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Background: The association between gut microbiome and coronavirus disease

2019 (COVID-19) has attracted much attention, but its causality remains unclear

and requires more direct evidence.

Methods: In this study, we conducted the bidirectional Mendelian randomization

(MR) analysis to assess the causal association between gut microbiome and

COVID-19 based on the summary statistics data of genome-wide association

studies (GWASs). Over 1.8 million individuals with three COVID-19 phenotypes

(severity, hospitalization and infection) were included. And 196 bacterial taxa

from phylum to genus were analyzed. The inverse-variance weighted (IVW)

analysis was chosen as the primary method. Besides, false discovery rate (FDR)

correction of p-value was used. To test the robustness of the causal relationships

with p-FDR < 0.05, sensitivity analyses including the secondary MR analyses,

horizontal pleiotropy test, outliers test, and “leave-one-out” analysis were

conducted.

Results: In the forward MR, we found that 3, 8, and 10 bacterial taxa had

suggestive effects on COVID-19 severity, hospitalization and infection,

respectively. The genus Alloprevotella [odds ratio (OR) = 1.67; 95% confidence

interval (95% CI), 1.32–2.11; p = 1.69×10−5, p-FDR = 2.01×10−3] was causally

associated with a higher COVID-19 severity risk. In the reverse MR, COVID-19

severity, hospitalization and infection had suggestive effects on the abundance of

4, 8 and 10 bacterial taxa, respectively. COVID-19 hospitalization causally

increased the abundance of the phylum Bacteroidetes (OR = 1.13; 95% CI,

1.04–1.22; p = 3.02×10−3; p-FDR = 2.72×10−2). However, secondary MR

analyses indicated that the result of COVID-19 hospitalization on the phylum

Bacteroidetes required careful consideration.
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Conclusion:Our study revealed the causal association between gut microbiome

and COVID-19 and highlighted the role of “gut-lung axis” in the progression of

COVID-19.
KEYWORDS

gut microbiota, SARS-CoV-2, COVID-19, Mendelian randomization, causality, rct,
randomized controlled trial
1 Introduction

The COVID-19 pandemic, caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), is imposing

significant economic and healthcare challenges on society and is

expected to do so for the foreseeable future (1, 2). While SARS-

CoV-2 is known to mainly infect respiratory tract, increasing

evidence suggests its potential involvement in the pathogenesis of

COVID-19 via the gastrointestinal tract (3, 4). In addition to its

ability to infect and replicate in intestinal enterocytes (5), SARS-

CoV-2 can induce the upregulation of angiotensin converting

enzyme-2 receptor expression in intestinal epithelial cells (6, 7).

Frequent occurrence of gastrointestinal symptoms has been

observed in individuals with SARS-CoV-2 infection (8), and a

meta-analysis indicated that those with gastrointestinal

involvement have an increased risk of severe disease (9).

Emerging evidence has shed light on the connection between the

gut microbiome and the pathogenesis of COVID-19, through a

mechanism known as the “gut-lung axis” (3, 10, 11). The

gastrointestinal tract is considered to be the largest organ of the

human immune system (12). Epidemiological studies have indicated

that SARS-CoV-2 infection could result in alterations of gut

microbiome (13–16), and the prognosis of COVID-19 appeared to

be closely linked to the composition of gut microbiome (17–19).

Previous studies have suggested that the resident microbiota in the

gastrointestinal tract played a critical role in regulating host

immunity, thereby providing defense against SARS-CoV-2

infection (20–22). Probiotics, a beneficial group of microorganisms,

are known for their effectiveness in restoring homeostasis of gut

microbiota, enhancing immunity, and exhibiting antiviral potential

(3, 23). Clinical trials have demonstrated that probiotic supplements

could restore the homeostasis of gut microbiota, potentially leading to

improved prognosis of COVID-19 (24–26). These evidences

suggested that the gut microbiome might be a target for the

prevention, diagnosis and treatment of COVID-19. However, the

association between gut microbiome and COVID-19 was not well-

established because it could be easily influenced by unmeasured

confounders (27–29). Furthermore, the association was susceptible

to unavoidable biases and reverse causation (30).

Randomized controlled trials are considered the benchmark for

investigating the causal link between gut microbiome and COVID-

19. Regrettably, the screening of gut microbiome for early diagnosis

and prognosis of COVID-19 is currently limited owing to the
02
impact of external factors, such as research methods and

technology (30). Additionally, a substantial amount of human

and material resources are required to conduct the randomized

controlled trials, resulting in a burdensome workload. In these

circumstances, MR analysis has been advocated as an emerging

approach (31). MR analysis is an alternative approach to assess the

causal link between exposure and outcome. This method utilizes

genetic variants as instrumental variables (IVs) that are randomly

distributed during meiosis as unconfounded surrogates for the

exposure (32). MR is analogous to the random assignment of

interventions in the randomized controlled trials and can thus

address the issues of reverse causation and confounders that are

commonly found in nonrandomized studies (30). Owing to these

strengths, MR analysis has been extensively used to identify factors

associated with COVID-19 (28, 33–36).

In the study, utilizing the bi-directional MR approach, we

evaluated both the causal impacts of gut microbiome on COVID-

19 phenotypes and the causal impacts of COVID-19 phenotypes on

gut microbiome. Our objective was to clarify the involvement of gut

microbiome in the diagnosis and prognosis of COVID-19, with the

ultimate goal of promoting the development of novel strategies,

including probiotic therapy, fecal microbiome transplantation, and

antimicrobial stewardship.
2 Methods

2.1 Study design

TheMR analysis is based on the following assumptions (Figure 1A)

(30). (1) IVs are strongly linked to the exposure. (2) IVs are not linked to

the confounders. (3) IVs can only influence the outcome through the

exposure, without involving alternative pathways. Figure 1B depicts the

study design for examining the causal link between gut microbiome and

COVID-19 using the bi-directional MR analysis. We first selected gut

microbiome as the exposure and COVID-19 as the outcome to detect

whether the gut microbiome prevented or promoted the occurrence of

COVID-19. To explore the changes in gut microbiome after the

occurrence of COVID-19, we conducted a reverse MR analysis

(COVID-19 as the exposure; gut microbiome as the outcome). This

MR study followed the Strengthening the Reporting of Observational

Studies in Epidemiology-Mendelian Randomization (STROBE-MR)

guidelines (Table S1) (37).
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2.2 Data sources

GWAS summary data on the human gut microbiome was

obtained from the largest multi-ethnic GWAS meta-analysis

conducted by the MiBioGen consortium (38). It included 18,340

participants from twenty-four cohorts. Data of gut microbiome was

generated by targeting the 16S ribosomal RNA gene, specifically the

V4, V3-V4, or V1-V2 regions, and primarily using the Illumina

sequencing platform (39). Microbiota quantitative trait loci

mapping analysis was conducted to investigate the interactions

between host genetic variants and gut microbiome. In addition,

the covariate-adjusted abundance of gut microbiome was analyzed,

considering factors such as age, sex, technical variables, and

principal components (38). Data of gut microbiome covered 211

taxa whose mean abundance more than 1%, encompassing 131

genera, 35 families, 20 orders, 16 classes, and 9 phyla. 196 bacterial

taxa were ultimately included in the MR analysis after excluding 15

taxa belonging to unknown groups (12 genera and 3 families). More

detailed information about the GWAS of gut microbiome can be

found in the literatures (38, 39).
Frontiers in Immunology 03
The GWAS summary data on COVID-19 was obtained from

the global COVID-19 Host Genetics Initiative, with the exception of

the “23andMe” dataset (40). The researchers had already adjusted

the original data for covariates, including age, sex, age2, age × sex,

and principal components. The MR study included 1,683,768

participants, with 38,984 infected cases and 1,644,784 un-infected

individuals, for COVID-19 infection analysis. 1,887,658

participants, with 9,986 hospitalized cases and 1,877,672 un-

infected individuals, for COVID-19 hospitalization analysis.

1,388,342 participants, with 5,101 severe cases and 1,383,241 un-

infected individuals, for COVID-19 severity analysis. Individuals

who died or required respiratory assistance as a result of COVID-19

infection were classified as severe cases (40).
2.3 Selection of IVs

Single nucleotide polymorphisms (SNPs) were used as IVs

based on these criteria. (1) In the forward MR analysis, since few

SNPs of gut microbiome met a p less than 5.0×10–8, we relaxed the
B

A

FIGURE 1

Fow diagram of the study. (A) Schematic of the MR design. (B) Overview of the bi-directional MR study. IVs, instrumental variables; FE, fixed-effect;
RE, random-effect; FDR, false discovery rate; WM, weighted median; MR-PRESSO, MR pleiotropy residual sum and outlier; cML-MA, constrained
maximum likelihood and model averaging-based.
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p-value threshold (Figure 1B). SNPs with p lower than 1.0×10–5

were selected as IVs, following previous studies (41–47). In the

reverse MR analysis, SNPs of COVID-19 with p < 5.0×10–8 were

used (Figure 1B). (2) We applied clumping to restrict SNPs with low

linkage disequilibrium (r2 less than 0.001; genetic distance = 10,000

kb) (32). (3) Palindromic SNPs were removed. (4) Only SNPs with

minor allele frequency (MAF) more than 0.01 were included. (5)

We also calculated F-statistics for the SNPs to assess their

instrumental strengths. F = b2

SE2 . SNPs with an F-statistic < 10

would be removed (48).
2.4 Statistical analysis

We conducted the bi-directional MR analysis to assess the causal

impacts of gut microbiome on COVID-19 phenotypes and the causal

impacts of COVID-19 phenotypes on gut microbiome (Figure 1B).

IVW analysis was selected as the primary method complying with the

STROBE-MR guidelines (37). It employs a meta-analysis method that

combines theWald ratio to provide the casual estimate. IVW analysis

is considered precise and robust because it utilizes information from

all IVs (32, 49). In addition, the heterogeneity was evaluated using

Cochran’s Q test. If no heterogeneity was observed (Q_p-value <

0.05), the fixed-effect (FE) model of IVWwas utilized. Alternatively, a

random-effect (RE) model of IVW was applied (30, 32). The OR and

corresponding 95% CI were reported as the results of the bi-

directional MR analysis. P-value < 0.05 was considered was

considered statistically significant. Besides, we conducted the FDR

correction (p-FDR) with the threshold of 0.05. A causal association

was considered significant when the IVW approach yielded a p-FDR

< 0.05. In addition, we defined a suggestive association as having a p <

0.05 but a p-FDR ≥ 0.05 with the IVW approach (Figure 1B).

To assess the robustness of the findings related to causal

relationships with a significance level of p-FDR < 0.05, several

sensitivity analyses were conducted (Figure 1B). First, we employed

the MR-Egger test (50) and MR pleiotropy residual sum and outlier

(MR-PRESSO) global test (51) to identify horizontal pleiotropy.

Second, the MR-PRESSO test was conducted to test for outliers of

the SNPs. Third, we employed the “leave-one-out” analysis to assess

the potential influence of individual SNP on the MR effect.

Furthermore, we performed secondary MR analyses including the

MR-Egger analysis (52), weighted median (WM) (53) analysis, MR-

PRESSO analysis (51), and constrained maximum likelihood and

model averaging-based (cML-MA) analysis (54). We considered a

causal association to be authentic only when all MR methods

indicated the same direction of effect. MR-Egger is capable of

identifying certain deviations from the standard IV assumptions,

and producing an effect estimate that is not affected by such

deviations (52). WM can yield a causal estimate even when half

of the information is derived from invalid IVs (53). cML-MA is a

MR method that uses constrained maximum likelihood and model

averaging, and has been shown to be resilient against both

correlated and uncorrelated pleiotropy while maintaining a low

type-I error rate (54). “TwoSampleMR” (55), “MRPRESSO” (51),

and “MRcML” (54) were the primary R packages utilized in the
Frontiers in Immunology 04
study. All analyses were conducted using the R v4.1.2 (R

Foundation, Vienna, Austria).
2.5 Ethical approval

This study analyzing publicly available summary-level data was

exempt from ethical approval.
3 Results

3.1 Causal effects of gut microbiome on
COVID-19 phenotypes

In the forward MR (gut microbiome as the exposure), we

identified 2148, 2127, and 2137 SNPs associated with gut

microbiome for COVID-19 severity, hospitalization, and

infection, respectively. F-statistics greater than 10 for all SNPs

related to gut microbiome indicated the absence of the weak

instrument bias (Table S2). The adjusted IVW results after

accounting for heterogeneity are presented in Table S3.

As shown in Figure 2A, IVW analysis revealed that genus

Ruminococcus gnavus group (OR = 0.77; 95% CI, 0.62–0.95; p =

1.44×10−2), genus Oxalobacter (OR = 0.84; 95% CI, 0.71–1.00; p =

4.96×10−2), and genus Ruminiclostridium6 (OR = 0.78; 95% CI,

0.62–0.98; p = 3.55×10−2) showed suggestive associations with a

reduced risk for COVID-19 severity. On the other hand, IVW

analysis revealed a causal link between the genus Alloprevotella (OR

= 1.67; 95% CI, 1.32–2.11; p = 1.69×10−5) and heightened COVID-

19 severity risk after FDR correction (p-FDR = 2.01×10−3). In

addition, the IVW, MR-Egger, WM, MR-PRESSO, and cML-MA

methods yielded the similar direction for the causal effect of genus

Alloprevotella on COVID-19 severity (Figure 3A).

According to the results of the IVW analysis presented in

Figure 2B, genus Alistipes (OR = 0.78; 95% CI, 0.63–0.96; p =

2.02×10−2), genus Parasutterella (OR = 0.84; 95% CI, 0.72–0.98; p =

3.09×10−2), genus Ruminiclostridium6 (OR = 0.80; 95% CI, 0.69–

0.94; p = 5.69×10−3), and genus Ruminococcaceae UCG014 (OR =

0.79; 95% CI, 0.65–0.97; p = 2.37×10−2) showed suggestive

associations with a reduced risk for COVID-19 hospitalization.

Conversely, family Family XIII (OR = 1.30; 95% CI, 1.03–1.64; p =

2.69×10−2), family Victivallaceae (OR = 1.11; 95% CI, 1.00–1.24; p =

4.55×10−2), genus Alloprevotella (OR = 1.25; 95% CI, 1.07–1.45; p =

3.71×10−3), and genus Prevotella9 (OR = 1.21; 95% CI, 1.04–1.41; p

= 1.47×10−2) exhibited suggestive associations with an increased

risk for COVID-19 hospitalization. However, the aforementioned

associations ceased to be statistically significant once they

underwent FDR correction (p-FDR > 0.05).

We found that phylum Lentisphaerae (OR = 0.93; 95% CI, 0.87–

0.99; p = 3.23×10−2), family Alcaligenaceae (OR = 0.87; 95% CI,

0.78–0.96; p = 8.55×10−3), family Lachnospiraceae (OR = 0.91; 95%

CI, 0.84–1.00; p = 4.46×10−2), genus Dialister (OR = 0.91; 95% CI,

0.82–1.00; p = 4.33×10−2), genus Parasutterellaon (OR = 0.89; 95%

CI, 0.83–0.97; p = 4.00×10−3), genus Ruminococcaceae UCG003 (OR

= 0.90; 95% CI, 0.82–0.99; p = 3.58×10−2), and genus
frontiersin.org
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Ruminococcaceae UCG014 (OR = 0.88; 95% CI, 0.80–0.97; p =

8.97×10−3) showed suggestive associations with a reduced risk for

COVID-19 infection using the IVW method (Figure 2C). On the

other hand, class Negativicutes (OR = 1.13, 95% CI, 1.02–1.26; p =

2.45×10−2), order Selenomonadales (OR = 1.13; 95% CI, 1.02–1.26;

p = 2.45×10−2), and genus Phascolarctobacterium (OR = 1.13; 95%

CI, 1.02–1.25; p = 1.92×10−2) exhibited suggestive associations with

a higher risk for COVID-19 infection (Figure 2C). After FDR

correction, the aforementioned associations lost their statistical

significance (p-FDR > 0.05).
3.2 Causal effects of COVID-19 phenotypes
on gut microbiome

In the reverse MR (COVID-19 as the exposure), we identified

1233, 827 and 1033 SNPs associated with COVID-19 severity,

hospitalization, and infection respectively. All SNPs of gut

microbiome included in the analysis had an F-statistic greater

than 10 (Table S4), suggesting the absence of weak bias of IVs.

Additionally, the adjusted IVW results, which considered

heterogeneity, are presented in Table S5.

As shown in Figure 4A, IVW analysis suggested that COVID-19

severity showed a suggestive association with a decreased

abundance of the genus Ruminococcus1 (OR = 0.94; 95% CI,
Frontiers in Immunology 05
0.90–0.99; p = 1.83×10−2). In contrast, COVID-19 severity

exhibited suggestive associations with an increased abundance of

the genus Candidatus Soleaferrea (OR = 1.09; 95% CI, 1.00–1.18; p

= 4.22×10−2), genus Olsenella (OR = 1.15; 95% CI, 1.04–1.28; p =

6.26×10−3), and genus Parasutterella (OR = 1.08; 95% CI, 1.02–1.14;

p = 1.35×10−2). Nevertheless, the aforementioned associations

between COVID-19 severity and gut microbiome lost their

statistical significance after undergoing FDR correction (p-FDR

> 0.05).

As presented in Figure 4B, IVW analysis suggested that

COVID-19 hospitalization showed suggestive associations with a

decreased abundance of the family Lactobacillaceae (OR = 0.86;

95% CI, 0.75–0.97; p = 1.64×10−2) and genus Lactobacillus (OR =

0.86; 95% CI, 0.75–0.97; p = 1.86×10−2). On the other hand,

COVID-19 hospitalization exhibited suggestive associations with

a higher abundance of the class Bacteroidia (OR = 1.13; 95% CI,

1.04–1.22; p = 3.15×10−3), order Bacteroidales (OR = 1.13; 95% CI,

1.04–1.22; p = 3.15×10−3), genus Oscillospira (OR = 1.12; 95% CI,

1.01–1.25; p = 3.29×10−2), genus Parasutterella (OR = 1.13; 95% CI,

1.03–1.25; p = 1.45×10−2), and genus Terrisporobacter (OR = 1.16;

95% CI, 1.01–1.32; p = 3.12×10−2). Notably, COVID-19

hospitalization was causally associated with an increased

abundance of phylum Bacteroidetes (OR = 1.13; 95% CI, 1.04–

1.22; p = 3.02×10−3), even after FDR correction (p-FDR

= 2.72×10−2).
B

C

A

FIGURE 2

Forests plot of causal effects of gut microbiome on COVID-19 phenotypes (p-IVW > 0.05). (A) COVID-19 severity. (B) COVID-19 hospitalization.
(C) COVID-19 infection. FDR, false discovery rate. * p-FDR < 0.05. E-01 represents 10−1.
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We found that COVID-19 infection showed suggestive

associations with a decreased abundance of the family

Lachnospiraceae (OR = 0.88; 95% CI, 0.78–0.99; p = 3.75×10−2),

family Lactobacillaceae (OR = 0.80; 95% CI, 0.66–0.98; p =

2.84×10−2), genus Flavonifractor (OR = 0.84; 95% CI, 0.71–0.98; p

= 2.59×10−2), genus Lachnoclostridium (OR = 0.83; 95% CI, 0.74–

0.94; p = 3.80×10−3), genus Lachnospiraceae UCG008 (OR = 0.82;

95% CI, 0.67–1.00; p = 4.77×10−2), and genus Lactobacillus (OR =

0.81; 95% CI, 0.67–0.99; p = 3.91×10−2) using the IVW analysis

(Figure 4C). In contrast, COVID-19 infection exhibited suggestive

associations with an increased abundance of the family

Rikenellaceae (OR = 1.13; 95% CI, 1.00–1.28; p = 4.98×10−2),

family Ruminococcaceae (OR = 1.14; 95% CI, 1.01–1.28; p =

3.86×10−2), genus Lachnospiraceae FCS020 group (OR = 1.18;

95% CI, 1.03–1.36; p = 2.05×10−2), and genus Ruminococcaceae

UCG002 (OR = 1.20; 95% CI, 1.06–1.36; p = 5.02×10−3) (Figure 4C).

However, the aforementioned associations between COVID-19

infection and gut microbiome failed to pass the FDR correction

test (p-FDR > 0.05).
3.3 Sensitivity analyses

We conducted several sensitivity analyses to evaluate the

robustness of the MR estimates of the two associations which

passed the FDR correction test (genus Alloprevotella with

COVID-19 severity; COVID-19 hospitalization with phylum

Bacteroidetes; Figure 3). Results from the MR-Egger test and MR-

PRESSO global test indicated the absence of horizontal pleiotropy

(p-MR-Egger > 0.05 and p-MR-PRESSO > 0.05) in the two

associations. The MR-PRESSO analysis revealed that there were

no outlier SNPs in the MR results. However, MR-Egger analysis

suggested a different direction for the causal estimate of COVID-19

hospitalization on the phylum Bacteroidetes compared to IVW,
Frontiers in Immunology 06
WM, MR-PRESSO, and cML-MA analyses (Figure 3B). Therefore,

the result of causal estimate of COVID-19 hospitalization on

phylum Bacteroidetes requires careful consideration. Additionally,

the “leave-one-out analysis” indicated that excluding any individual

SNP did not significantly alter the overall results of the two

associations (Figure 5).
4 Discussion

The association between the gut microbiome and COVID-19

has been of great interest. In the study, we conducted the bi-

directional MR analysis to assess the causal effects and casual

directions between gut microbiome and COVID-19 phenotypes.

We identified 45 links between gut microbiome and COVID-19

phenotypes, of which 43 were suggestive links and two were strong

links. Following the FDR correction, we found that the genus

Alloprevotella was causally related with a higher risk of COVID-

19 severity, while COVID-19 hospitalization was causally linked to

an increase in the abundance of the phylum Bacteroidetes. As far as

we know, this is the first bidirectional MR study to comprehensively

investigate the causal association between gut microbiome and

COVID-19.

It has suggested that the gut microbiome could modulate the

host’s immune system, potentially affecting the disease process of

COVID-19 (3, 10, 11). In this study, we found that several bacterial

taxa, including the phylum Lentisphaerae (infection), family

Alcaligenaceae (infection), family Lachnospiraceae (infection),

genus Ruminococcus gnavus group (severity), genus Oxalobacter

(severity), genus Ruminiclostridium6 (severity, hospitalization),

genus Alistipes (hospitalization), genus Parasutterel la

(hospitalization, infection), genus Ruminococcaceae UCG003

(infection), genus Ruminococcaceae UCG014 (hospitalization,

infection), and genus Dialister (infection), had suggestive
B

A

FIGURE 3

Forests plot of sensitivity analyses for two associations. (A) Genus Alloprevotella with COVID-19 severity. (B) COVID-19 hospitalization with phylum
Bacteroidetes. IVs, instrumental variables; WM, weighted median; MR-PRESSO, MR pleiotropy residual sum and outlier; cML-MA, constrained
maximum likelihood and model averaging-based. E-01 represents 10−1.
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protective effects against COVID-19 phenotypes. Short-chain fatty

acids (SCFAs), which belonged to immunomodulatory metabolites,

played a vital role in alleviating pulmonary diseases (56). SCFAs

might regulate lung immunity through the following mechanisms

(10). First, SCFAs directly migrated to lung tissues through the

circulation and exerted regulatory effects on pulmonary immunity

(10). Second, SCFAs stimulated the differentiation and activation of

B cells, leading to the production of immunoglobulin A. In the lung,

immunoglobulin A facilitated the clearance of viruses (57). Third,

SCFAs enhanced the differentiation and activation of Treg cells,

which produced IL-10 and TGF-b, thereby reducing lung

inflammation and injury (58, 59). Several studies revealed that the

above bacteria, including the family Lachnospiraceae (14), genus

Ruminococcus gnavus group (60), genus Alistipes (14), and genus

Parasutterella (61), had the capability to produce short-chain fatty

acids and exerted an anti-inflammatory effect, thereby potentially

alleviating COVID-19 symptoms (3, 14). Interestingly, clinical trials

have demonstrated that supplementing with the family

Lachnospiraceae could be an effective way to enhance recovery

from COVID-19 and alleviate associated symptoms (26, 62, 63). On

the other hand, the family XIII (hospitalization), family

Victivallaceae (hospitalization), class Negativicutes (infection),

order Selenomonadales (infection), genus Alloprevotella
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(hospitalization), genus Prevotella9 (hospitalization), and genus

Phascolarctobacterium (infection) were found to have suggestive

contributory effects on COVID-19 phenotypes. Specifically, the

IVW analysis suggested that the genus Alloprevotella was casually

associated with a higher risk of COVID-19 severity after FDR

correction. In addition, it was found that the genus Alloprevotella

was enriched in COVID-19 hospitalized patients at the

nasopharynx (64, 65). Previous studies have suggested that genus

Prevotella9 (66), genus Alloprevotella (64, 67), and genus

Phascolarctobacterium (68) exhibited increased inflammatory

properties and were thought to be clinically important

pathobionts involved in promoting chronic inflammation. This

might explain why these bacteria pose a risk for COVID-19.

Taken together, these findings highlight the significance of gut

microbiome as a modifiable factor in enhancing the outlook of

COVID-19.

Previous research has revealed that COVID-19 patients often

suffer from various gastrointestinal reactions (8, 9). In this study,

IVW analysis revealed that COVID-19 phenotypes could potentially

reduce the abundance of the family Lactobacillaceae (hospitalization,

infection), family Lachnospiraceae (infection), genus Ruminococcus1

(severity), genus Lactobacillus (hospitalization, infection), genus

Flavonifractor (infection), genus Lachnoclostridium (infection), and
B

C

A

FIGURE 4

Forests plot of causal effects of COVID-19 phenotypes on gut microbiome (p-IVW > 0.05). (A) COVID-19 severity. (B) COVID-19 hospitalization.
(C) COVID-19 infection. FDR, false discovery rate. * p-FDR < 0.05. E-01 represents 10−1.
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genus Lachnospiraceae UCG008 (infection). In addition, COVID-19

phenotypes potentially increased the abundance of the class

Bacteroidia (hospitalization), order Bacteroidales (hospitalization),

family Rikenellaceae (infection), family Ruminococcaceae

(infection), genus Candidatus Soleaferrea (severity), genus Olsenella

(severity, hospitalization), genus Parasutterella (severity,

hospitalization), genus Oscillospira (hospitalization), genus

Terrisporobacter (hospitalization), genus Lachnospiraceae FCS020

group (infection), and genus Ruminococcaceae UCG002 (infection).
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Notably, COVID-19 hospitalization was found to be casually

associated with an increased abundance of the phylum

Bacteroidetes after FDR correction by the IVW analysis, although

MR-Egger suggested a different causal direction. Recent studies have

also observed a decrease in the abundance of the family

Lachnospiraceae (69) and an increase in the abundance of the

phylum Bacteroidetes (15, 70–72), family Ruminococcaceae (69, 73),

and genus Oscillospira (16) subsequent to SARS-CoV-2 infection. We

therefore deem that COVID-19 may exacerbate disease symptoms by
B

A

FIGURE 5

MR leave-one-out sensitivity analysis for two associations. (A) Genus Alloprevotella with COVID-19 severity. (B) COVID-19 hospitalization with
phylum Bacteroidetes.
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disrupting the gut microbiota homeostasis. Generally speaking, these

findings support the notion that COVID‐19 has impacts on gut

microbiome dysbiosis through the “gut-lung axis”.

In the study, we observed a notable correlation between the gut

microbiome residing in the gastrointestinal tract and the clinical

outcomes of SARS-CoV-2 infection. Additionally, we discovered

that SARS-CoV-2 infection had the potential to induce

modifications in the gut microbiome. These findings provided

support for the bidirectional interaction between the gut and the

lung known as the “gut-lung axis” (74). The gut microbiome

reportedly played a crucial role in modulating immune responses

in the lung (3, 10). An underlying mechanism by which the gut

microbiome contributed to influencing the outcomes of COVID-19

is via the activities of its metabolites (e.g., SCFAs) (11, 29). The

potential exists for the gut microbiome, along with its metabolites,

to impact the gene expression of type I interferon (IFN-I) receptors

in respiratory epithelial cells. This, in turn, could restrict the

proliferation of influenza viruses by stimulating the production of

IFN-a and IFN-b (75, 76). Furthermore, the metabolites originating

from the gut microbiome had the capacity to stimulate the

migration of dendritic cells from the lung to the draining lymph

node and promote T-cell priming through the activation of

inflammasomes (77). On the other hand, the gut microbiome

stimulated the release of inflammatory factors that disseminated

throughout the body, exerting their effects on various mucosal

tissues and exacerbating the cytokine storm, thereby exacerbating

the severity of the condition (23). In this study, we observed a causal

association between the genus Alloprevotella and an elevated risk of

severe COVID-19. A study has indicated a positive correlation

between the abundance of genus Alloprevotella and the level of C-

reactive protein, a well-known marker of inflammation (78). We

hypothesized that the genus Alloprevotella could promote

inflammation and, thus, exacerbate the disease. However, research

focused on the direct influence of the gut microbiome in COVID-19

remains limited.

SARS-CoV-2 has been suggested to potentially spread from the

lung through transportation via immune cells within the circulatory

and lymphatic systems (3, 23). Direct infection of gut epithelial cells

by SARS-CoV-2 compromised the integrity of the gut barrier and

facilitated microbial translocation. This cascade set off a cytokine

storm, exacerbating dysregulation in the gut microbiome,

metabolites, electrolytes, and gut barrier functions (3, 79). The

invasion of SARS-CoV-2 could trigger the activation of pattern-

recognition receptors, which were recognized by innate immune

cells. This activation led to the release of diverse pro-inflammatory

cytokines (80). These immune responses, once activated, could

potentially impair gut permeability, disturb the equilibrium of gut

microbiome, and lead to an increase in opportunistic pathogens

(e.g., Bacteroidetes) and a decrease in commensal symbionts (e.g.,

Lactobacillus). On the other hand, ACE2 receptors in the gut

appeared to be a critical factor in mediating the interaction

between SARS-CoV-2 and the gut microbiome. SARS-CoV-2

bound to the ACE2 receptor, leading to a decrease in ACE2

receptor concentration and consequently in the diversity of the

gut microbiome (3, 74, 81). COVID-19 has been shown to impact
Frontiers in Immunology 09
the gut microbiome in this study, specifically phylum Bacteroidetes,

potentially through these mechanisms.

There are several interventions based on the gut microbiome

that show potential for addressing COVID-19. First, the gut

microbiome can serve as biomarkers for predicting the prognosis

of COVID-19. Previous studies have suggested an association

between the gut microbiome and the prognosis of COVID-19

(17–19). The microbiota associated with COVID-19, identified in

this study, can also be considered as markers for predicting disease

progression in COVID-19 (82). Second, a meta-analysis of 1198

patients indicated that probiotics could alleviate symptoms and

immune responses and reduce the duration of symptoms in patients

with COVID-19 (83). These findings demonstrate the ability of

probiotics to effectively reshape gut microbiome homeostasis and

reduce inflammatory responses, ultimately acting as adjuvants

against SARS-CoV-2. Third, fecal transplants might represent a

safe intervention to alleviate gastrointestinal symptoms and

modulate immune responses (84, 85). Fourth, meta-analysis

indicated that bacterial co-infections were infrequent and that

widespread antibiotic usage did not improve the clinical outcome

of COVID-19 (86). Therefore, it is crucial to implement

antimicrobial stewardship to prevent antibiotic-induced dysbiosis

of the gut microbiota and mitigate the risks of disease severity and

antimicrobial resistance (87, 88).

This study exhibited several strengths. First, this study utilized

the largest publicly available GWAS data of gut microbiome and

COVID-19 from over 1.8 million individuals with different

ethnicities, providing reliable evidence to elucidate the association

between gut microbiome and COVID-19. Second, previous

epidemiological studies might be prone to biases due to

confounders or reverse causation, but the MR design could

effectively minimize these biases. Third, stringent quality control

procedures and multiple sensitivity analysis approaches were

employed in this study to assess the robustness of the MR

estimates (30). Fourth, the potential links identified in this study

could assist in further investigations into the mechanisms

underlying the links between gut microbiome and COVID-

19 phenotypes.

The study’s limitations, nevertheless, must be acknowledged.

Due to a lack of sufficient SNPs (less than three) after linkage

disequilibrium, we relaxed the p-value threshold (p lower than

1.0×10–5) of SNPs of gut microbiome (gut microbiome as the

exposure) in accordance with previous studies (41–47), which

might result in weak instrumental variables. To address this issue,

we calculated the F-statistics to measure the power of each SNP. All

SNPs used in the study having an F-statistic greater than 10

indicated the absence of weak instrument bias. Additionally,

bacterial taxa at the species level were not available. Further

research is required to elucidate the causal links between the

species of gut microbiome and COVID-19 phenotypes.

By conducting the bi-directional MR analysis using the publicly

available GWAS summary data, we comprehensively explored the

causal link between gut microbiome and COVID-19. This study

revealed the interaction between gut microbiome and COVID-19

through the “gut-lung axis”. These findings support the notion that
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the gut microbiome can serve as an intervention target and may

offer new insights into preventing, diagnosing and treating

COVID-19.
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