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Introduction: Cancer is a major global health concern, and immune checkpoint

inhibitors (ICIs) offer a promising treatment option for cancer patients. However,

the efficacy of ICIs can be influenced by various factors, including the use of

concomitant medications.

Methods: We searched databases (PubMed, Embase, Cochrane Library, Web of

Science) for systematic reviews and meta-analyses for systematic reviews and

meta-analyses on the impact of concomitant medications on ICIs efficacy,

publ ished from inception to January 1, 2023. We evaluated the

methodological quality of the included meta-analyses, and re-synthesized data

using a random-effects model and evidence stratification.

Results: We included 23 publications, comprising 11 concomitant medications

and 112 associations. Class II-IV evidence suggested that antibiotics have a

negative impact on ICIs efficacy. However, ICIs efficacy against melanoma,

hepatocellular carcinoma, and esophageal squamous cell carcinoma was not

affected, this effect was related to the exposure window (class IV). Class III

evidence suggested that proton pump inhibitors have a negative impact on ICIs

efficacy; nevertheless, the efficacy against melanoma and renal cell carcinoma

was not affected, and the effect was related to exposure before the initiation of

ICIs therapy (class II). Although class II/III evidence suggested that steroids have a

negative impact, this effect was not observed when used for non-cancer

indications and immune-related adverse events (class IV). Class IV evidence

suggested that opioids reduce ICIs efficacy, whereas statins and probiotics may

improve ICIs efficacy. ICIs efficacy was not affected by histamine 2 receptor

antagonists, aspirin, metformin, b-blockers, and nonsteroidal anti-inflammatory

agents.

Conclusion: Current evidence suggests that the use of antibiotics, PPIs, steroids,

and opioids has a negative impact on the efficacy of ICIs. However, this effect

may vary depending on the type of tumor, the timing of exposure, and the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1218386/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1218386/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1218386/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1218386/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1218386&domain=pdf&date_stamp=2023-09-29
mailto:2008lihuijie@163.com
https://doi.org/10.3389/fimmu.2023.1218386
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1218386
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2023.1218386

Frontiers in Immunology
intended application. Weak evidence suggests that statins and probiotics may

enhance the efficacy of ICIs. Aspirin, metformin, b-blockers, and NSAIDs do not

appear to affect the efficacy of ICIs. However, caution is advised in interpreting

these results due to methodological limitations.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO,

identifier, CRD42022328681.
KEYWORDS

concomitant medications, immune checkpoint inhibitors, efficacy, umbrella review,
meta-analysis
1 Introduction

Cancer poses a major threat to human health, with increasing

incidence and mortality rates imposing a heavy burden on societies

worldwide (1). Immune checkpoint inhibitors (ICIs) have emerged

as an important treatment option, bringing new hope to patients

(2). However, the efficacy of ICIs is influenced by various factors (3),

including the use of concomitant medications (4).

Antibiotics, proton pump inhibitors (PPIs), and steroids are

widely used in clinical practice. Multiple clinical studies and meta-

analyses have suggested that these concomitant medications may

significantly reduce the efficacy of ICIs (5, 6). Nevertheless, other

studies did not demonstrate this negative impact (7). Two almost

simultaneously published meta-analyses investigating the effect of

PPIs on ICIs efficacy yielded inconsistent results (8, 9). Additionally, a

meta-analysis showed that the use of antibiotics during treatment

with ICIs does not shorten progression-free survival (PFS), and may

even prolong it (10). Moreover, the negative effect of antibiotics may

also be related to the time window of use and the type of tumor (11),

thereby complicating clinical decision-making.

Notably, besides the negative impact on ICIs efficacy, some

concomitant medications (e.g., statins, metformin, b-blockers, and
probiotics) may exert an enhancing effect on ICIs efficacy; however,

the level of evidence remains poor and controversial (12). In recent

years, the number of meta-analyses focusing on the impact of

concomitant medications has surged. However, the quality of these

analyses is uneven, and the results are inconsistent. Moreover, most

meta-analyses only analyzed and evaluated a single type of

concomitant medications, thus lacking comprehensiveness and

systematicity. Therefore, it is necessary to comprehensively review

and summarize published systematic reviews and meta-analyses,

evaluate publication bias and evidence quality, explore the effects of

different concomitant medications on ICIs efficacy, and present an

overview of the available evidence for clinical application.

The objectives of this review were to: 1) comprehensively

analyze and summarize the existing systematic reviews and meta-

analyses; 2) use a random-effects model to re-synthesize the data; 3)

evaluate publication bias and evidence quality; and 4) present an

overview of the available evidence regarding the impact of

concomitant medications on ICIs efficacy.
02
2 Methods

The protocol for this study has been submitted to and registered in

PROSPERO (Registration number: CRD42022328681). This umbrella

review was conducted in accordance with the PRISMA statement (13).

2.1 Search strategy

We used a pre-designed strategy to conduct a comprehensive and

systematic search in the PubMed, Embase, Cochrane Library, and

Web of Science databases from inception to January 1, 2023. The

search was limited to articles published in English. In brief, the search

terms included “concomitant medications”, “ICIs”, “systematic

reviews”, and “meta-analyses”. Detailed search strategies and the

results obtained from PubMed are presented in Table S1.
2.2 Inclusion and exclusion criteria

The detailed inclusion criteria were as follows: (1) study design

was a systematic review or meta-analysis; (2) study population

included patients with cancer receiving ICIs, with the observation

and control groups receiving concomitant medications and no

concomitant medications, respectively; (3) concomitant

medications included antibiotics, steroids, PPIs, anticoagulants,

lipid-lowering agents, antihypertensive agents, antidiabetic agents,

probiotics, and analgesics; and (4) the study reported at least one

outcome measure, namely overall survival (OS), PFS, objective

response rate (ORR), progressive disease (PD), stable disease,

complete response, partial response, and disease control rate.

Publications were excluded based on the following criteria: (1)

animal experiments; (2) individual case reports; (3) network meta-

analyses; (4) original clinical trials; (5) case reports; and (6) articles

not published in English.
2.3 Literature screening and
data extraction

Two reviewers (HLL and LZ) independently conducted

literature screening based on the inclusion and exclusion criteria.
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After reading the title and abstract, full-text manuscripts were

obtained for further evaluation. Any discrepancies were resolved

through discussion with a third reviewer (HJL), reaching

a consensus.

One reviewer (HLL) performed data extraction, and another

reviewer (LZ) checked the data. The extracted data included the first

author, year of publication, number of included studies, number of

included patients, age, sex distribution, tumor type, co-medications

type, follow-up duration, outcome measures, pooled effect size and

95% confidence interval (CI), quality assessment tool, conflict of

interest, and funding information. For original studies included in

the systematic review and meta-analysis, the extracted information

included the first author, year of publication, sample size, effect size,

and 95% CI. In addition, we also screened the reference lists of

included studies to ensure that all available publications were

included in the analysis.
2.4 Quality assessment

Two reviewers (HLL, LZ) independently conducted

methodological quality assessments using Assessment of Multiple

Systematic Reviews (AMSTAR) 2 (14), which evaluates 16 items

sequentially (Table S2). Items 2, 4, 7, 9, 11, 13, and 15 are the critical

domains. High quality is attributed to instances with no or just one

non-critical weakness. Moderate quality applies to scenarios with

multiple non-critical defects. Instances with one critical flaw, with

or without non-critical weaknesses, are deemed of low quality.

Critically low quality is assigned to situations featuring more than

one critical flaw, with or without non-critical weaknesses. Any

discrepancies were resolved through discussion with a third

reviewer (HJL), reaching a consensus.
2.5 Removal of overlapping meta-analyses

In recent years, numerous meta-analyses on this topic have

emerged. However, overlapping original studies for the same

outcome measures may lead to bias. Therefore, we addressed this

issue in our analysis. As in previously published umbrella reviews

(15), we used the citation matrix and corrected covered area (CCA)

to calculate the degree of overlap (16). If the CCA was >15%, we

retained the most recent publication with the highest number of

included studies and level of methodological quality. If the CCA was

<15%, we retained both; however, in case of complete overlap, we

retained the publication with the highest number of

included studies.
2.6 Evidence grading

As previously described in an umbrella review (17), we

categorized the evidence into five classes which are described

below. Convincing evidence (class I) was characterized by a

significant combined effect size (p < 10−6), significant effect size in

the largest study (p < 0.05), low heterogeneity (I2 < 50%), 95%
Frontiers in Immunology 03
prediction interval (PI) that did not include the null value, no

evidence of significant publication bias (p > 0.1) as indicated by

Egger’s regression test, and >1,000 patients included in the meta-

analysis. Highly suggestive evidence (class II) was characterized by a

significant combined effect size (p < 10−6), significant effect size in

the largest study (p < 0.05), and >1,000 patients included in the

meta-analysis, but did not meet class I criteria. Suggestive evidence

(class III) was characterized by a significant combined effect size (p

< 10−3) and >1,000 patients included in the meta-analysis, but did

not meet class I or II criteria. Weak evidence (class IV) was

characterized by a significant combined effect size (p < 0.05), but

did not meet class I–III criteria. Non-significant evidence (class ns)

was characterized by no significant combined effect size (p > 0.05).
2.7 Statistical analysis

The DerSimonian–Laird (DL) method can underestimate the

95% CI when the number of included studies is small (18, 19).

Therefore, we used the Hartung–Knapp–Sidik–Jonkman (HKSJ)

method to analyze meta-data for fewer than five individual studies,

and the DL method for more than five studies (20). Heterogeneity

was assessed by calculating the I2 and 95% PI. An I2 >50% indicated

significant heterogeneity, and the 95% PI predicted the potential

range of true effects in the future.

For the assessment of publication bias, we first conducted

Egger’s regression test. Subsequently, we evaluated all meta-

analyses using contour-enhanced funnel plots. As in prior

umbrella reviews (17, 21, 22), we assumed that small-study effects

were present when Egger’s test yielded p-values <0.1. Therefore, we

used the “trim-and-fill” method to re-estimate the effect size and

95% CI, thereby mitigating the potential impact of publication bias

on the true results.

Furthermore, we conducted a test of excess significance to

evaluate whether the number of observations of statistically

significant results is greater than its expected number. In this test,

p-values <0.1 indicated statistical significance (22). Additionally, we

performed sensitivity analyses on meta-analyses with evidence

grades I–III. This was achieved by excluding individual original

studies with total sample sizes <100, re-synthesizing the data, and

re-grading the evidence to test the robustness of the results and

mitigate the bias introduced by studies with small samples. All data

analyses were conducted using R software (version 4.1.1) using the

‘metaumbrella’ R package (23, 24), and p-values were two-tailed.
3 Results

3.1 Literature selection

As shown in Figure 1, we obtained a total of 1,057 publications

from four electronic databases and reference lists. After removing

duplicates, 631 publications were selected for preliminary screening

based on their titles and abstracts. Subsequently, 545 and 42

publications were excluded by the two reviewers after title/

abstract and full-text reading, respectively. Table S3 lists the
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excluded publications and exclusion criteria. We further removed

overlapping studies by calculating the CCA (Table S4), resulting in a

final set of 23 publications.
3.2 Basic characteristics

Table 1 summarizes the basic characteristics of the 23 included

publications (10–12, 25–44). These publications were from China

(n=19), the United States of America (n=2), Australia (n=1), and

France (n=1).

The 112 associations of antibiotics (n = 40), PPIs (n = 23),

histamine 2 receptor antagonists (H2RAs; n = 3), steroids (n = 21),

statins (n = 4), aspirin (n = 2), metformin (n = 2), b-blockers (n =

2), probiotics (n = 9), nonsteroidal anti-inflammatory agents

(NSAIDs; n = 3) and opioids (n=3) are presented in Table S5.

The number of original studies included ranged 5–45; the median

age of the patients ranged 52–75 years. In addition, we compiled a

list of 110 associations (antibiotics [n =69], PPIs [n = 28], steroids

[n = 2], b-blockers [n =4], NSAIDs [n = 2], opioids [n = 2], and

probiotics [n = 3]) that were excluded due to overlap.
Frontiers in Immunology 04
3.3 Quality assessment

Figure S1 shows the methodological quality assessment of the

final 23 included publications and the 21 excluded publications due

to overlap. Two articles on PPIs/H2RAs and one article on

antibiotics were identified as low-quality publications due to the

lack of a list of excluded literature. The remaining 41 publications

were deemed to be of critically low quality, 27 (66%) were not

registered with a protocol before conducting the meta-analysis, 35

(85%) did not discuss the sources of bias risk in detail, and 11 (27%)

did not include tests and analyses on publication bias.
3.4 Overlapping associations

In the overlapping associations, 26 (24%) yielded inconsistent

results with the included data. Regarding exposure to PPIs, 13

associations yielded inconsistent findings. Of note, two meta-

analyses showed convincing evidence (class I) that PPIs reduced

OS and PFS in any exposure window. Nevertheless, they were

excluded due to the small number of included studies and
FIGURE 1

Flow chart of literature screening. ICIs, immune checkpoint inhibitors.
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overlapping. Regarding exposure to antibiotics, 13 associations

yielded inconsistent results, mainly focusing on the initiation of

ICIs therapy and RCC. Further details are provided in Table S6 and

Figures S2, S3, S4.

3.5 Antibiotics

Figure 2 shows the effects of different exposure windows to

antibiotics on the prognosis of different types of cancer and the level

of evidence. Overall, based on all exposure windows and without

distinguishing cancer types, suggestive evidence (class III) indicated

that exposure to antibiotics reduced the OS of patients; highly

suggestive evidence (class II) indicated reduced PFS; and weak

evidence (class IV) showed reduced ORR and response rate. For

non-small cell lung cancer (NSCLC), suggestive evidence (class III)

showed that antibiotics reduced OS, and weak evidence (class IV)

showed reduced PFS and ORR. For renal cell carcinoma (RCC),

weak evidence (class IV) showed that antibiotics reduced OS, PFS,

and ORR, but did not affect PD. For urothelial carcinoma (UC),

weak evidence (class IV) showed that antibiotics reduced OS, but

did not affect PFS. The prognosis of melanoma, hepatocellular

carcinoma (HCC), and esophageal squamous cell carcinoma was

not affected by antibiotics.
Frontiers in Immunology 07
The negative effects of exposure to antibiotics before the

initiation of ICIs were evident. Without distinguishing tumor

types, weak evidence (class IV) indicated that antibiotics reduced

OS, PFS, and ORR. Highly suggestive evidence (class II) and weak

evidence (class IV) showed that antibiotics reduced the OS and PFS

of patients with NSCLC. Weak evidence (class IV) suggested that

the use of antibiotics within 1 month before the initiation of ICIs

promoted PD in patients with cancer, while the use of antibiotics >1

month prior to the initiation of ICIs did not affect PD.

Regarding exposure to antibiotics during ICIs therapy, weak

evidence (class IV) showed that antibiotics prolonged the PFS of

patients with cancer, but did not exert an effect on OS. When

NSCLC was analyzed separately, weak evidence (class IV) showed

that antibiotics shortened OS, but did not affect PFS.

Concerning exposure to antibiotics after the initiation of

treatment with ICIs, weak evidence (class IV) showed that

antibiotics reduced the OS of patients with cancer, but did not

exert an effect on PFS. Weak evidence (class IV) showed that

antibiotics reduced the OS and PFS of patients with NSCLC.

Subgroup analysis of ICIs treatment showed that antibiotics

reduced OS and PFS, whether with PD-(L)1 inhibitors alone

(suggestive evidence, class II) or in combination with CTLA-4

inhibitors (Convincing and weak evidence, class I and IV).
FIGURE 2

Forest plot of the prognosis of patients with cancer patients receiving ICIs and antibiotics, and subgroup analysis by cancer type and exposure
window. ATB, antibiotic; CI, confidence interval; CL, critically low; DCR, disease control rate; ESCC, esophageal squamous cell carcinoma; HCC,
hepatocellular carcinoma; HR, hazard ratio; ICIs, immune checkpoint inhibitors; L, low; NSCLC, non-small cell lung cancer; OR, odds ratio; ORR,
objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; RCC, renal cell carcinoma; UC, urothelial
carcinoma; CM, concomitant medications.
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3.6 PPIs/H2RAs

Figure 3 illustrates the effect of different exposure windows to

PPIs/H2RAs on the prognosis of different types of tumors and the

stratification of evidence. Overall, based on all exposure windows,

suggestive evidence (class III) showed that the use of PPIs reduced

OS and PFS in multiple types of cancer; however, it did not affect

the ORR. Suggestive evidence (class III) showed that PPIs reduced

OS and PFS in NSCLC and UC; nevertheless, the OS and PFS of

patients with melanoma and RCC were not affected. Highly

suggestive evidence (class II) showed that the OS and PFS of

patients with cancer were reduced in the subgroup that used PPIs

within 60 days before the initiation of ICIs therapy. However, these

effects were not observed in the subgroup that used PPIs after the

initiation of treatment with ICIs. Exposure to H2RAs did not affect

the efficacy of ICIs. Subgroup analysis of ICIs treatment showed that

PPIs reduced OS and PFS in combination with PD-1 or PD-L1

inhibitors alone (weak evidence, class IV), but not CTLA-4

inhibitors alone.
3.7 Steroids

Figure 4 presents the effect of exposure to steroids on the prognosis

of different types of tumors and the stratification of evidence. Overall,

highly suggestive evidence (class II) and suggestive evidence (class III)

showed that the use of steroids reduced OS and PFS in patients with
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cancer. Highly suggestive evidence (class II) and weak evidence (class

IV) showed that steroids reduced the OS and PFS of patients with

NSCLC. For cancer patients with brain metastasis, weak evidence (class

IV) showed that steroids reduced OS and PFS, but not intracranial PFS.

Moreover, steroids were associated with a reduction of OS in patients

with brain metastasis who did not undergo stereotactic radiosurgery

(SRS); however, the OS of patients who underwent SRS was not affected.

Weak evidence (class IV) showed that steroids were associated with a

reduction of OS in patients with melanoma but not in NSCLC patients

with brain metastasis. Highly suggestive evidence (class II) and

suggestive evidence (class III) showed that the use of steroids for

cancer indications reduced the OS and PFS of patients. Nonetheless,

the use of steroids for non-cancer indications and immune-related

adverse events (irAEs) did not result in such effects. Subgroup analysis of

ICIs treatment showed that steroids reduced OS and PFS in

combination with PD-(L)1 inhibitors alone (highly suggestive and

suggestive evidence, class II and III), reduced OS but not PFS in

combination with CTLA-4 inhibitors alone (weak evidence, class IV).
3.8 Other concomitant medications

Figure 5 illustrates the impact and evidence grading of exposure to

statins, aspirin, metformin, b-blockers, probiotics, opioids, and
NSAIDs on the prognosis of different types of tumors. Weak

evidence (class IV) suggested that statin use was associated with

prolonged OS, but not PFS, in patients with cancer. Although statin
FIGURE 3

Forest plot of the prognosis of patients with cancer receiving ICIs and PPIs, and subgroup analysis by cancer type and exposure window. CI,
confidence interval; CL, critically low; H2RAs, histamine 2 receptor antagonists; HR, hazard ratio; ICIs, immune checkpoint inhibitors; L, low; NSCLC,
non-small cell lung cancer; OR, odds ratio; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPI, proton pump
inhibitor; RCC, renal cell carcinoma; UC, urothelial carcinoma; CM, concomitant medications.
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use was linked to a trend for improvement in OS and PFS in NSCLC,

the effect was not statistically significant. Weak evidence (class IV)

indicated that probiotics increased the ORR, OS, and PFS of patients

with NSCLC; however, they did not have an impact on the OS and

ORR of patients with RCC. Although the use of probiotics was

associated with a trend for improvement in OS and PFS in multiple

types of cancer, the effect was not statistically significant. Weak

evidence (class IV) suggested that the use of opioids was associated

with a decrease in OS, PFS, and ORR. The use of aspirin, metformin, b-
blockers, and NSAIDs did not have an impact on the efficacy of ICIs.
3.9 Publication bias

Figures S5, S6, S7, S9, S10 show an enhanced funnel plot of the

meta-analyses that included more than three original studies.

According to the results of the Egger’s regression test, 24

associations were characterized by a small sample effect (Table

S7). The subsequent analysis using the ‘trim-and-fill’ method

showed that the results of four associations lost statistical

significance after adding studies. These included the effect of

exposure to PPIs on OS in NSCLC, the effect of exposure to

antibiotics on OS in multiple cancer types, the effect of exposure

to antibiotics before the initiation of ICIs therapy on OS in NSCLC,

and the effect of exposure to antibiotics on OS in RCC. The results

of a associations gained statistical significance after adding studies

(i.e., effect of exposure to PPIs on OS in melanoma.
3.10 Sensitivity analysis

Table S8 shows the sensitivity analysis of associations with

evidence grading of II–III by removing small sample studies. The
Frontiers in Immunology 09
evidence grading for the effect of exposure to PPIs in any exposure

window on PFS decreased from class II to III; the evidence grading

for the effect of exposure to PPIs on OS in NSCLC decreased from

class III to IV; regarding the effect on PFS, the evidence grading

increased from class III to II. The evidence grading for the effect of

exposure to antibiotics in any exposure window on PFS decreased

from class II to III.
4 Discussion

The efficacy of ICIs is influenced by numerous factors, including

the tumor mutational burden, programmed death- ligand 1 (PD-

L1) expression, and DNA mismatch repair gene defects (45). As a

potentially controllable external factor, the interaction between ICIs

and concomitant medications should be considered to ensure

treatment effectiveness.

To our knowledge, this is the first umbrella review of the effects

of 11 concomitant medications on the efficacy of ICIs. We used

rigorous quality assessment and exclusion of overlapping studies,

included a total of 23 published articles, re-conducted meta-analysis

synthesis and assessment of the certainty of evidence, and combed

the available findings. Overall, exposure to antibiotics, PPIs,

steroids, and opioids was identified as the main factor leading to

a decrease in the efficacy of ICIs. Statins and probiotics may exert

positive effects, while treatment with H2RAs, metformin, b-
blockers, aspirin, and NSAIDs did not affect the efficacy.

Analyses demonstrated that antibiotics have a significant

impact on the efficacy of ICIs against NSCLC, RCC, and UC, but

not against melanoma, HCC, and esophageal squamous cell

carcinoma. Recent studies have shown that the use of antibiotics

in patients with HCC early in the course of treatment with ICIs can
FIGURE 4

Forest plot of the prognosis of patients with cancer receiving ICIs and steroids, and subgroup analysis. CL, critically low; HR, hazard ratio; IC-PFS,
intracranial progression-free survival; irAEs, immune-related adverse events; L, low; NSCLC, non-small cell lung cancer; OS, overall survival; PFS,
progression-free survival; SRS, stereotactic radiosurgery; CM, concomitant medications.
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improve prognosis, possibly by reducing the abundance of bacteria

with immune inhibitory functions (46). Exposure to antibiotics

before or after the initiation of ICIs is associated with a decline in

prognosis, while the negative effects of exposure to antibiotics

during ICIs use are more limited. The study conducted by Hogue

et al. (47), which was included in the meta-analysis, played a critical

role in the results, nevertheless, this is an abstract article that

provides insufficient information and may have significant bias.

We found that three associations had significant publication bias.

The statistical significance of the results of these associations were

lost after re-analysis using the trim and fill method, indicating that

the negative effects of antibiotics on ICIs may be overestimated.

The mechanism by which antibiotics affect the efficacy of ICIs

includes changes in the gut microbiota and inhibition of immune

cell responses (48). A retrospective study showed that antibiotics

had a negative impact on the prognosis of treatment with ICIs, but

not chemotherapy. This, to some extent, ruled out the interference

of potential adverse prognostic factors on the results (5). Different

types of antibiotics may exert different negative effects, and studies

have shown that quinolones, carbapenems, and cephalosporins do

not decrease OS or PFS (49). Additionally, studies have

demonstrated that the negative effects of antibiotics vary

depending on the expression of PD-L1; patients with high PD-L1

expression were more susceptible to the effects of antibiotics (50).

However, subgroup analysis based on PD-L1 expression was not

included in our meta-analysis. The possibility of infection in
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patients cannot be completely avoided. Consequently, there is an

urgent need to develop antibiotics that do not affect the efficacy

of ICIs.

We found that the effect of PPIs on ICIs efficacy is also related to

the exposure window and tumor type. The use of PPIs prior to the

initiation of ICIs therapy significantly affects the prognosis of

patients. The mechanism that underlies the effects on efficacy

may involve changes in gut microbiota diversity and immune

suppression caused by PPIs (51). However, compared with the

direct effect of antibiotics, PPIs may indirectly change the gut

microbiota by inhibiting stomach acid (52). Hopkins et al. (53)

found that the negative impact of PPIs on prognosis may be related

to the decrease in CD19+ and CD16+ CD56+ immune cell counts

caused by PPIs. Nonetheless, it is also possible that the indication of

PPIs is a poor prognostic factor for patients. PPIs exert statistically

significant effects on NSCLC and UC, whereas they do not affect

melanoma and RCC. This difference may be due to the smaller

number of studies included in the analysis. Nevertheless, preclinical

studies have shown that PPIs have an inhibitory effect on

melanoma, which may counteract their negative effect on the gut

microbiota (54). In addition, studies have found that chronic use of

PPIs in patients with RCC is associated with an increased risk of

ICI-induced colitis (55). Currently available evidence suggests that

H2RAs do not reduce the benefits of ICIs therapy. However, caution

is needed due to the small number of studies included in

the analysis.
FIGURE 5

Forest plot of the prognosis of patients with cancer receiving ICIs and other concomitant medications (statins, aspirins, metformin, b-blockers,
probiotics, opioids, NSAIDs), and subgroup analysis. CL, critically low; HR, hazard ratio; L, low; NSAIDs, nonsteroidal anti-inflammatory agents;
NSCLC, non-small cell lung cancer; OR, odds ratio; OS, overall survival; PFS, progression-free survival; RCC, renal cell carcinoma; CM, concomitant
medications. Supplementary Figure and table legends.
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Steroids are commonly used to treat serious adverse events

caused by ICIs and relieve clinical symptoms (56). Evidence

suggests that the use of steroids reduces the efficacy of ICIs;

however, this effect must be analyzed in different settings. For

patients with brain metastases, although steroids decrease OS and

PFS, there is no significant impact on intracranial-PFS. Subgroup

analysis of NSCLC patients with brain metastases showed that

steroids did not significantly reduce the OS after treatment with

ICIs. In addition, the use of steroids in patients treated with ICIs in

combination with SRS did not have a negative effect on efficacy.

This may be due to the protective effect of SRS on the central

nervous system and the reversal of local immune suppression (57).

Steroids are also used for non-cancer indications (e.g., autoimmune

diseases, chronic obstructive pulmonary disease, hypersensitivity

reactions) and irAEs, which do not reduce the efficacy of ICIs,

possibly because cancer indications (e.g., brain metastases,

respiratory distress, bone metastases, and anorexia) are poor

prognostic factors for patients (58).

Although preclinical studies have found that metformin can

synergize with programmed death-1 (PD-1) inhibitors (59), some

retrospective studies have shown that metformin does not affect the

efficacy of ICIs. A recent study suggested that metformin exerts a

significant synergistic effect compared with non-metformin

hypoglycemic drugs (60). Another study yielded similar results;

however, the use of dipeptidyl peptidase-4 (DDP4) inhibitor was

identified as a potential confounding factor (61). In addition,

whether the adjuvant effect of metformin is particularly important

for obese patients should be further investigated (62). In this

umbrella review, only one meta-analysis on metformin was

included, which did not show an effect on the efficacy of ICIs.

Overall, currently available evidence supports that metformin does

not reduce the efficacy of ICIs. However, prospective studies with

larger sample sizes and the elimination of confounding factors may

be required to evaluate the potential enhancing effect of metformin

on ICIs efficacy.

Our study showed weak evidence supporting that opioids may

reduce the efficacy of ICIs. The possible mechanisms by which

opioids exert this effect include immunosuppression of the tumor

microenvironment (63, 64) and changes in the gut microbiome

(65–67). Svaton et al. suggested that NSAIDs may enhance the

efficacy of ICIs (68). Nevertheless, the currently available evidence

does not indicate statistically significant effects. Further

investigation is required to determine whether this is related to

the timing and duration of NSAID use. In addition, clinicians

should avoid the overuse of opioid drugs in patients receiving

treatment with ICIs.

The present results indicated that b-blockers do not affect the

efficacy of ICIs. Notably, apart from studies on b-blockers, there are
currently nometa-analyses on angiotensin-converting enzyme (ACE)

inhibitors and angiotensin II receptor blockers. A study suggested

that ACE inhibitors may have a positive effect; however, this effect did

not reach statistical significance (69). Another study indicated that

the use of ACE inhibitors promotes immune suppression and reduces

efficacy (70), while angiotensin II receptor blockers do not have a

significant impact (71). Prospective studies with large sample sizes are

warranted to confirm these findings.
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Weak evidence suggests that statins and probiotics can improve

the OS of patients receiving treatment with ICIs. Cantini et al.

showed that high-intensity statins were associated with improved

ICIs efficacy (72). In patients with NSCLC, statins have been linked

to a trend for improvement in the efficacy of ICIs; however, this

effect did not reach statistical significance. Statins may also improve

ICIs efficacy by modulating the gut microbiome (73). In addition,

preclinical studies have found that statins can lower the expression

of PD-1 and cytotoxic T-lymphocyte associated protein-4 (CTLA-

4) on T cells, increase antigen uptake by dendritic cells, and

synergize with PD-1 inhibitors in terms of anti-tumor activity

(74, 75). Gandhi and colleagues’ study showed that b blockers,

metformin, aspirin, and statins had no effect on the efficacy of ICIs

(76). In a mixed analysis group of multiple cancer types, probiotics

did not exert a statistically significant effect; nevertheless, a trend

towards enhanced efficacy was observed. In patients with NSCLC,

probiotics may prolong OS and PFS; nevertheless, the evidence

supporting this conclusion is currently weak. Dysbiosis of the gut

microbiota is widely considered a key mechanism for the decreased

efficacy of ICIs when used in combination with other drugs.

Preclinical studies have highlighted that manipulation of the gut

microbiota may improve the efficacy of ICIs (77). Additionally,

further research is required to examine whether probiotics or statins

can reverse the negative effects of other co-medications on ICIs.

This study has several limitations that should be acknowledged.

Firstly, the methodological quality of the included publications was

considered low or critically low. This low quality was mainly due to

insufficient reporting of bias risks or the lack of a list of excluded

literature. We partially addressed this limitation by re-evaluating

bias risks. Secondly, due to the difficulty in conducting randomized

controlled trials for concurrent medications, the included original

studies were retrospective or prospective cohort studies; thus, bias

risks are inevitable. There may be reverse causation; the use of

antibiotics, PPIs, steroids, and opioids may be necessary due to the

presence of poor prognostic factors in patients. This reverse

causation may have affected the results. Therefore, caution is

needed when interpreting the results. Thirdly, the impact of

concurrent medications on the incidence of irAEs was not

included in the meta-analyses; hence, future studies should

address this topic. Finally, in addition to the concurrent

medications included in our study, there are retrospective studies

suggesting that vitamin D may improve ICIs efficacy (78). However,

these studies were not included in our review due to the lack of

meta-analyses. Therefore, more high-quality prospective studies are

warranted to support the currently available evidence and avoid the

impact of confounding factors.

For primary clinical studies and meta-analyses, more

comprehensive evaluations are needed in the future, such as

distinguishing the specific type and dose of concomitant

medications, the patient’s performance status, and past disease

history, so as to draw more accurate conclusions. Variations in

concomitant medication effects on ICIs efficacy across cancer types

require recognition, likely due to limited studies and differing ICIs

regimens. These intriguing findings necessitate elucidation via

rigorous clinical trials and preclinical studies. Additionally,
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disparate effects on other cancers, such as breast and endometrial

cancer, warrant further investigation (79, 80).
5 Conclusions

Current evidence suggests that the use of antibiotics, PPIs,

steroids, and opioids has a negative impact on the efficacy of ICIs.

However, this effect may vary depending on the type of tumor, the

timing of exposure, and the indication. Weak evidence suggests that

statins and probiotics may enhance the efficacy of ICIs. H2 receptor

antagonists, aspirin, metformin, b-blockers, and NSAIDs do not

appear to affect the efficacy of ICIs. However, due to publication

bias andmethodological limitations, caution is advised in interpreting

these results.
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SUPPLEMENTARY FIGURE 1

AMSTAR 2 quality appraisal scores. AMSTAR, assessment of multiple

systematic reviews. CDW, critical domains weaknesses (negatively
answered); CL, critically low; L, low.

SUPPLEMENTARY FIGURE 2

Forest plot of the impact of exposure to antibiotics on ICIs efficacy, excluded

due to overlap. CL, critically low; HR, hazard ratio; ICIs, immune checkpoint
inhibitor; L, low; NSCLC, non-small cell lung cancer; OR, odds ratio; ORR,

objective response rate; OS, overall survival; PFS, progression-free survival;
RCC, renal cell carcinoma; CM, concomitant medications.

SUPPLEMENTARY FIGURE 3

Forest plot of the impact of exposure to PPIs on ICIs efficacy, excluded due to

overlap. CL, critically low; HR, hazard ratio; ICIs, immune checkpoint
inhibitor; L, low; NSCLC, non-small cell lung cancer; OS, overall survival;

PFS, progression-free survival; PPI, proton pump inhibitor; UC, urothelial
carcinoma; CM, concomitant medications.

SUPPLEMENTARY FIGURE 4

Forest plot of the impact of exposure to steroids, NSAIDs, b-blockers,
probiotics, and opioids on ICIs efficacy, excluded due to overlap. CL,
critically low; HR, hazard ratio; ICIs, immune checkpoint inhibitor; NSAIDs,

nonsteroidal anti-inflammatory agents; NSCLC, non-small cell lung cancer;
OR, odds ratio; ORR, objective response rate; OS, overall survival; PFS,

progression-free survival; CM, concomitant medications.

SUPPLEMENTARY FIGURE 5

Funnel plots for publication bias regarding the exposure of patients with
multiple types of cancer to ATB. (A. OS of ATB with any exposure window; B.
PFS of ATB with any exposure window; C. ORR of ATB with any exposure
window; D. RR of ATB with any exposure window; E. OS of ATB before ICIs

initiation; F. PFS of ATB before ICIs initiation; G. ORR of ATB before ICIs
initiation;H. OS of ATB during ICIs; I. PFS of ATB during ICIs; J. OS of ATB after

ICIs initiation; K. PFS of ATB after ICIs initiation; L. PD of ATB before ICIs

initiation >1 month; M. PD of ATB before ICIs initiation <1 month).

SUPPLEMENTARY FIGURE 6

Funnel plots for publication bias regarding the exposure of patients with

NSCLC to ATB. (A. OS of ATB with any exposure window; B. PFS of ATB with
any exposure window; C. OS of ATB before ICIs initiation; D. PFS of ATB

before ICIs initiation; E. OS of ATB after ICIs initiation; F. PFS of ATB after ICIs

initiation; G. OS of ATB during ICIs; H. PFS of ATB during ICIs).

SUPPLEMENTARY FIGURE 7

Funnel plots for publication bias regarding the exposure of patients with RCC,

HCC, ESCC, or melanoma to ATB. (A. OS of ATB with any exposure window in
RCC patients; B. PFS of ATB with any exposure window in RCC patients; C.
ORR of ATBwith any exposure window in RCC patients;D. OS of ATBwith any

exposure window in HCC patients; E. PFS of ATB with any exposure window
in HCC patients; F. ORR of ATB with any exposure window in HCC patients;G.
DCR of ATB with any exposure window in HCC patients; H. OS of ATB with
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any exposure window in ESCC patients; I. OS of ATB with any exposure
window in melanoma patients).

SUPPLEMENTARY FIGURE 8

Funnel plots for publication bias regarding the exposure of patients with

multiple types of cancer to PPIs/H2RAs. (A. OS of PPIs with any exposure
window in multiple cancer types; B. PFS of PPIs with any exposure window in

multiple cancer types; C. ORR of PPIs with any exposure window in multiple
cancer types; D. OS of PPIs exposure [-60, NA] in multiple cancer types; E.
PFS of PPIs exposure [-60, NA] in multiple cancer types; F. OS of PPIs

exposure [0, NA] in multiple cancer types; G. PFS of PPIs exposure [0, NA]
in multiple cancer types; H. OS of PPIs with any exposure window in NSCLC

patients; I. PFS of PPIs with any exposure window in NSCLC patients; J. OS of
PPIs with any exposure window in RCC patients; K. PFS of PPIs with any

exposure window in RCC patients; L. OS of PPIs with any exposure window in
melanoma patients; M. PFS of PPIs with any exposure window in melanoma

patients; N. OS of PPIs with any exposure window in UC patients; O. PFS of

PPIs with any exposure window in UC patients; P. ORR of H2RAs with any
exposure window in multiple cancer types; Q. ORR of H2RAs with any

exposure window in multiple cancer types).

SUPPLEMENTARY FIGURE 9

Funnel plots for publication bias regarding the exposure of patients with

multiple types of cancer to steroids. (A. OS of steroids exposure in multiple

cancer types; B. PFS of steroids exposure in multiple cancer types; C. OS of
steroids exposure in multiple cancer types with brain metastasis patients; D.
PFS of steroids exposure in multiple cancer types with brain metastasis
patients; E. IC-PFS of steroids exposure in multiple cancer types with brain

metastasis patients; F. OS of steroids exposure in multiple cancer types with
brain metastasis patients no-receiving SRS; G. OS of steroids exposure in
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multiple cancer types with brain metastasis patients receiving SRS; H. OS of
steroids exposure for cancer related indication in multiple cancer types; I. PFS
of steroids exposure for cancer related indication in multiple cancer types; J.
OS of steroids exposure for irAEs in multiple cancer types; K. PFS of steroids
exposure for irAEs in multiple cancer types; L. OS of steroids exposure for

non-cancer related indication in multiple cancer types; M. PFS of steroids
exposure for non-cancer related indication in multiple cancer types; N. OS of

steroids exposure in melanoma with brain metastasis patients; O. OS of
steroids exposure in NSCLC with brain metastasis patients; P. OS of

steroids exposure in NSCLC patients; Q. PFS of steroids exposure in

NSCLC patients).

SUPPLEMENTARY FIGURE 10

Funnel plots for publication bias regarding the exposure of patients with

multiple types of cancer to aspirin, b-blockers, metformin, NSAIDs, opioids,
probiotics, and statins. NSAIDs, nonsteroidal anti-inflammatory agents. (A. OS

of aspirins exposure in multiple cancer types; B. PFS of aspirins exposure in

multiple cancer types; C. OS of b-blockers exposure in multiple cancer types;
D. PFS of b-blockers exposure in multiple cancer types; E. OS of metformin

exposure in multiple cancer types; F. PFS of metformin exposure in multiple
cancer types; G. OS of NSAIDs exposure in multiple cancer types; H. PFS of

NSAIDs exposure in multiple cancer types; I. ORR of NSAIDs exposure in
multiple cancer types; J. OS of opioids exposure in multiple cancer types; K.
PFS of opioids exposure in multiple cancer types; L. ORR of opioids exposure

in multiple cancer types; M. OS of probiotics exposure in NSCLC patients; N.
PFS of probiotics exposure in NSCLC patients;O. ORR of probiotics exposure

in multiple cancer types; P. DCR of probiotics exposure in multiple cancer
types;Q. OS of statins exposure in NSCLC patients; R. PFS of statins exposure

in NSCLC patients; S. OS of statins exposure in multiple cancer types; T. PFS
of statins exposure in multiple cancer types).
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