the relationship

between PD-L1 membrane expression and EMT status.
3 Discussion and conclusion

In the current study, we created mathematical and spatial

models of the crosstalk between EMT and IFNg-induced PD-L1

expression and showed that immunosuppression and heterogeneity

across tumor cells and space lead to a highly complex relationship

between EMT status and PD-L1 expression in cancer. Adding

immunosuppression in the form of a negative feedback loop from

PD-L1 on IFNg affects this relationship only quantitatively,

diminishing the differences in PD-L1 levels between the EMT

phenotypes. The effect of immunosuppression through inhibition

of IFNg by TGFb, on the other hand, results in a negative

correlation between PD-L1 expression and TGFb within each

EMT phenotype. When combining PD-L1- and TGFb-mediated

IFNg inhibition (through the multiplication of the two shifted Hill

functions involved), the observed effects are consistent with those of

each inhibition mechanism individually. Note that a different type

of interaction between these inhibitions, such as synergism or

antagonism (34), could potentially affect this outcome.

Embedding the above model versions in spatial simulations of

immune-infiltrated tumors, we demonstrated that IFNg-induced
partial EMT of a tumor cell subpopulation can provide limited

protection to bystander tumor cells by limiting their exposure to

IFNg. Lastly, we showed that studying EMT status and PD-L1

expression at a population level may conceal their relationship. Our

findings contribute to a more comprehensive understanding of the

interaction between EMT and the immune response, which is

essential for developing novel diagnostic and therapeutic options

for cancer patients.

An interesting prediction from our models is that even though

IFNg-induced EMT gives rise to a continuous increase in average

ZEB1 expression over time (Figure 4C), average PD-L1 expression

may reach a steady state (Figure 4B). A potential underlying reason

is that local fluctuations in IFNg cause fluctuating PD-L1 levels that
may conceal the relation between PD-L1 and ZEB1 expression

(Figure S4). In addition, the EMT-induced upregulation of PD-L1 is

relatively small compared to the initial IFNg-induced PD-L1

upregulation. Moreover, note that our models (including the

model on which our extensions are based, i.e. Burger et al. (19))

predict hybrid E/M cells to have only slightly increased (Figure 1B)

or even lower (Figure 2B) PD-L1 expression compared to epithelial

cells, especially in the absence of IFNg. This is contradicted by a

recent mathematical model presented by Sahoo et al. (35), which

predicts an almost equal (high) level of PD-L1 for the hybrid and

mesenchymal phenotypes. The model-predicted difference in PD-
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L1 expression between the hybrid E/M and epithelial states suggests

that it is necessary to perform temporal experiments at a single-cell

level to accurately capture the relationship between PD-L1

expression and EMT status (similar to Figure S4). Thus, future
Frontiers in Immunology 08
research should further characterize this difference, including its

context and cell-line specificity.

The complexity of the relationship between PD-L1 expression

and EMT status, and the influence of immunosuppression and
B

C

D

E

A

FIGURE 4

Mean PD-L1 expression need not correlate with EMT status. (A) Still images of a CPM simulation of IFNg-secreting T cells at a tumor invasive front
with short-range IFNg spreading, a TGFb gradient, and no IFNg inhibition. Top color scheme: lattice sites are colored according to TGFb level.
Second color scheme from the top: T cells are black, and epithelial (E), hybrid (E/M), and mesenchymal (M) tumor cells are red, green, and blue,
respectively. Other color schemes: T cells are black, and tumor cells are colored according to (from top to bottom) TGFb, IFNg, PD-L1, and ZEB1
levels. Elapsed simulation time in minutes is displayed above the stills. (B, C) Average (bold line) and standard error of the mean (SEM; ribbon) of PD-
L1 membrane (B) and ZEB1 (C) expression of tumor cells over time. (D) Average (bold line) and SEM (ribbon) of PD-L1 membrane expression as a
function of ZEB1 expression over time. (E) Average (bold line) and SEM (ribbon) of the number of tumor cells per EMT phenotype (indicated in
legend) over time. Plots in (B–E) are based on 10 simulations per condition, and results are shown for tumors with a uniform TGFb field (left panels)
or a TGFb gradient (right panels). The absence or mode of IFNg inhibition is indicated in the legend.
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spatial distribution of cytokines IFNg and TGFb, have relevant

diagnostic implications. Both PD-L1 and EMT scores have been

proposed as biomarkers for selecting patients responding to PD-1/

PD-L1 blockade therapy (36, 37). However, the numerous

mechanisms and factors affecting the expression of PD-L1 and

EMT regulators, such as ZEB1, complicate their use as selective

biomarkers (6, 38, 39). Regarding PD-L1, our model indeed predicts

that a low expression may be attributed to a lack of an active

immune response (initial PD-L1 level in Figure 4B). Alternatively,

the PD-L1 level could have been high initially, suppressing the

immune response and consequently decreasing the expression of

PD-L1. Therefore, using PD-L1 as a predictive biomarker may

prevent the treatment of a subset of patients who, despite their low

to moderate PD-L1 expression, have a high probability of

responding. For ZEB1 as a biomarker, a major difficulty lies in

the fact that its absolute expression may depend on the shape of the

TGFb field (Figure 4C), as our simulations predict. Moreover, since

diverse signaling pathways regulate ZEB1 activity (40), a ZEB1high

tumor status is not necessarily associated with an ongoing

immune response.

Furthermore, our findings support the hypothesis that T cell

suppression by a hybrid E/M subpopulation in tumors with

considerable IFNg spreading may contribute to collective

immunoevasion by decreasing the overall IFNg level, albeit only

slightly (Figure 3C). Several processes may play a role in this limited

protection provided by hybrid E/M cells to other tumor cells in our

simulations. First, the small effect size may partly be attributed to

the aforementioned minor difference in PD-L1 expression between

hybrid E/M and epithelial cells. Second, in our simulations, a

substantial number of hybrid cells escape the tumor on account

of their increased motility (Figure 3A). Note that this is in contrast

with experimental observations and mathematical modeling

predictions in breast carcinoma where hybrid cancer stem cells

(CSCs) were found to typically reside in the tumor interior (41, 42).

This distribution originated from differential EMT-inducing signals

in the interior and outer regions of the tumor. Nevertheless, these

findings do not exclude the possibility that hybrid (or fully

mesenchymal cells) escape the tumor, as this was not specifically

investigated. For example, the mathematical model of Bocci et al.

(42) did not consider migration of hybrid or mesenchymal CSCs.

Third, in our models we consider the IFNg production by T cells to

increase instantly upon detaching from a hybrid tumor cell. In

reality, the slightly increased PD-L1 level of hybrid cells compared

to epithelial cells may contribute to a sustained state of T cell

exhaustion (20), resulting in long-term impaired IFNg secretion.

For these reasons, the protective effect of the hybrid tumor subset

over the remainder of the tumor population may be larger than

predicted here. Even if this is not the case in reality, only a minor

IFNg reduction may already be highly relevant, e.g., if it lowers the

IFNg level beyond a certain efficacy threshold of the cytopathic and

cytostatic effects of IFNg (33). If so, therapeutically targeting the

hybrid subpopulation may increase the overall IFNg concentration
beyond said threshold, enhancing, e.g., the IFNg-mediated killing of

bystander epithelial tumor cells. In the future, it would therefore be

useful to expand our models with the dynamics of tumor growth

and T cell-mediated killing, to evaluate the importance of the
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predicted decrease in IFNg. As an example of a similar approach,

Benchaib et al. (43) describe tumor growth dynamics and IFNg-
induced dormancy in their mathematical model of the interaction

between cancer and immune cells in the lymph node. Their

simulations predict three possible outcomes that coincide with the

main phases of the immunoediting process, namely tumor

elimination, equilibrium, and evasion.

In our multi-scale spatial simulations, we make two more

assumptions regarding T cells that would likely affect our model

predictions quantitatively. First, we consider the ratio of T cells to

tumor cells to be 1:40. Although this ratio represents a realistic

scenario, lower ratios have been observed in some tumors, for

example in glioblastoma (44). Naturally, in such tumors with very

limited T cell infiltration (immunologically cold tumors), the effects

predicted by our models will be less pronounced. Second, we

consider T cells not to consume IFNg. However, given that IFNg
has been shown to increase the abundance of the T cell population

(45) as well as their migration and cytotoxicity (46), T cells likely

take up IFNg to a certain extent. Still, given the low T cell:tumor cell

ratio, we expect that this additional consumption has only a minor

effect on intratumoral IFNg concentrations. Moreover, to our

knowledge, there is no evidence indicating that T cells

preferentially consume large quantities of IFNg relative to

tumor cells.

We propose that one promising therapeutic strategy for

combating not only tumor immunoevasion but also cancer

metastasis involves interfering with the pathways that control the

interplay between EMT and PD-L1. Increasing efforts already focus

on searching for opportunities to therapeutically interfere with

EMT in cancer (reviewed in 47). Potential therapeutic candidates

include upstream signaling pathways, such as the TGFb signaling

pathway, and molecular drivers of EMT. Blocking TGFb signaling

may also hinder its T cell-suppressive effects and is therefore an

especially interesting approach. Nevertheless, our model-based

analysis suggests that IFNg is a more prominent driver of PD-L1

expression than EMT-driven PD-L1 expression viamiR-200, which

is consistent with our recent bioinformatic analysis of cancer patient

data from the Cancer Genome Atlas (39). As such, we expect

combination therapies of agents targeting EMT and the PD-1–PD-

L1 interaction to be most effective for enhancing the antitumor

immune response. Consistent with this, co-administration of

TGFb-blocking and anti-PD-L1 antibodies provoked antitumor

immunity and tumor regression in metastatic urothelial cancer by

facilitating T cell infiltration (48). We conclude that there is ample

potential for therapeutic exploitation of the EMT–PD-L1 axis.

Our multi-scale models have three important limitations. A first

limitation is that we markedly accelerated the EMT and PD-L1

regulatory network dynamics relative to their true cellular and

spatial dynamics to reduce computation time. As a consequence,

PD-L1 expression in our simulations was established on a time scale

of seconds instead of hours, and a full EMT transition required

minutes instead of days (cf. Figures 1D–F in 19). For the long-range

IFNg spreading scenario, this merely implies that in practice more

time is needed for a subpopulation of hybrid cells to emerge and

suppress the immune response. In actual tumors with short-range

IFNg spreading, however, the brief T cell-tumor cell interactions in
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our simulations might be insufficient to induce PD-L1 expression,

let alone an EMT. Still, CD8+ T cells normally form conjugates with

antigen-expressing tumor cells that can last minutes to hours (49),

presumably exposing tumor cells to IFNg for a sufficient period to

induce PD-L1 expression and consequently trigger EMT.

A second limitation of our simulations is that we modeled the

difference in motility between the EMT phenotypes only based on

cell surface interactions, and we did not differentiate between the

migratory behavior of cells in a partial EMT or mesenchymal state.

Future efforts should focus on the implementation of a more

sophisticated cancer invasion model, such as the cellular Potts-

based model recently presented by Pramanik et al. (50), to better

characterize how different modes of cell migration contribute to

cancer metastasis as a consequence of EMT–PD-L1 crosstalk.

Lastly, a third limitation of our work is that we considered

CD8+ T cells to be the only source of IFNg in our models, even

though it is well established that other immune cells in the TME

can also secrete this cytokine. Examples include CD4+ T cells,

natural killer (NK) cells, and NK T cells (51). A recent study even

found the production of IFNg by CD4+ chimeric antigen receptor

(CAR) T cells to be considerably higher than that of CD8+ CAR T

cells in a model of B-cell malignancy (52). Since these additional

cellular components could potentially affect how our simulations

replicate tumor biology, it would be worth including them (and

the effects of additionally produced IFNg) in future model

versions. This also applies to the cellular sources of TGFb,
which include tumor cells, regulatory T cells, fibroblasts, and

macrophages (21). We currently described this cytokine with a

static field (either uniformly distributed or with a gradient) but it

could instead be modeled dynamically. Note that such an effort

would benefit from additional experiments to obtain reliable

production and cellular uptake rates.

In conclusion, we extended an existing mathematical model and

embedded it in multi-scale spatial simulations to describe the effects

of immunosuppression and spatial heterogeneity on the crosstalk

between EMT and IFNg-induced PD-L1 expression. Our analysis

demonstrates that the relation between PD-L1 expression and EMT

status is highly complex, and depends on the forms of

immunosuppression established by the tumor as well as on spatial

heterogeneity concerning cytokines influencing these pathways.

Experimental validation of the hypotheses presented here based

on temporal, single-cell measurements will be required to shed

further light on the relationship between PD-L1 expression and

EMT status. Ultimately, these insights may contribute to the

development of novel therapeutic strategies for effectively

combating metastatic dissemination as well as immunoevasion.
4 Materials and methods

4.1 ODE models

4.1.1 IFNg–PD-L1–EMT model
The IFNg–PD-L1–EMT model (19) uses appropriate miRNA–

mRNA dynamics from the theoretical framework by Lu et al. (53)

(see Supplementary Information) to combine the simplified TCS
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model (24) with a model for IFNg-induced PD-L1 expression,

which is based on an extension of a published JAK–STAT model

(54). See Supplementary Information for the model definition and

used parameters.

4.1.2 Negative feedback of PD-L1 on IFNg
Even though the negative feedback of membrane-bound PD-L1

on the production of IFNg is not mediated by direct transcriptional

regulation, for simplicity, we used a shifted Hill function to model

this regulation. The shifted Hill function for activation and

inhibition of A by B is defined as

HS(B, lBA) = H−(B) + lBAH
+(B), (1)

H−(B) =
1

1 + ( B
B0
A
)nBA

, (2)

H+(B) = 1 −H−(B), (3)

where the weight factor lBA represents the fold change in the

production rate of A due to B, with lBA  > 1 for activation and lBA
  < 1 for inhibition. The Hill coefficient nBA represents the

cooperativity of the interaction, while the threshold B0
A is the

concentration of B at which the value of H− equals 0.5. The

IFNg–PD-L1–EMT model uses the concentration of IFNg (in

nM) as input. Here, we model the IFNg (I) concentration with

the following ordinary differential equation (ODE):

dI
dt

= gIH
S(PM , lPM ,I) − kII : (4)

The meaning of parameters and their utilized values are provided in

Table 1. We chose the basal production and degradation rate of IFNg
arbitrarily and varied the former to simulate different levels of IFNg
exposure. Note that upon embedding our ODEmodels intomulti-scale

spatial simulations (see below), we utilized IFNg production and

cellular uptake rates from the literature. To our knowledge, there are

no experimental data available in which both IFNg secreted by T cells

and the tumor cell membrane PD-L1 expression are measured. For

simplicity, we chose the value 0.1 for lPM ,I to allow for a considerable

inhibitory effect, and the value 2 for nPM ,I . PM 0I was loosely based on the

half-functional rule defined in Huang et al. (55), which states that a

regulatory link should have an approximately equal chance of being

functional or not functional. Note that we performed a sensitivity

analysis to study the impact of these parameter values on the model

predictions (Figure S1, left panels).

4.1.3 TGFb–SNAIL1 model
For the TGFb–SNAIL1 submodel, we adapted the TGFb–miR-

200 and SNAIL1–miR-34 modules of the revised CBS model (56,

see Supplementary Information; originally published by 57). Our

key modifications are the exclusion of the autocrine TGFb–miR-

200 feedback loop and the double-negative SNAIL1–miR-34

feedback loop. Because we later implement the ODE models in

multi-scale models wherein tumor cells respond to extra-cellular

TGFb, our revised submodel did not need to describe TGFbmRNA.

Instead, we consider the protein TGFb to be produced at a constant
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rate and to be degraded linearly, which is effectively identical to

having a fixed TGFb concentration as input. The revised TGFb–
SNAIL1 submodel consists of the following ODEs for TGFb (T),

SNAIL1 mRNA (mS), and SNAIL1 protein (S):

dT
dt

= gT − kTT , (5)

dmS

dt
= g0mS

+ gmS
H+(T)H−(S) − kmS

mS, (6)

dS
dt

= gSmS − kSS : (7)

All initial conditions (i.e., the initial concentrations of T ,mS, and S)

are set to 0. At the beginning of a simulation, the levels of TGFb and
SNAIL1 mRNA swiftly become positive because of their baseline

production rates, which in turn triggers the production of SNAIL1

protein. Parameter meanings and utilized values are provided in

Table 2. Note that, for consistency, we use g and k to denote

production and degradation rates. As with IFNg, we use arbitrary

values for the production and degradation rate of TGFb and vary

the former to simulate different TGFb exposure levels.

To create our extended model, we connected the TGFb–SNAIL1
submodel to the central IFNg–PD-L1–EMT model (see Figure 2A).

Note that we converted the output SNAIL1 concentration, which was
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in nM in Zhang et al. (56) into number of molecules in order to use

SNAIL1 as input in the IFNg–PD-L1–EMT model. For consistency,

we converted SNAIL1 mRNA to number of molecules as well. As in

Jolly et al. (24) and Burger et al. (19), we use a cell volume of 10000

μm3, such that 1 nM amounts to approximately 6020 molecules (6.02

× 1023 · 10−9 · 10000 × (10−5) 3). To properly convert units, we thus

multiplied model parameters g0mS
, gmS

, and JmS1 with 6020. In

addition, we matched the range of TGFb within which bifurcations

occur to that of the CBS model by modifying parameters g0mS
, gms

,

and JmS0.

4.1.4 Inhibition of IFNg by TGFb
Modeling the individual components of pathways involved in

the TGFb-mediated inhibition of IFNg secretion is a complex task.

As for PD-L1-mediated IFNg inhibition, we also used a shifted Hill

function to model this regulation in a phenomenological manner.

In this case, we model the IFNg concentration (I) with the following

ODE:

dI
dt

= gIH
S(T , lT ,I) − kII: (8)

Parameter meanings and utilized values are provided in Table 1. In

the absence of experimental data on the relationship between extra-

cellular TGFb and T cell IFNg release, in selecting the shifted Hill

function parameter values we took into account the same
TABLE 2 Variables and parameters used for the TGFb–SNAIL1 module.

Prod. rate g Degr. rate k

TGFb protein T gT 0-0.3 nM h−1 kT 1 h−1

SNAIL1 mRNA mS g0mS
1500 molecules h−1 kms

0.09 h−1

gmS
600 molecules h−1

SNAIL1 protein S gS 17 h−1 kS 1.66 h−1

Threshold B0A Hill coefficient nBA

Act. mS by T JmS0 0.1 nM nnt 2

Inh. mS by S JmS1 4.0334 × 106 molecules nns 1
The top panel shows variable names and production and degradation rates; the bottom panel shows parameters for the Hill functions of the interactions. Parameter values were either taken from
the revised CBS model by Zhang et al. (56) or modified (shade). g0mS

is the baseline production rate of SNAIL1 mRNA. The production rate of TGFb was varied to simulate different TGFb levels.
TABLE 1 Parameters used for the model extensions representing the immunosuppressive effects of PD-L1 and TGFb.

Prod. rate g Degr. rate k

IFNg I gI 0-0.5 nM h–1 kI 1 h–1

Threshold B0A Hill coefficient nBA Max. fold change lBA

Inh. I by PM PM 0I 6×104 mol. nPM ,I 2 lPM ,I 0.1

Inh. I by T T0
I 0.1 nM nT ,I 2 lT ,I 0.1
The top panel shows the production and degradation rate of IFNg; the bottom panel shows parameters for the shifted Hill functions of the interactions. The parameter values were not directly
obtained from the literature but were selected in this study. The production rate of IFNg was varied to simulate different IFNg levels.
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considerations as for the negative feedback of PD-L1 on IFNg. We

again conducted a sensitivity analysis to examine the effects of these

parameter values on our model predictions (Figure S1, right panels).

4.1.5 Combined IFNg inhibition model
In our combined model with two forms of IFNg inhibition, we

model the dynamics of IFNg with the following ODE:

dI
dt

= gIH
S(PM , lPM ,I)H

S(T , lT ,I) − kII: (9)

Note that an interesting alternative to the utilized product term of

the two individual shifted Hill functions would be a combination

Hill function (34), which allows for the modeling of synergistic or

antagonistic effects.
4.2 Multi-scale models

We embedded our ODE models with separate PD-L1- or

TGFb-mediated IFNg inhibition in multi-scale models of T cell-

infiltrated tumors using the cellular Potts model (CPM) framework

(25, 26), which was previously used for simulating EMT (58) and T

cell-tumor cell interactions (59–62). The CPM is a lattice-based

technique wherein cells consist of a collection of lattice sites that are

assigned a specific ‘spin’ value to indicate their belonging to a

particular cell. The models enable cellular movement through

minimization of the Hamiltonian (H), a global energy function

defined as

H = Hsort +Hl + HAct : (10)

The term Hsort describes cell surface interactions and a cell area or

volume constraint that considers deviations from a target cell area

or volume. As we employed two-dimensional simulations, the term

‘area’ applies here. Hsort is calculated with the following equation:

Hsort = o
(i, j)(i0, j0)

neighbors

J(t(s (i, j)), t(s (i0, j0)))(1 − ds (i,j),s(i0 ,j0))

+ ςa o
spin   types  s

(a(s ) − At(s ))
2, (11)

where (i, j) and (i0, j0) are neighboring lattice sites with respective x

coordinates i and i0 and y coordinates j and j0, J(t , t 0) represents the
surface energy between cells of types t and t 0, s represents the spin

of a cell, ds ,s 0 denotes the Kronecker delta, ςa represents a weighting

term for the cell area constraint, a(s ) is the current area of a cell,

and At(s) is the target area of cells with type t . We distinguished

between epithelial (E), hybrid E/M (H), and mesenchymal (M)

tumor cells based on ZEB1 mRNA expression (mZ) as calculated

with the ODE model. Cells transitioned as follows: E to H: mZ  ≥

235 molecules; H to E: mZ  ≤ 145 molecules; H to M: mZ  ≥ 715

molecules; and M to E: mZ  ≤ 370 molecules. These cut-off values

correspond roughly to the average expression level during each

transition as predicted by our ODE models. Cells could not directly

transition from a mesenchymal to a hybrid phenotype. To mimic

the ‘invasion’ of hybrid and mesenchymal tumor cells, we set their
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surface energies with medium (med) lower than those with tumor

cells. Conversely, we set JE,med higher than JE,E to reflect the adhesive

properties of epithelial tumor cells. To prevent the migration of T

cells (Tcell) out of the tumor, we set JTcell,med higher than their

surface energies with tumor cells.

The Hamiltonian of our models additionally included the term

Hl that represents the surface area constraint of cells and is

calculated with the function (63)

Hl = ςlo
s
(l(s ) − Lt(s ))

2, (12)

where ςl represents the weight of the perimeter constraint, l(s ) is
the actual perimeter of a cell, calculated as the number of boundary

interfaces with neighboring lattice sites of a different spin, and Lt(s )
represents the target perimeter for cells with type t . In order to

promote the emergence of roundish cells, we set Lt to the ratio of

the perimeter of a circle to its area (2
ffiffiffiffiffiffiffiffiffi
pAt

p
), with the area

corresponding to the target area of a cell of type t (following 59).

Additionally, we set ςlTcell< ςlM< ςlH< ςlE , causing T cells to deform

most easily and epithelial tumor cells to most strongly retain a

roundish shape.

Lastly, the active migration of T cells was driven by the term

HAct that describes the Act model wherein actin dynamics cause cell

protrusions that in turn drive cell motility (64). HAct is calculated

with

HAct =
ςAct

MaxAct
(GMAct(u) − GMAct(v)), (13)

where ςAct is a weighting term of the Act model, and MaxAct is the

maximum actin activity value, which is assigned to lattice sites that

are newly incorporated by a cell. The actin activity Act of a lattice

site decreases with 1 after each Monte Carlo step until it reaches 0.

GMAct(u) and GMAct(v) represent the geometric mean actin

activities around sites u and v, respectively. The geometric mean

activity around site u is calculated with

GMAct(u) =
Y

yϵV(u)

Act(y)

0
@

1
A

1= V(u)j j

, (14)

where jV(u)j is the second-order Moore neighborhood of site u.

This implements a positive feedback mechanism that favors updates

from site u into a neighboring site v with a lower actin activity. We

only applied HAct to T cells and employed parameters for amoeboid

cells (64). The resulting average migration speed was approximately

7 μm min−1, which is consistent with values previously measured in

TC-1, EL4, and EG7 tumors (65, 66). To prevent T cells from

breaking due to actin protrusion dynamics, we employed the

connectivity constraint described by Merks et al. (67). Tumor

cells only moved passively via cell surface interactions based on

Hsort and Hl .

The simulation space comprised a square area representing the

TME within which T cells and tumor cells were restricted to move. We

derived the production rate of IFNg by T cells and its rate of cellular

uptake from the literature (see Supplementary Information). T cells

were considered to continuously produce IFNg. Because T cells were

almost always in contact with tumor cells during our simulations, this
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is expected to closely resemble reality in which T cells may primarily

produce IFNg during periods of cognate antigen recognition. We

simulated two different extents of IFNg spreading by modifying the

cellular uptake rate of IFNg (see Supplementary Information).

Simulations either had a uniform TGFb field or a TGFb gradient

(see Supplementary Information). To enable all tumor cells to respond

to extracellular TGFb, we included the TGFb–SNAIL1 submodel in the

ODE models without IFNg inhibition or with PD-L1-mediated IFNg
inhibition. The space had a scale of 2 μm per lattice site and was 700 ×

700 μm and 400 × 400 μm in size for long-range and short-range IFNg
spreading simulations, respectively. To mimic the typically low T cell:

tumor cell ratios observed within tumors (68), we simulated T cells and

tumor cells at a 1:40 ratio. In long-range and short-range IFNg
spreading simulations, T cells were initiated randomly within

respectively a circular tumor comprising 480 tumor cells or the

middle-outer cell layers of an invasive front comprising 200 tumor

cells. T cells were frozen inmotion and not secreting IFNg for the initial
10 minutes to allow tumor cell ODE dynamics to reach a steady state.
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Simulations had a temporal scale of 0.6 seconds per Monte

Carlo step, and output was generated every 10-minute and 1-

minute interval for long-range and short-range IFNg spreading

simulations, respectively. ODE dynamics were accelerated 1800

times relative to CPM and PDE dynamics in order to make

simulations less time-consuming and thus computationally

feasible. CPM simulation parameters are provided in Table 3. In

some of our simulations, we implemented intratumoral

heterogeneity (see Supplementary Information).

4.3 Simulation and analysis

We used COPASI (COmplex PAthway SImulator) (RRID:

SCR_014260) for ODE model simulations (72). For CPM

simulations, we used the Morpheus framework (RRID:

SCR_014975) (73). We performed analysis in R (R Project for

Statistical Computing, RRID:SCR_01905) (74) with RStudio

(RStudio, RRID:SCR_000432) (75) and the tidyverse (76) packages.
TABLE 3 Cellular Potts simulation parameters.

Parameter Value Description Ref.

Js ,s 0 JE,E = 2; JE,H = 5; JE,M = 5; JH,H = 14; JH,M = 14; JM,M = 14; JE,Tcell = 0.5; JH,Tcell =

0.5; JM,Tcell = 0.5; JTcell,Tcell = 0.5; JE,med = 3; JH,med = 1; JM,med = 1; JTcell,med,low = 2;

JTcell,med,high = 15

Surface energies between cell types: JTcell,med,low for TGFb
gradient simulations, JTcell,med,high for other simulations

–

At Atum = 452 μm2 Target area for a cell of type t (30,
59)

ATcell = 140 μm2

Lt 2
ffiffiffiffiffiffiffiffiffi
pAt

p
Target perimeter for a cell of type t (59)

ςa ςa,tum = 1 Strength of cell area constraint (59)

ςa,Tcell = 1

*ςl ςl,E = 0.25 Strength of cell perimeter constraint (59)

ςl,H = 0.2

ςl,M = 0.15

ςl,Tcell = 0.1

ςAct ςAct,Tcell = 20 Strength of actin protrusion dynamics (64)

MaxAct 20 Actin activity value assigned to lattice sites newly
occupied by T cells

(64)

gI 1200 molecules min−1 Basal production rate of IFNg by T cells (69)

*kI kI,Tcell = 0 min−1 Uptake rate of IFNg: kI,short for short-range IFNg
spreading simulations, kI,long for long-range IFNg

spreading simulations

(68,
70)

kI,tum,short = 2100 min−1

kI,med,short = 420 min−1

kI,tum,long = 0.021 min−1

kI,med,long = 0.0042 min−1

DI 5430 μm2 min−1 Diffusion coefficient of IFNg (71)
frontier
The values of starred (*) parameters were based on the cited references but slightly modified. E = epithelial tumor cell; H = hybrid tumor cell;M = mesenchymal tumor cell; tum = all tumor cells
independent of EMT phenotype; Tcell = T cell; med = medium.
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