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Mitochondrial DNA methylation
is a predictor of immunotherapy
response and prognosis in
breast cancer: scRNA-seq
and bulk-seq data insights

Yixuan Ma †, Juan Du †, Meini Chen †, Ning Gao, Sijia Wang,
Zhikuan Mi, Xiaoli Wei and Jumei Zhao*

Shaanbei Key Laboratory for Cancer Prevention of Yan’an, Medical College, Yan’an University,
Yan’an, China
Background: Alterations in Mitochondrial DNA methylation (MTDM) exist in

many tumors, but their role in breast cancer (BC) development remains unclear.

Methods: We analyzed BC patient data by combining scRNA-seq and bulk

sequencing. Weighted co-expression network analysis (WGCNA) of TCGA data

identified mitochondrial DNA methylation (MTDM)-associated genes in BC. COX

regression and LASSO regression were used to build prognostic models. The

biological function of MTDM was assessed using various methods, such as

signaling pathway enrichment analysis, copynumber karyotyping analysis, and

quantitative analysis of the cell proliferation rate. We also evaluated MTDM-

mediated alterations in the immune microenvironment using immune

microenvironment, microsatellite instability, mutation, unsupervised clustering,

malignant cell subtype differentiation, immune cell subtype differentiation, and

cell-communication signature analyses. Finally, we performed cellular

experiments to validate the role of the MTDM-associated prognostic gene

NCAPD3 in BC.

Results: In this study, MTDM-associated prognostic models divided BC patients

into high/low MTDM groups in TCGA/GEO datasets. The difference in survival

time between the two groups was statistically significant (P<0.001). We found

that high MTDM status was positively correlated with tumor cell proliferation. We

analyzed the immune microenvironment and found that low-MTDM group had

higher immune checkpoint gene expression/immune cell infiltration, which

could lead to potential benefits from immunotherapy. In contrast, the high

MTDM group had higher proliferation rates and levels of CD8+T cell

exhaustion, which may be related to the secretion of GDF15 by malignant

breast epithelial cells with a high MTDM status. Cellular experiments validated

the role of the MTDM-associated prognostic gene NCAPD3 (the gene most

positively correlated with epithelial malignant cell proliferation in the model) in

BC. Knockdown of NCAPD3 significantly reduced the activity and proliferation of

MDA-MB-231 and BCAP-37 cells, and significantly reduced their migration ability

of BCAP-37 cell line.
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Conclusion: This study presented a holistic evaluation of the multifaceted roles

of MTDM in BC. The analysis of MTDM levels not only enables the prediction of

response to immunotherapy but also serves as an accurate prognostic indicator

for patients with BC. These insightful discoveries provide novel perspectives on

tumor immunity and have the potentially to revolutionize the diagnosis and

treatment of BC.
KEYWORDS

breast cancer, mitochondrial DNA methylation (MTDM), NCAPD3, immunotherapy,
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1 Introduction

Breast cancer (BC) is one of the most prevalent cancers that

threatening women’s lives and health. According to Global Cancer

Statistics 2020 (1), BC has surpassed lung cancer as the most

common type of tumors in women. According to statistical data,

nearly 2.3 million new BC cases were reported in 2020, accounting

for 11.7% of all cancer cases. Similarly, a study in 2022 showed that

the mortality rate of BC in China will also increase dramatically,

making it the most common cancer among Chinese women (2). BC

is further classified into luminal (estrogen receptor [ER] positive),

human epidermal growth factor receptor 2 (HER2) positive and

ER-negative, and basal subtypes (3), and targeted therapies based on

molecular typing have been applied clinically, changing the

previous “one-size-fits-all” treatment approach (4). Over the past

ten years, innovative healing methods, such as immunotherapy,

have progressed remarkably. By utilizing the patient’s immune

system to detect and regulate tumors, immune checkpoint

inhibitors (ICIs) such as PD-1, PD-L1, and CTLA-4 have

effectively enhanced the prognosis of different types of cancers

(5). However, recent clinical trials have shown that combined

therapies are often more effective than single immunotherapy for

BC (6), suggesting that more effective immunotherapy markers are

needed to enable BC patients to benefit from immunotherapy.

Currently, PDL1 may not be an ideal marker to identify patients

sensitive to immunotherapy, as PD-L1 expression is dynamic and

varies not only between individuals but also over time (7). Targeting

mitochondria is a new option for tumor immunotherapy. Recent

evidence suggests that using anti-cancer drugs to target the

mitochondrial pathway can greatly enhance the ability of cancer

cells to be recognized by immune cells, present tumor antigens, and

enhance the anti-tumor function of immune cells, leading to the

effective killing of cancer cells (8, 9). Thus, exploring the correlation

between various biological pathways within mitochondria and the

development of tumors, as well as the immune microenvironment,

would be worthwhile. This will provide valuable insight into the

mechanisms underlying tumorigenesis and facilitate the

development of more effective therapies.

Mitochondria are essential organelles that control not only

cellular energy metabolism but also the main site of energy

metabolism; they are essential organelles for regulating reactions
02
such as calcium homeostasis, apoptosis, and redox reactions, thus

maintaining the homeostasis of the internal environment and playing

a crucial role in cancer development. Mitochondrial DNA (mtDNA)

is a double-stranded loop, divided into heavy (H) and light (L)

strands, without histone involvement, and its circular DNA contains

three promoter regions, located in the D-loop, transcribed as multiple

cis-trans (10), which encode 13 oxidative phosphorylation

(OXPHOS) subunits of proteins, as well as two ribosomal RNA

genes and 22 tRNAs (11). These 13 proteins encoded by the

mitochondria are components of the electron transport chain and

are involved in regulating the oxidative respiratory chain and

maintaining its functional integrity; alterations in their expression

have been associated with cancer development (12–14). In addition,

mitochondria play a key role in immune system functioning by

regulating the development, activation, proliferation, differentiation,

and death of immune cells. For example, mitochondria control

immune cell differentiation by regulating metabolism and mtROS

production (15, 16).

Recently, mitochondrial epigenetics has gained much attention,

and the biological function of Mitochondrial DNA methylation

(MTDM) has gradually been explored. Altered levels of mtDNA

methylation and hydroxymethylation have been observed in various

diseases, including BC, cardiovascular disease, diabetes, and

neurodegenerative diseases (17). MTDM lacks CPG islands and

methylates non-CPG sites such as CPA, CPC, and CPT (18), which

may be associated with the development of various diseases. Initially,

the role of MTDM was controversial, but as research progressed, the

mitochondrial isoform of DNMT1 (mtDNMT1) was identified in

mitochondria which is homologous to nuclear DNMT1, confirming

that mtDNMT1 binds to the D-loop control region of mitochondria

and forms a 5-mC that regulates mitochondrial gene expression (19,

20). Subsequently, DNMT3A and DNMT3B were found to be

involved in MTDM (21, 22) which is associated with the active

methyl donor SAM. Therefore the expression or absence of

SLC25A26, the only channel for SAM entry into the mitochondria,

also controls the level of MTDM (23). Despite significant attention in

recent years, the precise role of MTDM in BC and its impact on the

immune microenvironment remain unclear. To address this

knowledge gap, our study employed both single-cell and bulk

sequencing to investigate the biological function of MTDM in BC,

as well as its potential as a prognostic indicator and
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immunotherapeutic marker. By shedding light on the implications of

MTDM, we hope to understand BC’s development and progression

better while offering new avenues for treatment and patient care.
2 Method

2.1 Transcriptome data download
and processing

TCGA data of the training cohort was downloaded by using the

“TCGAbiolinks” R package, with the TPM data type selected.

Considering that more than 99% of BC patients were female, 13

male patients were excluded to maintain data integrity, and survival

times ranged from 3 to 120 months for BC patients. Ultimately, 945

tumor samples were included in this study. The BC dataset GSE21653,

downloaded from the GEO database (24) was used as the validation

cohort. For subsequent analyses, all data were log2 transformed.
2.2 Single-cell sequencing data
download and processing

The single-cell BC dataset GSE195861 (25) was downloaded

from the GEO database, with samples of ductal carcinoma in situ

(DCIS) and Invasive Ductal Carcinoma (IDC). The Seurat package

was used for subsequent processing, and data quality control was

performed by selecting cells with ribosomal genes ranging from 0 to

50, with a total number of genes greater than 200, and genes

expressed in at least ten cells. The number of highly variable

genes was set to 3000, and samples with a cell count greater than

500 were selected after filtering. They were then corrected and

integrated by the IntegrateData function, followed by cells being

clustered by setting the “DIMS” parameter to 20, reducing the data

dimension using the UMAP method, and setting the resolution to

0.2 using the K-NearestNeighbor (KNN) method. Cell markers

were then downloaded for annotation using the CellMarker 2.0,

website (http://yikedaxue.slwshop.cn/), and each cell’s percentage of

MTDM genes was obtained by importing the MTDM-mediated

genes through the PercentFeatureSet function.
2.3 Acquisition of mitochondrial DNA
methylation -related genes

DNMT1, DNMT3A, DNMT3B, SLC25A26, METTL4, NRF1,

PPARGC1A and PRKAA1 were identified as MTDM-related genes

according to the literatures (20–23, 26, 27)
2.4 Weighted co-expression network
analysis and single sample gene set
enrichment analysis

Co-expression network of all genes in MTDM and BC samples

was constructed using the TCGA breast cancer patients’ data cohort
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and the “WGCNA” R package. Genes in the top 90% were selected by

variance screening and outlier sample filtering. The pickSoft Threshold

function was used to calculate the optimal threshold of 10 and to set

the minimum number of module genes to 80, which was then used to

construct the WGCNA network. The R package GSVA (28) obtained

scores associated with MTDM for each BC patient using the ssGSEA

analysis module. Finally, the correlation between the modules and the

MTDM scores in the WGCNA network was calculated.
2.5 Copynumber karyotyping analysis
within tumors and mitochondrial DNA
methylation differential biological
pathway analysis

Subclonal structure analysis was performed using the Copykat

package (29) to distinguish between normal and malignant cells,

and the irGSEA package was used to score the high and low MTDM

groups using AUCell, UCell, single-score, and ssGSEA enrichment

methods. A heat map of the differentially enriched pathways

between the two groups was generated.
2.6 Construction of mitochondrial DNA
methylation -related prognostic model and
external validation of the model

Univariate COX analysis was used to identify MTDM-related

genes with prognostic value, which were further screened using least

absolute shrinkage and selection operator (LASSO) regression to

construct prognostic models. This approach allowed the calculation

of MTDM scores for each BC sample by multiplying the coefficients

by the expression and accumulating the results. Patients in the TCGA

BC cohort were divided into high and low-risk groups based on the

median value. Subsequently, the prognostic differences between the

two groups were explored, and the accuracy of the model was

assessed. The GSE21653 cohort in GEO was selected as the

external validation cohort, MTDM scores for each sample were

calculated according to the model formula and patients were

divided into high-risk and low-risk groups based on the median.

Survival analysis was then performed to determine whether the

prognosis differed between the high- and low-risk groups in the

validation cohort, with ROC curves used to assess the accuracy of the

model. Principal component analysis (PCA) was used to explore

whether the model could better group high and low MTDM, and a

Nomogram was constructed through the rms package to assess the

risk of death in patients with BC by combining clinical data with

MTDM values. Finally, the accuracy of the nomogram for estimating

patient outcomes was assessed using prognostic ROC curves.
2.7 Immune infiltration and the use of
relevant scores

Immune infiltration analysis using the R package IOBR (30) was

performed on BC samples using the CIBERSORT, EPIC, MCP-
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counter, Quanti-seq, TIMER, xCell, and ESTIMATE methods, with

the differences in immune cell infiltration between different MTDM

subgroups explored in the form of heat maps that showed the

immune cells at different infiltration levels. Additionally, differences

in tumor mutation burden (TMB) and microsatellite instability

(MSI) between the different MTDM subgroups were explored to

investigate the sensitivity of patients in different subgroups to

immunotherapy. TMB was analyzed using the maftools package

(31), whereas MSI was analyzed using the PreMSIm package

analysis (32), with the data normalized from 0 to 1.
2.8 Calculate the proliferation score

Proliferation scores were calculated using proliferation-related

genes (BIRC5, CCNB1, CDC2, NUF2, CEP55, NDC80, MKI67,

PTTG1, RRM2, TYMS, and UBE2C) (33) and grouped using

scRNA-seq and bulk-seq.
2.9 Analysis of intercellular interactions

Cell-cell interaction analysis was performed using the R package

CellChat (34), which models the probability of intercellular

communication by combining gene expression with a priori

knowledge of the interactions between signaling ligands,

receptors, and their cofactors utilizing secretory signaling and

cell-cell contact human databases. Circle and bubble plots were

used to show the strength of cell-cell communication networks

from target cell clusters to other cell clusters.
2.10 Cell culture and transfection

MDA-MB-231 and BCAP-37, were provided by the Medical

Experiment Center of Yan’an University and cultured in RPMI-1640

(Biological Industries, Kibbutz Beit-Haemek, Israel) or DMEM

(Biological Industries, Kibbutz Beit-Haemek, Israel) medium supplied

with 10% fetal bovine serum (FBS) (Biological Industries, BI) at 37 °C,

5%CO2. For small interference RNAs (siRNAs) transfection, jetPRIME

reagent (polyplus-transfection, SA) was used according to the

manufacturer’s protocol. siRNAs of NCAPD3 were produced by

GenePharma (Shanghai, China). The sequences of NCAP3 siRNAs is

si-NCAPD3-1, forward 5′- GCAUUCAGACUCUAAAGAATT -3′,
and reverse 5′- UUCUUUAGUCUGAAUGCTT -3′; si-NCAPD3-2,
forward 5′-GAGAAGGAGAUAAGGUCAUTT-3′, and reverse 5′-
AUGACCUUUAUCUCCUUCUCTT-3′.
2.11 Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent (invitrogen,

Carlsbad, CA, USA), followed by a reverse transcription using a

reverse transcription kit (TaKaRa, RR036A) according to the

manufacturer’s instructions. Quantitative real-time PCR was

performed using a qRT-PCR reagent (TaKaRa, RR820A)
Frontiers in Immunology 04
according to the manufacturer’s instructions. b-ACTIN, was used
as the interference gene. Relative expression changes of genes were

calculated using the 2-DDCt method. Primer sequences used are

NCAPD3, forward 5’- TGGAGCAAGAGTCGAATGGCG -3′ and
reverse 5′- GGGGCGGTTTATCAGGCAGTG -3’; b-ACTIN,
forward 5′- CATGTACGTTGCTATCCAGGC -3′, and reverse 5′-
CTCCTTAATGTCACGCACGAT -3’.
2.12 Western blot analysis

Whole cell proteins were first extracted on ice using the RIPA

lysis buffer with protein inhibitors. And then, the proteins extracted

were quantified using a BCA protein assay kit (Beyotime, P0010S),

8% SDS-PAGE gels separated, and transferred to a PVDF

membrane. For western bloting analysis, the PVDF membranes

were then 5% skim milk blocked, primary antibody blotted, TBST

washed, secondary antibody incubated, TBST washed and

chemiluminescence detected. Primary antibodies of NCAPD3

antibody (Proteintect, Wuhan, China, 16828-1-AP) and b-
Tubulin antibody (Proteintect, Wuhan, China, 10094-1-AP), and

HRP tagged rabbit secondary antibody (Proteintect, Wuhan, China,

SA00001-2) were all purchased from Proteintect (Wuhan, China)
2.13 CCK8

Cells in the logarithmic growth phase were seeded into 96-well

plates. After transfection of siRNAs, the cells were then CCK-8

reagent (Topscience, Shanghai, China) incubated and 450 nm

absorbance tested at the time of 24, 48, and 72 hours after

trusfection according to the manufacturer’s instructions.
2.14 Clone formation

Cells pre-transfected were counted and seeded into 12-well

plates. After two weeks of culture, the cells were fixed with 4%

paraformaldehyde, crystal violet stained, and photographed.
2.15 Scratch wound healing assay

Cells cultured in 6-well plates with a 60% confluency was

NCAPD3 siRNAs or NC RNA transfected, scraped using a 100

mL sterile pipette tip, and gphotographed under a Nikon Ti-S

fluorescence microscope at the time of 0, 12, 24, and 36 h after

scrape (the same scratch area).
2.16 Statistical analysis

Statistical data analyses were performed using the SPSS 22.0

software. The ggplot2 package in the R programming language was

used for the bioinformatic analyzing. The GraphPad Prism 9.0

software was employed to process the experimental data. The two-
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tailed Student’s t-test was performed to evaluate the difference

between the two groups, P < 0.05 was considered to be

statistically significant.
3 Results

3.1 Single-cell sequencing analysis depicts
mitochondrial DNA methylation
compartmentalization and breast cancer
cell mapping

To investigate the modifications in mitochondrial DNA

methylation (MTDM) in breast cancer (BC) cells, BC cell

mapping was performed using single-cell data. After extracting

and analyzing the GSE195861 dataset, 12 single-cell BC samples

that were well integrated (Supplementary Figure 1A) and had no

significant batch effect on subsequent analyses were selected. Using

of “KNN” algorithm we divided the selected cells into 12 clusters

(Figure 1A) and then annotated them according to the cell specific

markers expression level (Supplementary Figure 1B). The

annotation results showed that five cell types existed in the

clusters: B cells, T cells, endothelial cells, epithelial cells,

macrophages, and other cell types (Figures 1B, C), among which

epithelial cells were mostly present, while endothelial cells were

smallest (Figure 1C). To determine the MTDM levels in the

screened cells, the annotated cells were divided into high and low

MTDM groups based on the median MTDM-related gene

expression (Figure 1D). As shown in Figures 1B, D, the high

MTDM group was mainly concentrated in epithelial cells and

macrophages. Thirteen mitochondria-encoded polypeptides are

suppressed by mtDNA hypermethylation. We verified the

accuracy of MTDM group division by detecting the MTDM-

related genes expression. The results showed that all

mitochondria-encoded polypeptides were significantly

upregulated in the low-MTDM group (Figure 1E), consistent with

the previous report. Thus, MTDM group division was reasonable.

To determine the correlation between MTDM and BC malignancy,

we differentiated annotated cells into ductal carcinoma in situ

(DCIS) and invasive ductal carcinoma (IDC) cells (Figure 1F,

Supplementary Figure 1C). The results showed that the epithelial

cells of the more aggressive IDC group had a higher overlap with

those of the high MTDM group than those of the DCIS group.

Therefore, it is possible that high MTDM status contributes to

BC progression.
3.2 BC cells with high mitochondrial DNA
methylation are prone to be malignant

As 3.1 indicated that high MTDM status contributes to the

malignant progression of BC, to further explore the malignant

propensity of BC cells with a high MTDM status, biological

pathway enrichment analysis (Figure 2A) and copynumber

karyotyping analysis (Figure 2B) were conducted. The results

showed that MTDM group gene alterations occurred not only in
Frontiers in Immunology 05
the proliferation-related E2F signaling pathway, MYC signaling

pathway, G2M checkpoint, metastasis-related WNT signaling,

and epithelial mesenchymal transformation-related biological

pathways, but also in apoptosis, angiogenesis, inflammatory

response, and metabolism-related pathways. Additionally,

copynumber karyotyping analysis (Figure 2B) indicated that

malignant BC cells were mainly concentrated in epithelial cells,

and their distribution areas highly overlapped with high MTDM

areas. Considering that patients with a higher rate of tumor

proliferation usually have a poorer prognosis (35), relationship

between MTDM status and proliferation was further examined by

distinguishing single-cells using proliferation-related markers

(Figure 2C). The results showed that the highly proliferative

regions overlapped with the high MTDM regions, indicating a

malignant tendency in high MTDM status. To explore the key genes

affecting MTDM, gene modules associated with MTDM were

analyzed using WGCNA (Supplementary Figures 2A–C), and

seven non-gray modules were obtained. Among these seven non-

grey modules, the turquoise and yellow modules had correlations of

0.68 and -0.53 with MDTM-score, respectively, and the genes

contained in these two modules were closely related to MDTM-

score (Figure 2D). Genes with a P-value <0.001 were selected for

further analysis.
3.3 Status of mitochondrial DNA
methylation is valuable for BC prognosis

Given the effect of changes in MTDM levels on a diverse range of

biological processes, we investigated whether the genes associated

with altered MTDM levels could serve as prognostic indicators in

patients with BC. Thus, a total of 564 genes from the differential

expression analysis of the high and lowMTDM groups andWGCNA

analysis of MTDM-associated genes were performed. Using

univariate Cox analysis with a threshold of P < 0.05, 16 genes

associated with patient prognosis were identified in the TCGA

cohort. LASSO regression analysis stabilized gene contraction, and

11 genes were identified (Figures 3A, B and Supplementary Table 1).

The LASSO regression results for these 11 genes are presented in

Supplementary Table 1. Finally, we obtained a set of 11 genes, that are

ARID1B, B3GNT2, MPHOSPH10, NCAPD3, RABGAP1, RBM41,

RBMXL1, SLBP, TMEM167A, TMEM67, and TUBGCP5. To

classify patients into high- and low-risk groups (i.e., high and low-

MTDM groups), a prognostic model was constructed using the 11

genes and the median. Our findings revealed that the high MTDM

group in the TCGA training cohort had a poorer prognosis than the

low MTDM group (P < 0.0001, Figure 3C). The same trend was

observed in the GSE21653 validation cohort (P = 0.016, Figure 3D).

ROC curve analysis was performed in both the training and

validation cohorts further evaluate the accuracy of MTDM in

predicting the prognosis of patients with BC. The area under the

curve (AUC) values were 0.734, 0.731, and 0.706 at 1, 2, and 5 years,

respectively (Figure 3E) in the TCGA cohort, and 0.732, 0.686, and

0.673 at 1, 2, and 5 years, respectively (Figure 3F), in the validation

cohort. These results indicate that the MTDM status could be used

accurately to predict BC patient prognosis in both cohorts.
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Additionally, we conducted a PCA of the 11 genes in both the

training and validation set models, and the results showed that our

constructed model could discriminate between high and low MTDM

in both cohorts (Figures 3G, H). Hereafter, high and low MTDM

distinguished by risk score was used to refer the high-risk score and

low risk, respectively. To better assess the risk of BC patients, a

nomogram combined clinical data and MTDM values was first

constructed, based on the age, T-stage, total stage and MTDM
Frontiers in Immunology 06
score of patients “TCGA-A2-A0CY”, our nomogram estimated a

0.0158, 0.113, and 0.216 mortality rate of patients at the year of 1, 3,

and 5 years respectively (Figure 3I). ROC analysis was used to

evaluate the accuracy of the nomogram, and the results showed

that the AUC at 1, 2, 3, and 5 years were 0.85, 0.84, 0.8, and 0.8,

respectively (Figure 3J). Thus, the constructed nomogram could

effectively predict the patients with BC, and could be used to direct

clinical decision-making.
A

B

D

E

F

C

FIGURE 1

Single Cell Sequencing Data Analysis. (A) Dimensionality reduction and cluster analysis. All cells in 12 samples were clustered into 12 clusters.
(B) According to the surface marker genes of different cell types, the cells are annotated as B cells, T cells, endothelial cells, epithelial cells,
macrophages and other cells respectively. (C) Different cell types count. (D) The percentage of Mitochondrial DNA methylation genes in each cell.
The cells were divided into high- and low-Mitochondrial DNA methylation cells. (E) Expression of mitochondrial coding peptides in high and low
mitochondrial DNA methylation groups. (F) According to different cell types, breast cancer cells can be divided into Ductal carcinoma in situ and
Invasive Ductal Carcinoma.
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3.4 Screen of mitochondrial DNA
methylation-related prognostic genes
that positively regulate breast cancer
cells proliferation

As altered MTDM levels may affect BC cell proliferation, further

screening of MTDM-related prognostic genes that positively

regulate BC proliferation could potentially be used as therapeutic

targets is required. Thus, we first explored the expression of

MTDM-related prognostic genes in different cell types. The

results showed that all MTDM-related genes were highly
Frontiers in Immunology 07
expressed in epithelial cells, except for ARID1B which was highly

expressed in B cells (Figure 4A). Additionally, all MTDM-related

prognostic genes were highly expressed in malignant cells and cells

with a high MTDM status (Figures 4B–D). These results are

consistent with our previous results described in Section 3.3,

indicating that MTDM-associated prognostic gene expression

correlates well with MTDM levels in cells.

Furthermore, we investigated the expression of MTDM

prognosis-related genes in the high and low proliferation rate

groups (Figure 5A) and found that all MTDM-related prognostic

genes were highly expressed in the high proliferation rate group,
A

B DC

FIGURE 2

Biological differences in mitochondrial DNA methylation. (A) Differential biological pathway analysis showed that high and low mitochondrial DNA
methylation groups were enriched in different signaling pathways. (B) Malignant cell identification, by chromosome integrity recognition, distinguish
benign cells and malignant cells. (C) Cell proliferation rate was quantified by proliferation-related genes. (D) WGCNA found that MEturquoise, and
MEyellow modules were closely related to the score of Mitochondrial DNA methylation.
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FIGURE 3

Construction and validation of Mitochondrial DNA methylation-related prognostic model. (A, B) sixteen genes were selected to construct the prognostic
model by Lasso regression. (C) Survival analysis of TCGA cohort. The prognosis was significantly worse in the high-MTDM group (P<0.0001). (D) Survival
analysis of GSE21653 Cohort. The prognosis was significantly worse in the high-MTDM group (P<0.016). (E) ROC curve of TCGA cohort. The AUC values
of the model in 1, 2 and 5 years were 0.734, 0.731 and 0.706, respectively. (F) ROC curve of GSE21653 Cohort. The AUC values of the model in 1, 2
and 5 years were 0.731, 0.688 and 0.694, respectively. (G, H) PCA analysis of TCGA and GSE21653 queues. It was found that the model could well
distinguish mitochondrial DNA methylation levels in both the training cohort and the validation cohort. (I) Nomogram of patient “TCGA-A2-A0CY”. The
mortality rate of the patient in 1, 3 and 5 years was estimated to be 0.0158, 0.113 and 0.216. (J) ROC curve of the nomogram. The area under the curve
(AUC) in 1,2, 3 and 5 years were 0.85, 0.84, 0.8 and 0.8 respectively. ***P<0.001.
Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2023.1219652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2023.1219652
except for ARID1B which was highly expressed in the low

proliferation rate group. Again, we generated scores for

proliferation-related markers using ssGSEA in the TCGA BC

patient cohort (Figure 5B). The high and low proliferation rate

groups were distinguished by the median proliferation-related

marker scores (Figure 5C). The results showed that MPHOSH10,

NCAPD3 and SLBP were highly expressed at high proliferation

rates, with the most significant difference observed in NCAPD3.

The correlation heat map results also showed that NCAPD3 had a

significant positive correlation with proliferation-related markers

and correlated with MKI67 at 0.52 (Figure 5D). We further

subdivided malignant cells to focus on the relationship between

MTDM-related prognostic genes and malignant cells. We identified

a total of six malignant cell clusters (Figure 5E) and compared the

signature genes of each cluster and found that cluster 1 was highly

expressed in proliferation-related markers, such as MKI67, CCNB1

and UBE2C (Figure 5F), and GSVA analysis also showed that

cluster 1 was highly enriched in proliferation-related pathways,

such as the MYC signaling pathway, DNA repair pathway, E2F

signaling pathway, and G2M checkpoint signaling (Figure 5G). This

suggests that Cluster 1 is a malignant cell in a proliferative state.

Finally, we investigated the expression of MTDM-related

prognostic genes in a subpopulation of malignant cells and

consistent with the TCGA BC patient cohort, NCAPD3 was

expressed at the highest level in malignant cells in the

proliferative state (Figure 5H). These results also demonstrate that

high MTDM status may promote malignant cell proliferation, and

NCAPD3 in particular, may play a key role in this process.
3.5 The changes of immune
microenvironment suggest that the
mitochondrial DNA methylation status
may respond to the sensitivity of breast
cancer immunotherapy

Because a high MTDM state can affect the expression of

mitochondria-encoded polypeptides, preventing them from

effectively maintaining the integrity of the oxidative respiratory

chain (12–14), this would cause alterations in the metabolic state of

tumor cells. In turn, the metabolic reprogramming of tumor cells is

also aimed at promoting the rapid proliferation of tumor cells by

adjusting energy metabolism (36). Since high MTDM state would

inhibit OXPHOS and promote malignant cell proliferation, we

hypothesized that a high MTDM state could potentially drive

tumor cells to shift from OXPHOS to aerobic glycolysis, and that

the low PHmicroenvironment created by the metabolites of aerobic

glycolysis is conducive to tumor immune escape and promotes

tumor progression (37, 38). Therefore, we aimed to investigate

changes in the tumor immune microenvironment under different

states of MTDM and whether MTDM-related prognostic genes

could respond to the sensitivity of BC immunotherapy. First, we

explored the differences in immune cell infiltration levels between

the high and low MTDM groups. The results showed increased

immune cell infiltration, including B cells, NK cells, and T cells in

the low-MTDM group (Figure 6A). The expression of immune
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checkpoint-related genes was analyzed, and the results showed that

the immune checkpoint-related genes included in the study were

highly expressed in the low-MTDM group (Figure 6B). This may

have resulted in low immune cell responsiveness in the low-MTDM

group owing to the high expression of immune checkpoint genes

despite the high level of immune infiltration. To explore whether

immunotherapy is more applicable to the low-MTDM group, we

calculated the MSI and TMB scores to review their relationship with

MTDM. Tumors with high MSI are usually sensitive to immune

checkpoint blockade (39); therefore, we chose this score. Based on

the results showing that the high MSI group had a lower MTDM

score (Figure 6C), this evidence suggests that patients in the low-

MTDM group may benefit more from immune checkpoint

inhibitors. However, predicting TMB sensitivity to immune

checkpoint inhibitors in BC is controversial (40–43). In our

results, we found a higher TMB in the high MTDM group

(Supplementary Figures 3A–C) and a negative correlation with

the degree of immune infiltration, which is inconsistent with the

positive correlation between TMB and immune infiltration in most

studies. Therefore, we concluded that the TMB score is not suitable

as a biomarker for BC immunotherapy. To further test our

prediction, we used the cohort of immunotherapy-treated

melanoma patients GSE91061 (44) (Figure 6D). As expected, the

low-MTDM group had the largest proportion of patients who

achieved a CR or PR. Meanwhile, unsupervised clustering showed

that MTDM related prognostic genes were best classified into two

groups in the TCGA dataset (Figures 6E, F). There was also a

significant difference in the immune cells between the two groups

(Figure 6G), with cluster B showing lower expression of MTDM

related prognostic genes and higher levels of immune cell

infiltration. Finally, we differentiated T cells among the single-cell

data set, and the best binning was 12 according to the decision tree

(Figure 6H, Supplementary Figure 3D). T cells were classified into

CD8-positive T cells, Exhausted CD8 T cells, T follicular helper

cells, effector memory T cells, naïve T cells, and Tregs according to

the available markers (Figure 6I, Supplementary Figure 3E). The

ratio of cells between the two groups showed that the high MTDM

group had a higher proportion of Exhausted CD8 T cells, a marker

of immune dysfunction (45), while the low MTDM group had a

higher proportion of CD8-positive T cells (Figures 6J, K). These

results suggested that the low-MTDM group may be more

responsive to immunotherapy.
3.6 Cellular communication reveals a
potential pathway for mitochondrial DNA
methylation to mediate
immunosuppression

We explored the cellular communication characteristics

between malignant cells and T cell subpopulations in

different MTDM states, and the intercellular communication

characteristics can effectively identify the receptor-ligand

relationships that exist between cell populations, and we used this

approach to uncover possible ligand-receptor pairs between high

MTDM/proliferation-associated malignant cells and immune cell
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subpopulations as a response to the linkage between the two

subpopulations and the potential mechanisms of action.

Figure 7A shows the overall communication conditions between

Exhausted CD8 T cells and high MTDM malignant cells. It was

found that high MTDM malignant cells emit a GDF15 signal. In

contrast, Exhausted CD8 T cells relied on TGFBR2, the receptor of

GDF15, to receive this signal (Figures 7B, C). In addition, the

secretion of GDF15 by high MTDM malignant cells and the

expression of TGFBR2 by Exhausted CD8 T cells were cell-

specific (Figure 7D). GDF15, a member of the transforming

growth factor b (TGF-b) family, inhibits the expression of co-

stimulatory and major histocompatibility complex (MHC) class II

molecules, it decreases IL-12 levels and increases TGF-b1 secretion
(46). In hepatocellular carcinoma, GDF15 acts as a critical promoter

of Treg cells to promote Treg cell production thereby mediating

immunosuppressive responses (47). Our results suggest that

malignant cells with high MTDM status may cause exhaustion of

CD8 T cells through the secretion of GDF15, leading to

immunosuppression. Similarly, we explored the intercellular
Frontiers in Immunology 10
communication between proliferation-associated malignant cells

(c luster1) and T cel l s . F igure 7E shows the overa l l

communication between Exhausted CD8 T cells and high MTDM

malignant cells. The same results showed that proliferation-

associated malignant cells specifically secrete GDF15, and

Exhausted CD8 T cells receive this signal (Figures 7F–H). This

suggests that GDF15may be a key factor in the immunosuppressive

response of malignant cells with a high MTDM status and

proliferation rate.
3.7 In vitro experiments confirm that the
MTDM-associated prognostic gene
NCAPD3 does promote the proliferation of
breast cancer cells

As NCAPD3 is expressed at the highest level in proliferation-

related malignant cells and is positively correlated with

proliferation-related genes, we further explored the expression of
A

B

D

C

FIGURE 4

single-celled sequencing analysis, to explore the distribution of 11 modeling gene. (A) The expression levels of 11 modeling genes in different cell
types. (B) The expression levels of 11 modeling genes in benign and malignant cells. (C) Expression levels of 11 modeling genes in high and low
MTDM groups. (D) umap shows the expression distribution of model genes in the data set.
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FIGURE 5

The relationship between the model gene and proliferation was analyzed in malignant cells. (A) Expression levels of 11 modeling genes in high and
low proliferation rate groups. (B) The TCGA breast cancer data set was divided into high and low proliferation rate groups based on proliferation-
related genes. (C) Expression levels of modeling genes in the high and low proliferation rate groups of the TCGA breast cancer data set. Results In
the TCGA breast cancer data set, the difference in NCAPD3 was most significant between the high and low proliferation groups. ns, no significance;
*p<0.05; **P<0.01; ***P<0.001. (D) Analysis of the correlation between NCAPD3 and proliferation-related genes showed that there was a strong
correlation between NCAPD3 and proliferation-related genes. (E) Epithelial malignant cells were divided into 6 clusters. (F) Differential genes in 6
clusters showed specific expression of proliferation-related genes in cluster 1, which indicated that cluster 1 subgroup was proliferation-related
epithelial malignant cells. (G) Differential biological pathway enrichment analysis shows the pathways enriched by different clusters. (H) The
expression of 11 modeling genes in 6 epithelial malignant cell clusters showed that NCAPD3 had the highest expression level in cluster 1. *p<0.05;
**P<0.01; ***P<0.001, ****P<0.0001.
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FIGURE 6

Immune infiltration analysis and immunotherapy sensitivity prediction. (A) Heat map of immune cell infiltration in high MTDM group and low MTDM
group. (B) Expression of immune checkpoint related genes in high -MTDM group and low -MTDM group. (C) The results of microsatellite instability
state analysis showed that the high MSI group had lower MTDM scores. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (D) The relationship
between mitochondrial DNA methylation score and response to immunotherapy was evaluated using immunotherapy cohort GSE91061.
(E) Unsupervised consistency cluster analysis. Patients can be divided into two clusters according to the expression of model genes. (F) The
expression levels of model genes in different clusters. (G) Immune landscape of different clusters. (H) Decision tree analysis is used to determine the
optimal clustering threshold. (I) According to the surface marker genes of different cell types, the cells are annotated as CD8 T cells, Exhausted CD8
T cells, T follicular helper cells, Treg cells, Effector memory T cells and Naive T cells respectively. (J) The percentage of Mitochondrial DNA
methylation genes in T cells. The cells were divided into high- and low-MTDM cells. (K) Proportion of T cell types in high and low MTDM groups.
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FIGURE 7

Cell communication analysis shows the interactions between different kinds of cells. (A) Overall communication condition of Exhausted CD8 T cells
and High-MTDM Malignant cells. Circle sizes are proportional to the number of cells in each cell group and edge width represents the
communication probability. (B) Overall activation of the GDF signaling pathway was observed in T cell subtypes and malignant cells with different
MTDM levels. (C) The malignant cells in the high MTDM group were the only transmitters of GDF signal, and the Exhausted CD8 T cells were the
only receivers of this signal. (D) Expression of GDF and its ligand, TGFBR2, in T cell subtypes and malignant cells with different MTDM levels.
(E) Overall communication condition of Exhausted CD8 T cells and Proliferation-associated malignant cells. (F) Overall activation of the GDF
signaling pathway was observed in T cell subtypes and Proliferation-associated malignant cells. (G) The Proliferation-associated malignant cells were
the only transmitters of GDF signal, and the Exhausted CD8 T cells were the only receivers of this signal. (H) Expression of GDF and its ligand,
TGFBR2, in T cell subtypes and Proliferation-associated malignant cells.
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NCAPD3 in BC and its effect on the immune microenvironment. In

the TCGA transcriptome, NCAPD3 was also highly expressed in

tumors (Figure 8A). We then evaluated the correlation between

NCAPD3 expression and the immune score and MSI separately and

found that NCAPD3 expression was negatively correlated with the

immune score and MSI (Figures 8B–D). Next, we performed

biological functional validation of NCAPD3 knockdown in vitro

to test whether our model gene knockdown prevents the growth of

breast cancer cell lines, which could indirectly respond to whether

knockdown of NCAPD3 improves the prognosis of breast cancer

patients. First, we verified the mRNA levels of NCAPD3 in the

MDA-MB-231 BC cell line 1 day after transfection using q-PCR

(Figure 8E) and found that all siRNA interference resulted in a

significant reduction in NCAPD3 mRNA expression (P< 0.05). We

also verified the protein levels of NCAPD3 in MDA-MB-231 and

BCAP-37 BC cell lines after 2 days of transfection by western

blotting (Figures 8F, G) and again found that the siRNA sequences

resulted in reduced protein levels of NCAPD3 (P< 0.01). To assess

the effect of NCAPD3 on cell proliferation, we performed CCK8 and

clone formation assays. CCK8 results showed that after NCAPD3

knockdown, cell viability was significantly reduced in MDA-MB-

231 and BCAP-37 BC cell lines compared to that in the siRNA

negative control (NC) group (P<0.05) (Figures 8H, I). The results of

the cloning assay showed that the number of colonies with reduced

NCAPD3 expression was significantly reduced in both the BC cell

lines (Figures 8J, K, Supplementary Figure 3F). Finally, we

performed scratch assays to test whether NCAPD3 knockdown

affected the migration ability of BCAP-37 BC cell lines. The

results showed that scratch healing was significantly slower in the

NCAPD3 knockdown group than in the siRNA negative control

(NC) group (Figure 8L, Supplementary Figure 3G), indicating that

NCAPD3 knockdown may be an effective strategy to inhibit the

proliferation and migration of BC cells. These results suggest that

NCAPD3 targeting may be a desirable outcome for BC treatment

and may improve patient prognosis.
4 Discussion

In this study, we found that altered MTDM levels play a key role

in BC progression and influence the prognosis and immunotherapy

outcomes of BC patients. We constructed a BC cell profile by using

GSE195861 single cell data and distinguished between high and low

MTDM groups, while high MTDM cells were mainly present in

cells derived from IDC patients, with high proliferation rates and

higher malignancy, suggesting that high levels of MTDM may be

associated with the malignant trend of BC. Further investigation

revealed that MTDM levels also had an impact on BC progression

and patient prognostic key gene expression and were influenced by

these genes regulating downstream signaling pathways. The high

MTDM group showed a lower level of immune infiltration, a higher

proportion of Exhausted CD8 T cells and a higher proliferation rate

compared to the low MTDM group, which also had a poorer

prognosis. In addition, the findings revealed that cells with low

MTDM levels had a higher percentage of immune cell infiltration
Frontiers in Immunology 14
and a higher percentage of CD8-active T cells adapted for

immunotherapy. Finally, we also analyzed the cell-to-cell

communication characteristics of T cell fractions and high

MTDM malignancy/proliferation-associated malignancy cells. The

results showed that high MTDM malignancy/proliferation-

associated malignancy cells secreted GDF15 and Exhausted CD8

T cells expressed TGFBR2, the receptor for GDF15, leading to

tumor cell immunosuppression. In conclusion, our study highlights

the non-negligible role of MTDM in BC progression and its impact

on a wide range of biological functions. Therefore, this is an area

worth exploring in BC therapy.

In the article, we identified MTDM-related molecules

representative of patient prognosis and immunotherapy

sensitivity to construct a portfolio of markers for predicting BC

patient prognosis and immunotherapy sensitivity. These include

ARID1B, B3GNT2, MPHOSPH10, NCAPD3, RABGAP1, RBM41,

RBMXL1, SLBP, TMEM167A, TMEM67, and TUBGCP5. AT-Rich

Interaction Domain 1B (ARID1B) is a component of the SWI/SNF

chromatin remodeling complex. In a zebrafish model, deletion of

ARID1B results in reduced body length due to dysregulation of the

Wnt/b-catenin signaling pathway (48), which reveals an association

between ARID1B and the Wnt/b-catenin signaling pathway. In a

recent study, loss of ARID1B in ARID1A-deficient tumors

destabilized SWI/SNF and impaired cancer cell proliferation (49).

Meanwhile, ARID1B was identified as a potential therapeutic target

in ARID1A mutant neuroblastoma (50). BetaGal Beta-1,3-N-

Acetylglucosaminyltransferase 2 (B3GNT2) encodes a poly-N-

acetyl lactosamine synthase that targets multiple ligands and

receptors to disrupt tumor-T cell interactions and reduces T cell

activation (51). M-Phase Phosphoprotein 10 (MPHOSPH10)

encodes a protein that is phosphorylated during mitosis and may

be involved in rRNA preprocessing (52). For fast-growing cancer

cells, an active translational machinery is required to meet the needs

of protein production, in which robust ribosome biogenesis plays a

key role (53). Recent studies have shown that UTP11 facilitates pre-

rRNA processing by binding to MPHOSPH10. When this process is

blocked, it triggers nuclear stress and leads to p53 activation and

cancer cell growth arrest (54). RAB GTPase Activating Protein 1

(RABGAP1) is a GTPase activating protein of RAB6A that plays a

key role as a master regulator in cellular compartment localization

and vesicle transport (55). Many Rab proteins are involved in

cancer progression and in recent studies, RABGAP1 was shown

to be regulated by Tuftelin 1 (TUFT1), promoting perinuclear

lysosome accumulation and intracellular vesicle transport, which

in turn is involved in tumor development (56). RNA Binding Motif

Protein 41 (RBM41) is predicted to be a target gene for hsa-miR-

136 (57), which has been shown to possess oncogenic effects (58),

and RBM41 may also be involved in this process. RNA Binding

Motif protein, X-linked Like 1 (RBMXL1) is an RNA-binding

protein that may be involved in pre-mRNA splicing, and it has

been reported that melanomas with RBMXL1 mutations may have

correspondingly extensive Studies of Alternative RNA Splicing

(ARS) (59), which may provide novel antigenic epitopes (60).

stem-loop binding protein (SLBP) is a protein that binds to the

histone mRNA stem-loop sequence and regulates the 3’ processing
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FIGURE 8

In vitro biofunctional validation of the MTDM-associated prognostic molecule NCAPD3. (A) Expression of NCAPD3 in cancer and peritumoral
samples in the TCGA breast cancer dataset. (B) Analysis of correlation between NCAPD3 and immune score. (C) The results of microsatellite
instability analysis showed that the high MSI group had lower NCAPD3 expression. (D) The estimate analysis showed the relationship between the
expression level of NCAPD3 and stromal score, immune score and estimate score. (E) qRT-PCR to evaluate the level of NCAPD3 mRNA 1 days after
transfection. All siRNA sequences could result in significant decrease in NCAPD3 mRNA expression (P<0.05). (F-G) Western Blot to evaluate the level
of NCAPD3 proteins 2 days after transfection. All siRNA sequences could result in significant decrease in NCAPD3 proteins expression (P<0.01).
(H-I) CCK8 assay. After NCAPD3 knockdown, the cells showed significant reduction in viability. (J) Colony formation assay. Cells with a reduced
NCAPD3 expression exhibited a significant decrease in the numbers of colonies, compared with the siRNA negative control (NC) group. (K) Scratch-
wound healing assay. A significantly slower wound healing rate was observed in cells with a decreased expression of NCAPD3 gene. All data were
presented as the means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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of histone mRNA (61), SLBP is required for histone biosynthesis

and also for rapid cell proliferation (62), as RNAi downregulation of

SLBP expression inhibits DNA synthesis and thus inhibits cycle

progression (63). A recent study showed that SLBP is indeed

involved in breast cancer development and that inhibition of

SLBP expression would be a promising therapeutic target for

breast cancer (64). Transmembrane Protein 167A (TMEM167A)

is a protein associated with vesicle transport and secretion that

regulates the transport of newly synthesized proteins from the ER-

Golgi to the cell membrane or other organelles and is also required

for glioma growth in human cell xenografts and Drosophila models,

and interference with TMEM167A expression impedes a variety of

tumor cell proliferation (65, 66). Transmembrane Protein 67

(TMEM67) plays a role in the migration of centrioles to the

apical membrane and the formation of primary cilia (67).

TMEM67 was identified as a candidate therapeutic target for

triple negative breast cancer (TNBC) in a recent study, which

revealed TMEM67 amplification in TNBC and proliferation

inhibition of TNBC cell lines by interference with TMEM67

expression (68). Gamma-Tubulin Complex Component 5

(TUBGCP5, also known as GCP5), is involved in microtubule

binding activity and microtubule nucleation (69). Recent studies

have reported that TUBGCP5 can be regulated by the Long non-

coding RNA Hotair, which in turn promotes the proliferation,

migration and invasion of gastric cancer cells, and the regulation of

the Hotair/TUBGCP5 axis may be a potential therapeutic target for

gastric cancer (70). Non-SMC Condensin II Complex Subunit D3

(NCAPD3) is a subunit of the cohesin II complex, a complex of

mitotic chromosomal structures involved in the physical rigidity of

the chromosome spindle (71). Recent studies have shown that

NCAPD3 plays a key role in CRC progression by upregulating

various transcription factors, such as E2F1 and c-Myc and

regulating glycolytic function in multiple ways to mediate

tumorigenesis and progression (72). In prostate cancer, NCAPD3

has also been shown to activate E2F1 and STAT3 and drive prostate

cancer progression (73). In addition, NCAPD3 is present in the

outer mitochondrial membrane and regulates oxidative stress in the

mitochondria, which is not dependent on glycolysis and does not

affect the number of mitochondria (74). Ultimately, in vitro

experiments also confirmed that the knockdown of NCAPD3

resulted in a significant decrease in cell viability and colony

number in BC cell lines MDA-MB-231 and BCAP-37 and a

significant slowdown in scratch healing in MDA-MB-231 cells.

Thus, our results suggest that NCAPD3 is a promising therapeutic

target for BC and further studies are needed to explore its potential.

In BC, it is commonly observed that BC possesses lower

mtDNA content compared to standard breast specimens (75, 76),

and it has also been shown that the reduction of mtDNA in BC cell

lines may be associated with the conversion to a mesenchymal

phenotype (77). Furthermore, MTDM largely determines the

mtDNA expression. The role of MTDM in BC is almost

unknown; therefore, it is necessary to analyze the specific role of

MTDM in BC, and further research is needed to understand the role

of MTDM and its potential as a therapeutic target.
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In previous studies, the exploration of MTDM focused on its

presence and alteration in different diseases (17),leading to a lack of

clarity on the one hand as to why this alteration occurs, and on the

other, as to what impact this alteration will have on the

development of the disease. Recently, through methodological

and functional studies, the academic community established

MTDM as an important research direction in mammalian

mitochondrial physiology (78). Previous methodologies have been

dedicated to the more precise identification of MTDMmodification

sites (22), and thus to determining the overall level of MTDM. We

quantified the overall level of MTDM by collecting genes that

positively regulate MTDM and quantifying the overall level of

MTDM based on their expression levels, and the expression of

mitochondria-encoded peptides similarly confirmed the validity of

our approach. The accuracy of this method needs to be validated in

combination with other MTDM sequencing methods.

In this study, we present the first systematic demonstration of

the role of MTDM in breast cancer and explore its relationship with

immunity and prognosis. This study provided new insights into the

use of BC immunotherapy. We found that MTDM-related

prognostic molecules, particularly NCAPD3, were strongly

positively correlated with proliferation. In vitro knockdown of

NCAPD3 interfered with cell viability, clonogenic capacity, and

migration ability of BC cell lines, suggesting that NCAPD3may be a

promising target for BC therapy. This demonstrates that

interference with the MTDM pathway has great potential for

cancer therapy. In particular, the understanding of the

importance of MTDM in mammalian mitochondrial physiology

has strengthened research in this direction. Thus, intervention of

the MTDM pathway is a novel cancer treatment strategy that will

lead to better patient outcomes. Our findings provide a potential

target for BC therapy; however, further studies are needed to

explore this potential.
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SUPPLEMENTARY FIGURE 1

Single cell sequencing analysis of GSE195861. (A) The integration effect of 12
samples is good. (B) Cell numbers in ductal carcinoma in situ and invasive

ductal carcinoma samples. (C) Annotated markers of different kinds of cells.

SUPPLEMENTARY FIGURE 2

WGCNA analysis. (A) Cluster tree of TCGA breast cancer samples to exclude

outliers. (B) Find the optimal soft threshold. (C) Cluster Dendrogram, used to

find correlations between modules and samples.

SUPPLEMENTARY FIGURE 3

TMB analysis and T cell isotype annotation. (A) Mutation landscape of high-

MTDM group. (B)Mutation landscape of low-MTDM group. (C) TPM scores of
high and low MTDM groups. (D) Dimensionality reduction and cluster

analysis. All T cells were clustered into 12 clusters. (E) Annotated markers of

different kinds of T cells. (F) Quantitative diagram of clone formation
experiments. (G) Experimental quantified graph of scratch healing ability.
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