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Innate lymphoid cells (ILCs) are key regulators of tissue homeostasis,

inflammation, and immunity to infections. ILCs rapidly respond to

environmental cues such as cytokines, microbiota and invading pathogens

which regulate their function and phenotype. Even though ILCs are rare cells,

they are enriched at barrier surfaces such as the gastrointestinal (GI) tract, and

they are often critical to the host’s immune response to eliminate pathogens. On

the other side of host-pathogen interactions, pathogenic bacteria also have the

means to modulate these immune responses. Manipulation or evasion of the

immune cells is often to the pathogen’s benefit and/or to the detriment of

competing microbiota. In some instances, specific bacterial virulence factors or

toxins have been implicated in how the pathogen modulates immunity. In this

review, we discuss the recent progress made towards understanding the role of

non-cytotoxic ILCs during enteric bacterial infections, how these pathogens can

modulate the immune response, and the implications these have on developing

new therapies to combat infection.
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Introduction

Innate lymphoid cells (ILCs) are rare lymphocytes that are primarily tissue-resident

and often present in mucosal tissues. Lacking specific antigen receptors, ILCs are mainly

activated by cytokines and rapidly respond to infections. ILCs represent innate

counterparts of T cells as they share several phenotypic and functional features (1). ILCs

can be classified into four distinct subsets: NK cells, ILC1s, ILC2s, and ILC3s based on

expression of lineage-specifying transcription factors (TF), surface markers and effector

functions (2, 3). We will focus on ILCs as NK cells have been well-recognized and studied

for decades. ILC1s express T-bet and often protect against intracellular pathogens via

production of IFNg but generally are non-cytotoxic (4). ILC2s express the lineage defining
TF GATA3 and produce the type 2 cytokines IL-5 and IL-13, and lesser amounts of IL-4

and IL-9. ILC2s are often key to mediating immune responses to helminths and allergens

(5). ILC3 development depends on the TF RORgt and these cells produce IL-22 to maintain
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tissue barrier function and protect against extracellular pathogens

(5, 6). Further, ILCs can have cellular plasticity and can

transdifferentiate to other ILC subtypes depending upon the

cytokine and/or environmental milieu (3–5).

Mucosal surfaces such as those of the GI tract harbor billions of

microorganisms as part of the normal microbiota, which is the first

line of defense against bacterial pathogens. Nevertheless, many

pathogens enter the host through mucosal surfaces causing

infection. The immune system has evolved to provide resistance

to pathogens while maintaining homeostasis with the microbiota.

ILCs are enriched in mucosal surfaces and orchestrate the early

defense against invading pathogens. Although ILC3s are cast to be

the ILCs that respond to extracellular bacterial infection, ILC1s and

ILC2s also can contribute to the immune responses against these

pathogens. For every well-honed immune response to combat a

pathogen, a host may have a less than perfect response because of

many possible reasons, with a primary one being that the pathogen

can fight back. Enteric bacteria produce many toxins and other

effector molecules that target host cells and can cause apoptosis or

interfere in signaling pathways.

Recent studies have highlighted roles of ILCs during infection

and modulation of ILC functions by pathogenic bacteria. Although

challenging to test the precise role of virulence factors on ILCs in in
Frontiers in Immunology 02
vivo models due to the requirement for virulence factors for

infectivity and the limitations on the tools to specifically target

ILCs and not other immune cells, we have discerned much on how

ILCs respond to different gastrointestinal (GI) bacterial infections

and how the pathogen may affect this response (Figure 1). Here, we

present the current state of the field on modulation of non-cytotoxic

ILC functions by enteric bacterial pathogens and how it contributes

to pathogenesis or protection against these pathogens.
Modulation of ILC function by
bacterial pathogens

Citrobacter rodentium

C. rodentium is a murine Gram-negative pathogen that is widely

used to model the human pathogen enteropathogenic Escherichia coli

(EPEC) (16). Like EPEC, C. rodentium secretes effectors via a type 3

secretion system (T3SS) into intestinal epithelial cells to modulate host

cell processes and establish infection (17). The utility of the

C. rodentium infection model extends beyond bacterial pathogenesis

studies to reveal fundamental aspects of mucosal immunity (18).

C. rodentium infection elicits both innate and adaptive immune
FIGURE 1

Pathogenic bacteria modulate ILC function through different mechanisms. Citrobacter rodentium produces the effect EspO which indirectly
contributes to activation of ILC3s and their production of secreted IL-22 (7). As an intracellular pathogen Salmonella invades ILC3s which induces
their pyroptosis and reduces their numbers in the GI tract (8). Toxin B (TcdB) produced by Clostridioides difficile directly activates ILC3s to produce
IL-22 (9). Helicobacter pylori activates epithelial cells to produce IL-33 in a CagA-dependent manner. This IL-33 in turns activates ILC2s in the
stomach to produce IL-5 (10, 11). Non-gastric Helicobacter species increase frequencies of cytokine producing ILC1s and ILC3s (12). Campylobacter
infection induces conversion of ILC3s to ILC1s that can produce IFNg (13). Bacillus anthracis secretes two toxins with opposing effects on ILC3s.
Lethal toxin inhibits MAPK signaling which inhibits ILC3 activation (14). In contrast, edema toxin directly activates ILC3s to produce IL-22 (15). Direct
interactions are shown with solid arrows, indirect interactions are shown with dashed arrows. Created with BioRender.com.
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responses that are important for control and clearance of the pathogen

in the initial and late phases of infection, respectively. ILC3s are critical

immune cells in early control of C. rodentium (19–22). Following

infection, macrophages and dendritic cells (DCs) are activated by

bacterial pathogen-associated molecular patterns (PAMPs) and

secrete inflammatory cytokines such as IL-23 and IL-1b which

activate ILC3s (23–27). Upon activation, ILC3s rapidly produce IL-

22, a critical cytokine in control of C. rodentium infection (5, 19, 28).

ILC3s represent a major early source of IL-22 in infection (21, 29),

where the cytokine upregulates antimicrobial peptides and mucin

production promoting intestinal barrier resistance (19, 28).

C. rodentium T3SS effectors modulate innate immune responses

(18). It is not known whether C. rodentium directly interacts with

ILC3s. However, a recent study showed that the T3SS effector EspO

modulates IL-22 signaling (7). While the study reported infection

with C. rodentium lacking EspO reduced IL-22 secretion by colonic

explants and a subsequent reduction in antimicrobial peptides, no

change in the frequency of IL-22 producing ILC3s or T cells was

observed (7). It is not clear why a C. rodentium effector would

upregulate IL-22. Modulation of IL-22 by other pathogens is known

to promote colonization (30) but this is unlikely in the case of C.

rodentium as IL-22 is well-described to be protective in C.

rodentium infection (19). C. rodentium is also known to modulate

metabolism of intestinal epithelial cells (IECs) (18). T3SS effectors,

Map and EspF, cause mitochondrial disruption leading to shift in

IEC metabolism to aerobic glycolysis causing increased oxygenation

of the intestinal mucosa that supports C. rodentium colonization

(31–33). Given the role of hypoxia in regulating ILC3 function (34),

the question arises whether this increased oxygenation of the GI

tract caused by C. rodentium T3SS effectors modulate ILC3. Lastly,

C. rodentium infection can cause metabolic rewiring of ILC3s,

enhancing their proliferation and cytokine production (35). These

“trained ILC3s” show properties of “innate memory” and are better

in controlling re-infection than naive ILC3s in mice (35). In

summary, C. rodentium infection has been a valuable model to

learn much about pathogen-ILC interactions.
Salmonella

Salmonella enterica encompasses several serovars that cause GI

infection (36, 37). In developing countries, typhoidal serovars, S.

Typhi and S. Paratyphi, cause enteric fever. Non-typhoidal serovars

such as S. enterica serovar Typhimurium (S. Typhimurium) cause

food-borne gastroenteritis that are usually self-limiting but can lead

to disseminated infection (36). S. Typhimurium is the most widely

studied serovar and findings reviewed here pertain to this serovar.

Like many other Gram-negative GI pathogens, S. Typhimurium

encodes for T3SS, which in Salmonella is two separate T3SS systems

that secrete an arsenal of virulence factors (37).

Interferon-g (IFNg) is a key cytokine in defense against

Salmonella infections (38–41). The main innate source of IFNg
during Salmonella GI infection is NKp46+ T-bet+ ILCs that have

decreased RORgt levels (41). The IFNg production by these ILCs

during infection is driven by IL-12 while IL-23 has no significant

effect (41). Although ILCs are mainly tissue-resident cells, Kastele
Frontiers in Immunology 03
et al. showed that Salmonella infection increased the migratory

RORgt+ T-bet+ ILC population in the mesenteric lymph nodes and

contributed to IFNg production (42). Further refinement in

identifying the IFNg-producing cells, has shown significant IFNg
production by ILC1s but not ILC3s (8). IFNg regulates mucin

production during Salmonella infection and deficiency of the

mucin MUC2 increases susceptibility to infection in a mouse

model (39, 43). In line with this, depletion of ILCs or genetic

ablation of IFNg production by ILCs, results in impaired mucus

production (41). Additionally, IFNg-producing ILCs also contribute
to intestinal inflammation as interference with IFNg production by

ILCs leads to reduced inflammation (41). These studies suggest that

IFNg production by ILCs induced by Salmonella infection can be

both protective as well as pathologic.

IL-22 is upregulated during Salmonella infection (44). ILC3s via

production of IL-22 and lymphotoxin-a mediate in vitro

fucosylation of IECs (45). In vivo ILC3s mediate fucosylation

during Salmonella infection and mice deficient in intestinal

fucosylation are more susceptible to infection (45). Subsequent

studies have reported that IL-22 is not protective in Salmonella

infection. In fact, increased IL-22 promotes Salmonella infection by

improving its ability to compete with microbiota (30, 46). This is

attributed to its resistance to the antimicrobial peptides induced by

IL-22 (30, 47, 48). In line with these observations, a recent study

found that Salmonella induced IL-22 in ILC3s during infection

which promoted infection (8). Flagellin activates antigen-presenting

cells to produce IL-23, which in turn activated ILC3s. Further,

Salmonella directly invade ILC3s leading to capase-1-mediated

pyroptosis of ILC3s in a flagellin-independent manner. ILC3

depletion leads to less mortality and reduced disease severity in

Salmonella infected mice (8). Thus, Salmonella-induced ILC3

pyroptosis is a possible host defense mechanism against

Salmonella by limiting innate IL-22 production after early

induction which benefits the bacteria (8). However, the exact

signal(s) that induces ILC3 pyroptosis remain unknown. This

example of bacterial modulation of ILC3s by regulating cell death

is a bacterial defense mechanism that may prove to be relevant to

other GI pathogens.
Clostridioides difficile

C. difficile colitis is the most common nosocomial GI infection

occurring in patients with perturbed microbiota owing to use of

broad-spectrum antibiotics (49). C. difficile strains can encode for

three different toxins: toxin A (TcdA), toxin B (TcdB) and C. difficile

transferase (CDT) (50). The combined action of these toxins results

in disruption of host cytoskeleton in the GI epithelium and

ultimately loss of epithelial integrity. Toxin-mediated

inflammation can result in symptoms ranging from mild diarrhea

to pseudomembranous colitis (50).

Several studies have described the roles of ILCs during C.

difficile infection (CDI) (51–53). Nfil3-/- mice, which due to a lack

of the transcriptional regulator nuclear factor, interleukin 3

regulated (NFIL3) have reduced numbers of ILCs owing to a

developmental defect in ILC maturation, are highly susceptible to
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CDI (54). Further, Rag2-/- gc-/- mice lacking both adaptive immune

cells and ILCs have increased mortality following CDI compared to

RAG-deficient, lacking only adaptative immunity cells or wild-type

mice (51). IFNg is increased in Rag1-/- mice following CDI and

selective loss of ILC1s or ILC1-derived IFNg leads to increased

disease severity and mortality (51). The same study also reported an

increase in ILC3-associated cytokines such as IL-22 and IL-17

following CDI. However, selective loss of ILC3s or the ILC3-

associated cytokine IL-22 exhibited only a modest effect on CDI

recovery (51), at least in the absence of an adaptive immune

response. In contrast to this, Hasegawa et al. reported increased

mortality following CDI in IL-22-deficient mice. Although, lack of

IL-22 did not alter C. difficile burden and intestinal damage, IL-22

was important in clearance of pathobionts that translocated

following intestinal damage by regulating the complement system

(55). Together, these studies show that ILC3s and IL-22 are likely

more important during the later stage of infection by preventing

translocation of pathobionts whereas ILC1s are more important in

the early defense against CDI. The protective role of ILC3s and/or

IL-22 in context of CDI has been further confirmed by other studies

(34, 53, 56, 57).

ILC2s are important players in immunity against helminth

infection and allergic response in the GI tract (5). However, these

cells have been recently shown to be important in bacterial

infections, including C. difficile (52). IL-33, an activator of ILC2s,

was found to be upregulated during CDI in cecal tissues of infected

mice. IL-33 protected against CDI by activating ILC2s (52). IL-33-

activated ILC2s increased mucin production by goblet cells,

improving epithelial barrier function as well as increasing the

number of eosinophils in the colon that are protective during

CDI (52, 58, 59).

Although, the roles of different ILC subsets have been studied in

context of CDI, whether C. difficile or its toxins directly interact with

ILCs remains poorly defined. Recently, we reported that TcdB

directly activates ILC3s in vitro, inducing IL-22 and other effector

molecules (9). The TcdB-mediated activation of ILC3s required the

toxin’s enzymatic activity and was in part mediated by inactivation

of the small GTPase CDC42 (9). Gene expression analysis revealed

that the toxin-mediated activation of ILC3s is distinct from IL-1b-
mediated activation (9). Given the protective effects of IL-22 during

C. difficile infection, the toxin mediated activation of ILC3s seems

surprising. IL-22 may shape the microbiota to favor C. difficile over

other species that the pathogen competes for resources. In vivo

validation of this observation and function of toxin activated-ILC3s

remains to determined.
Helicobacter Spp.

Helicobacter pylori is a highly prevalent Gram-negative

pathogen that infects half of the world’s population (60). It causes

gastritis and is the strongest risk factor for gastric adenocarcinoma

(61). The major virulence factors of H. pylori are type four secretion

system (T4SS) effectors, which includes cytotoxin-associated gene A

product (CagA) (61). ILC2s are the predominant ILC population in

the stomach and increase in number during H. pylori infection (62,
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63). IL-33 is increased in gastric mucosa of patients and H. pylori

infected mice with strains encoding CagA. In vitro CagA induces

IL-33 production by gastric epithelial cells, leading to ILC2

activation and IL-5 production (10, 11). Similarly, increased IL7

mRNA levels are found in the gastric mucosa of H. pylori infected

patients (64). In the stomach, ILC2 accumulation and activation is

dependent on IL-7 and IL-33, respectively (63). ILC2s coordinate

with B cells to produce H. pylori-specific IgA which can coat

bacteria in the stomach in a mouse model (63).

Non-gastric Helicobacter species, such as H. apodemus and H.

typhlonius, have different effects on ILCs compared toH. pylori (12).

In mice lacking T and B cells, colonization of the GI tract with these

two Helicobacter species causes activation of ILCs with increased

frequencies of IL-22- and/or IL-17-producing ILC3s and IFNg-
producing ILC1s, resulting in GI inflammation. However, infection

reduces ILC3 number, particularly T-bet-expressing ILC3s (12).

How these Helicobacter species cause reduction in ILC3 numbers

remains unknown. The reduction in ILC3s was only observed in

mice lacking adaptive immune cells and not wild-type mice

suggesting that adaptive immunity can sustain ILC3s during

Helicobacter colonization.
Campylobacter

Campylobacter species, mainly C. jejuni and C. coli, are the

causative agents of one type of food-borne gastroenteritis (65).

Although these Gram-negative infections are mostly self-limiting,

long-term immune related intestinal dysfunction has been

associated with Campylobacter infections (66, 67). Several studies

have examined the role of ILCs during Campylobacter infection,

using a mouse model with a predisposition to intestinal

inflammation due to a lack of IL-10 signaling (13, 68, 69). IL-23,

a primary activator of ILC3s, is key driver of inflammation during

Campylobacter infection (69). Jing et al. found that IL-23 regulated

production of IFNg, IL-17 and IL-22 by ILC1s and ILC3s during

Campylobacter infection (69). Consistent with previous studies,

IFN-g and IL-17 promoted inflammation while IL-22 was found

to be dispensable for inflammation during Campylobacter infection

(69). This contrasts with another study in which IL-22 was

protective in a mouse model of Campylobacter where IL-10

signaling was intact (70).

Campylobacter infection induces production of IFNg, IL-17 and
IL-22 from both ILCs and T cell subsets in mice (68). Similar

observations were reported using an ex vivo human gut model of

infection (71). Both IFNg and IL-17 were found to promote

intestinal inflammation during Campylobacter infection (68). Two

recent studies found that ILC-derived IFNg contributes to intestinal
pathology during infection (13, 69). While ILC1s represent a major

source of IFNg, ILC3s can also convert into IFN-g-producing ILC1s
by expressing the transcription factor T-bet (5, 41). Interestingly,

Campylobacter infection induces conversion of ILC3s to ILC1s and

these ex-ILC3s in turn produce IFNg that promotes intestinal

inflammation (13). IL-12 and IL-23 have been shown to facilitate

in vitro ILC3-ILC1 plasticity (72) and both cytokines are elevated

during Campylobacter infection (13, 68). One may speculate that
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dysregulation of IL-12 and IL-23 levels during Campylobacter

infection promotes ILC3 to ILC1 conversion. However, the

mechanism by which Campylobacter regulates ILC3 to ILC1

conversion has not yet been elucidated. Campylobacter spp.

produce many toxins that modulate host cells, with the best

studied being cytolethal distending toxin (CDT) from C. jejuni,

that may modulate ILC function. Together, these studies show that

ILCs are a major player in inducing intestinal inflammation and

promote pathology during Campylobacter infection.
Bacillus anthracis

B. anthracis is the causative agent of anthrax, a rare but deadly

infection of the lungs, GI tract or skin (73). The major virulence

factors of the Gram-positive B. anthracis are lethal toxin (LT) and

edema toxin (ET) (73). LT or ET can both suppress immune

function of both innate and adaptive immune cells (74–76). In

line with the immunosuppressive action of anthrax toxins, LT can

suppress ILC3 activation both in vitro and in vivo in a mouse model

(14). LT, a zinc metalloprotease, cleaves mitogen activated protein

kinases perturbing cell signaling (77). LT reduced IL-22 production

by IL-23-activated ILC3s by inactivating MAPK signaling (14). In

contrast, ET as an adenyl cyclase, elevates intracellular cAMP levels

in ILC3s leading to their in vitro activation (15). How LT, ET and

ILC3s interact in vivo remains to be determined. It is likely that LT-

mediated suppression may overcome ET-mediated activation of

ILC3s as a study found suppression of the mRNA encoding IL-22-

induced antimicrobial peptides, REG3b and REG3g, in the colons of
B. anthracis infected mice (75). ET effects can be dose-dependent,

and the toxin can suppress T cell proliferation or promote Th17

differentiation (76, 78), which may have similar implications on

related ILC3s. Thus, it is also possible that ET may exert suppressive

action on ILC3s in vivo. Although not a focus of our review and has

yet to be studied, these toxins likely modulate ILCs in the lungs

during respiratory disease. Overall, B. anthracis and its two major

toxins modulate ILC3 function.
Crosstalk between ILCs and the
adaptive immune system

Although ILCs are mainly tissue-resident cells residing at

mucosal surfaces, they are also found in the peripheral blood,

bone marrow, and primary and secondary lymphoid organs (79–

81). Recently, migratory ILCs have been reported in context of

infection (42). Their location in lymphoid organs where the

adaptive immune response is initiated suggests a role for ILCs in

shaping adaptive immunity. Indeed, several studies have

underscored the role of ILCs in regulation of adaptive immunity

(reviewed in (81, 82)). ILCs can directly or indirectly influence both

T and B cell-mediated responses (82, 83). As one of the first

responders to pathogens, ILCs influence the cytokine milieu and

thus also influence adaptive immune response (82, 83). ILC2s and

ILC3s can also directly interact with T cells by expressing MHCII
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and acting as antigen presenting cells (APCs) (84–86). ILCs can also

express co-stimulatory or auxiliary molecules such as OX40L,

ICOS/ICOSL, and PD-L1 (the latter two reported only for ILC2s)

which facilitates a direct interaction with T cells thus modulating

the adaptive immune response (87–91). Conversely, the adaptive

immune system can also regulate ILC function. For example, T cell-

derived IFNg directly limits ILC2 function (92, 93) and regulatory T

cells can control ILC2 and ILC3 responses (94–96). T cells can also

enhance ILC2 responses via direct interaction with ILC2s mediated

by MHCII or other auxiliary molecules listed above (86, 97). Thus,

crosstalk between ILCs and adaptive immune cells shape adaptive

immunity as well ILC function.

In the healthy GI tract, ILC3s regulate the immune response to the

microbiota by regulating T and B cell responses. ILC3s acting as APCs

interact with T cells resulting in clonal deletion of microbiota-specific T

cells (85). Similarly, ILC3s can act as APCs to interact with T helper

follicular cells to regulate the immunoglobulin A (IgA) response to the

microbiota (98). ILC3s can also indirectly support IgA production via

lymphotoxin signaling in the intestine (99). Ablation of lymphotoxin a
signaling in ILC3s results in inhibition of IgA production and

composition changes of the GI microbiota (99). Studies on ILC

crosstalk during enteric bacterial infection are very limited. As

discussed above, ILC3s are important in defense against enteric

pathogens such as C. rodentium (21). Several studies have dissected

the spatiotemporal interplay of ILCs and the adaptive immune

response during C. rodentium infection with ILCs being critical

during the early stage of infection and the adaptive response acting

later to clear infection (100–102). IL-22, the signature cytokine of

ILC3s, regulates the organization and maintenance of colonic

lymphoid structures during C. rodentium infection by acting

downstream of lymphotoxin signaling (103). Colonic lymphoid

structures contain T and B cells and thus are sites of initiation of the

adaptive immune response. A recent study showed that Salmonella

infection induced migration of intestinal RORgt+ T-bet+ ILCs to

mesenteric lymph nodes which contributed to the protective IFNg
response (42). Whether these migratory ILCs contribute to the overall

adaptive immune response remains unknown. During colonization by

non-gastric Helicobacter species, the adaptive immune system sustains

ILC3 number (12). With progress in our understanding of ILC biology,

the interplay of ILCs and adaptive immune system has become

apparent during healthy, steady-state conditions. However, more

studies are needed to uncover the specific nature of ILC and

adaptive immune system interactions during enteric infections which

will facilitate development of better therapeutics.
Targeting ILCs for treatment of
enteric bacterial infections

The standard of care for bacterial GI diseases is antibiotics.

However, with the ever-growing rise of antibiotic resistance, this

treatment may fail for some patients. Targeting the host immune

response, or in combination therapy with antibiotics, has the

potential to become an effective treatment to combat GI

infections. Although ILCs are rare immune cells, they are critical
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regulators of tissue homeostasis, inflammation, and immunity

against GI infections (5). Increased understanding of ILC biology

in recent years has resulted in development of new or co-opting T

cell-targeted therapies to therapeutically target ILCs as well (104).

Existing ILC targeting strategies for therapeutics include

administration of cytokines, adoptive transfer of ILCs, antibodies

against ILC-related cytokines, ILC depletion, modulation of ILC

plasticity, migration and function, and microbiota manipulation

(104). These take advantage of pathways that were developed based

on T cell biology. Development of treatments that precisely target

ILCs and not T cells is a challenge for the field. Furthermore,

manipulation of oxygen levels in the GI tract may be an effective

means to counteract a pathogen. Thus, targeting ILCs is

increasingly considered for clinical therapy as evident by several

preclinical or clinical studies on ILC-targeting therapies (104, 105).

In fact, several biological therapies targeting ILCs are already

approved, and multiple others are in development for Crohn’s

disease, a chronic inflammatory disease of GI tract (104, 106).

As discussed, enteric bacterial pathogens often modulate ILC

function contributing to a pathologic or defensive outcome.

Pathogen-induced cytokine production by ILCs can be to the

pathogen’s advantage or contribute to protection of the host.

Further, ILC plasticity and migration can also be modulated by

enteric bacterial pathogens. Hence, therapeutics targeting ILC

biology are an attractive novel option for the treatment of GI

infections. Existing ILC-targeting biologic therapeutics could be

adapted to treat enteric bacterial infections. Although studies have

started to highlight the roles of ILCs in the context of different

enteric bacterial infections, more studies on defining the precise

roles of ILCs during infection, especially in humans, are needed

before existing ILC-targeting strategies can be adapted to treating

enteric infections. Such studies will provide a comprehensive

understanding of ILC biology in context of infection leading to

adaptation of existing or development of new therapeutic strategies

targeting ILCs for enteric bacterial infections.
Conclusions

Despite their relatively recent discovery, ILCs have emerged as

key players in barrier resistance to prevent breach by pathogens.

ILCs are among the first immune cells that these pathogens

encounter. ILCs during enteric bacterial infections can have both

protective and pathogenic roles depending on the pathogen and

context of infection. Enteric pathogens have evolved strategies to
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evade host immune responses to help establish their infection in the

GI tract. In only a few interactions have we identified the specific

bacterial virulence or effector molecules that manipulate specific

signaling pathways in ILC3s. Future studies need to examine these

different pathogens in the shared and novel ways they can modulate

ILC responses. Further, many of these findings are established from

animal infection models. There is a need for validation in context of

human infection to increase the translation of these basic research

studies to better patient outcomes. A better understanding of ILC

biology in the context of infection has high potential to lead to ILC-

targeted therapies for enteric bacterial infections.
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