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Pannexin1: insight into
inflammatory conditions and its
potential involvement in multiple
organ dysfunction syndrome
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and Huaiwu He*

Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
Sepsis represents a global health concern, and patients with severe sepsis are at

risk of experiencing MODS (multiple organ dysfunction syndrome), which is

associated with elevated mortality rates and a poorer prognosis. The

development of sepsis involves hyperactive inflammation, immune disorder,

and disrupted microcirculation. It is crucial to identify targets within these

processes to develop therapeutic interventions. One such potential target is

Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates

the passage of molecules smaller than 1 KDa, such as ATP. Accumulating

evidence has implicated the involvement of Panx1 in sepsis-associated MODS.

It attracts immune cells via the purinergic signaling pathway, mediates immune

responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates

blood flow by modulating VSMCs’ and vascular endothelial cells’ tension, and

disrupts microcirculation by elevating endothelial permeability and promoting

microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury

in multiple organs. Panx1 primarily exacerbates injury and hinders recovery,

making it a potential target for sepsis-induced MODS. While no drugs have

been developed explicitly against Panx1, some compounds that inhibit Panx1

hemichannels have been used extensively in experiments. However, given that

Panx1’s role may vary during different phases of sepsis, more investigations are

required before interventions against Panx1 can be applied in clinical. Overall,

Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further

research is needed to understand its complex role in different stages of sepsis

fully and to develop suitable pharmaceutical interventions for clinical use.
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1 Introduction

Sepsis, a life-threatening condition triggered by a dysregulated

immune response, arises from severe infections, trauma, burns,

shock, and major surgeries. This global health concern accounts for

approximately 50 million cases and 11 million deaths yearly (1).

Among patients with severe sepsis, the development of MODS leads

to a poor prognosis (2). Those diagnosed with sepsis and MODS

exhibit significantly higher mortality and rehospitalization rates

than those without MODS (3). To improve clinical management

and devise novel therapeutics, it’s crucial to comprehend the

mechanisms underlying MODS in sepsis. However, despite

ongoing research, viable therapeutic targets for septic MODS have

yet to be identified.

The Panx (pannexin) protein family is found in vertebrates, first

identified in 2000 (4). Panx and hemichannel Cx (connexin)

function as unselective channels in vertebrates. Initially

considered a transmembrane channel due to extracellular

glycosylation modification (5), Panx1 was later found to form

intercellular cell-to-cell channels, indicating its role as a

hemichannel (6). The Panx family comprises three members:

Panx1, widely expressed in various tissues such as eyes, kidneys,

liver, CNS (central nervous system), vascular endothelium, alveolar

epithelium, and immune cells; Panx2, predominantly found in CNS

with subcellular localization on intracellular membranes; and

Panx3, exclusively detected in skin and osteoblasts (7, 8). Panx1

acts as a non-selective hemichannel, allowing the passage of

molecules smaller than 1 KDa, including ATP (adenosine-

triphosphate) and dye molecules (9). Its involvement spans

various physiological and pathological processes across different

cell types. Hypoxia and mechanical stress can activate Panx1

hemichannels on erythrocytes, leading to ATP release, which, in

turn, dilates vascular endothelium through the purinergic signaling

pathway (10, 11). In neurons under hypoxic and glucose-deficient

conditions, NMDAR (N-methyl-d-aspartate receptor) signaling or

K+ current activates SFK (Src kinase), which phosphorylates Panx1,

resulting in agonistic toxicity and impaired neuronal recovery in

inflammatory conditions (12, 13). Additionally, Panx1 involves

tumor migration and metastasis, as mechanical forces on tumor

cells induce the opening of Panx1 hemichannels on vascular

endothelium, leading to ATP release that promotes metastasis

(14). Elevated Panx1 levels are associated with a poor prognosis

in certain cancers (15).

Studies have demonstrated Panx1’s role in inflammation (16,

17). At the organ level, Panx1 has been implicated in the

inflammatory response in various organs, including the heart,

brain, lungs, kidneys, and liver (18–22). Furthermore, Panx1’s

involvement in developing systemic inflammatory disorders, such

as sepsis, has been investigated (23, 24). However, it’s not clear

whether Panx1 is potential as a therapeutic target for sepsis-induced

MODS. This article aims to provide an overview of Panx1 in

inflammation, immunosuppression, and microcirculation, as well

as its role in the inflammatory damage of multiple organs. This

article aims to shed light on Panx1’s potential therapeutic value

against sepsis-induced MODS.
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2 Panx1’s contribution
to hyperinflammation

According to Sepsis-3 criteria, sepsis is characterized as a

dysregulated host response to infection, wherein excessive

inflammation and immunosuppression coincide; in cases where

the body fails to effectively eliminate a high pathogen load, an

exaggerated inflammatory response ensues, coupled with

paradoxical anti-inflammatory regulation. The early phase of

sepsis exhibits hyperinflammation involving multiple cell types

and complex networks. While Panx1 is not directly engaged in

the initial process, it plays a significant role by releasing signaling

molecules like ATP, which can contribute to the proinflammatory

response. Specifically, Panx1 promotes inflammasome activation

(16) and facilitates the migration of immune cells (25) (Figure 1). It

is also involved in releasing neutrophil extracellular traps via the

purinergic signaling pathway (26, 27).
2.1 Panx1’s role in inflammasome activation

In sepsis, the delicate balance between protective and

detrimental inflammation becomes crucial, as excessive

inflammation can damage tissue. Inflammasome activation plays

a vital role in hyperinflammation during sepsis, as it triggers the

production and release of proinflammatory cytokines, such as IL-1b
(Interleukin 1b) and IL-18 (Interleukin 18), and induces

inflammatory cellular death, including pyroptosis and

necroptosis. The inflammasome is a protein complex that

responds to infection or damage. Cytoplasmic receptors like

NLRP3 (NOD-like receptor thermal protein domain associated

protein 3) recruit ASC (apoptosis-associated speck-like protein

containing a caspase recruitment domain) to activate caspase-1

(28). In contrast, LPS (lipopolysaccharides) can activate caspase-11

in murine or caspase-4/5 in humans in a non-canonical manner,

leading to the activation of NLRP3 and caspase-1 (29). Mature

caspase-1 cleavages IL-1b and IL-18 into maturity, both of which

play critical roles in the early phase of sepsis, with elevated levels

exacerbating the inflammatory response (30). Moreover,

downstream inflammatory cellular death can lead to tissue injury

and further amplify inflammation in sepsis (31).

Panx1 has been found to promote inflammasome activation via

the purinergic signaling pathway (16). However, the mechanism

linking Panx1 to downstream NLRP3 activation has yet to establish

fully. The prevailing hypothesis suggests that Panx1 activates

inflammasome by releasing ATP and activating P2X7 receptors,

which are ATP-gated ion channels. Although initially believed to be

a K+ efflux channel (32), recent studies have shown that P2X7

receptors only allow the influx of Ca2+ and Na+ upon activation,

and the K+ current via TWIK2 (two-pore domain weakly inwardly

rectifying K+ channel 2), promoted by P2X7 receptors, activates

NLRP3 (33). Moreover, inflammasome activation is associated with

producing cytoplasmic ROS (reactive oxygen species), which is

enhanced by P2X7 and P2X4 receptors upon ATP signaling from

Panx1 (34, 35). Since P2X7 and P2X4 receptors form heterodimeric
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trimers, they are structurally and functionally interdependent (36,

37), suggesting that the inflammasome activation by Panx1 and

P2X7 receptors may also involve P2X4 receptors.

In addition to NLRP3, Panx1 may also be involved in the

activation of the non-canonical inflammasome, such as NLRP1,

which is associated with the upregulation of M1 macrophages (the

proinflammatory phenotype of macrophages) (38), as well as

neuronal aging (39). Additionally, Panx1 has been found to

promote AIM2 (absent in melanoma 2) activation, contributing

to neuronal damage in conditions like subarachnoid hemorrhage

(40), myocardial death in heart failure (41), pyroptosis of retinal

cells due to ocular hypertension (42), and inflammatory response of

Kupffer cells following hepatic ischemia-reperfusion injury (43).

Furthermore, Panx1’s involvement in the non-classical pathway is

evident, where murine caspase-11 cleaves the C-terminus of Panx1,

leading to NLRP3 activation (21). Moreover, TLR2 interactions
Frontiers in Immunology 03
with human-derived caspase-5 can also lead to Panx1 cleavage and

promote an inflammatory response (44, 45).

The role of Panx1 in inflammasome activation and pyroptosis

has been a topic of debate among researchers. Some studies suggest

that Panx1 likely plays a role in inflammasome activation,

supported by experiments using Panx1 hemichannel inhibitors

like probenecid, which have demonstrated inhibitory effects on

inflammation responses (40, 46). However, this method may be

limited, as probenecid inhibits P2X7 receptors (47). On the other

hand, some experiments have demonstrated that inflammasome

can still be activated in macrophages even in the absence of Panx1,

suggesting that under certain conditions, Panx1 may not be a

mandatory component for inflammasome activation (48, 49). To

gain a comprehensive understanding, more extensive and detailed

studies are required to fully elucidate the involvement of Panx1 in

inflammasome activation and pyroptosis.
FIGURE 1

Panx1 participates in immune disorder by proinflammation and immunosuppression. (A) The proinflammatory role of Panx1 is associated with
activation of the inflammasome. Cleavage of Panx1 by caspase proteins, such as caspase-5 or -11, opens Panx1 and leads to downstream signaling
pathways that activate inflammasome: Purinergic stimulation on P2X7R and P2X4R promotes the production of cytoplasmic ROS; P2X7R mediates
the K+ influx via TWIK2 channel. (B) Opening of Panx1 recruits immune cells mainly via the purinergic signaling pathway. ATP released via Panx1
attracts monocytes, neutrophils, and dendritic cells, meanwhile Panx1 on immune cells mediates migration. Release of proinflammatory molecules
or chemoattractants promoted by Panx1 hemichannel activation, such as IL-1b and IL-18, certainly elevates immunocyte migration. (C) Panx1
contributes to immunosuppression by mediating the production of IL-33. As an immunoregulatory molecule, IL-33 binds ST2+ Tregs and assists
resolution of hyperinflammation. (D) Activation of Panx1 hemichannel elevates apoptosis level of immune cells, promoting immune paralysis. Further,
ATP released by Panx1 acts as “find-me” signals and attracts macrophages.
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2.2 Panx1’s function in mediating immune
cell chemotaxis

Chemokines, such as C5a and leukotrienes, play a pivotal role in

orchestrating immune response by driving immune cells, especially

neutrophils, from bone marrow or blood to sites of inflammation or

organs during uncontrolled inflammatory responses (50). The

degree of immune cell infiltration in organs strongly correlates

with organ damage and mortality in sepsis. Consequently,

interventions targeting chemotaxis hold promise as potential

therapeutic strategies to mitigate organ injury and enhance

survival rates (51–53). Immune cells, like neutrophils, employ an

amoeboid mode of migration characterized by minimal adherence

to the extracellular matrix, largely dependent on cytoskeletal

contractility and mechanosensitive channels (54). Panx1 emerges

as a crucial player in purinergic and Ca2+ signaling and

cytoskeleton control within this complex regulatory network. This

section provides a concise overview of Panx1’s involvement in

chemotaxis, with more comprehensive insights available in

Harcha’s review (17).

In the context of neutrophil migration, Panx1 localizes at the

leading edge of the cellular membrane alongside F-actin (55). By

releasing ATP, Panx1 indirectly influences neutrophil movement

bidirectionally. The purinergic pathway, mediated by Panx1, exerts

a dual role in regulating neutrophil behavior: ATP activates polarly

distributed P2Y2 receptors, while adenosine, derived from ATP,

stimulates A3 receptors, creating an autocrine regulatory network

that enhances gradient sensitivity and sustains cell polarity (55, 56).

At the rear of neutrophils, adenosine interacts with A2a receptors,

counteracting agonistic signaling and triggering the cAMP/PKA

pathway (57).

In DCs (dendritic cells), Panx1 collaborates with P2X7 receptors

to form an autocrine loop. In the presence of elevated extracellular

ATP levels, P2X7 receptors activate and induce Ca2+ influx, leading

to Panx1 hemichannel opening and consequent ATP release. This

process triggers the activation of CaMKII (calmodulin-dependent

protein kinase II), ultimately altering cytoskeletal structure, and

enabling rapid DC migration (25). Panx1 connects the purinergic

pathway with Ca2+ signaling in DCs via CaMKII, which can directly

open Panx1 hemichannels (58).

While monocytes and macrophages share a common origin and

exhibit similar markers, the exact involvement of Panx1 in

monocyte migration remains somewhat enigmatic. Monocytes in

the bloodstream can differentiate into either DCs or macrophages.

In an ATP-mediated autocrine loop, they release ATP to activate

P2Y6 receptors in response to CCL2-induced (C-C motif ligand 2)

chemotaxis (59). The specific role of Panx1 in monocyte migration

has yet to be entirely elucidated, even though both Cx and Panx1 are

expressed in these cells (60). Panx1 on apoptotic cells serves as a

“find-me” signal by releasing ATP to attract macrophages.

Nevertheless, it remains unclear whether Panx1 on macrophages

also actively mediates chemotaxis. Prior investigations have

suggested inhibiting Panx1 hemichannels can impede microglial

migration (macrophages within the nervous system) and reduce

their numbers at the injury site (61). However, this effect may be

associated with reduced levels of pro-inflammatory cytokines (62).
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Further investigations are warranted to fully comprehend the

intricate role of Panx1 in mediating immune cell chemotaxis.
3 Panx1’s involvement
in immunosuppression

Sepsis presents a complex immune landscape characterized by

both hyperactive inflammation and immunosuppression. During

the late phase of sepsis, the body’s ability to eliminate pathogens is

hindered by abnormal immune system suppression, resulting in

inflammation-related immunosuppression. This factor significantly

contributes to secondary infections and the development of MODS,

which remains a primary cause of poor prognosis in septic patients

(63). While Panx1 has been discussed for its role in fueling

inflammatory responses, it also exhibits a dual function in the

immune response, as it is involved in mediating Tregs (regulatory T

cells) and promoting immune cell death. This suggests that Panx1

actively suppresses immune response (Figure 1).
3.1 Panx1’s anti-inflammatory effects
through Treg regulation

In sepsis, an immunosuppressive state ensues, characterized by

the release of anti-inflammatory cytokines, immune cell death, T-

cell exhaustion, and elevated levels of immunomodulatory cells,

notably Tregs (64). Recent research by Medina et al. has shed light

on Panx1’s role in mediating Tregs and its capacity to curtail

inflammation through the purinergic signaling pathway (65).

While extracellular ATP acts as a danger signal to initiate the

inflammatory response by activating the inflammasome and

recruiting immune cells, its degradation into adenosine by

ectonucleotidases CD39 and CD73 can help limit inflammation

and regulate immune responses. Adenosines facilitate intercellular

communication between Tregs and Teffs (effector T cells),

inhibiting Teff cell proliferation within the airway. This study

underscores the significance of Panx1-dependent crosstalk

between Treg and Teff cells in mitigating inflammation.

The Panx1-IL-33 (interleukin-33) axis is crucial in resolving

excessive inflammation in the liver (66). Upon LPS stimulation,

hepatic cells release ATP, activating P2X7 receptors and producing

IL-33, a member of the IL-1 protein family that is not activated by

caspase-1-dependent cleavage. This cytokine fosters the recruitment

of liver-infiltrating Tregs expressing its receptor, ST2, thereby

resolving hyperinflammation in sepsis (66). Notably, in liver

transplantation models infected with MRSA (methicillin-resistant

Staphylococcus aureus), the Panx1-IL-33 axis is distinct in

enhancing bacterial elimination. Panx1-mediated purinergic

signals activate P2X2 receptors, leading to IL-33 production in

hepatocytes. Consequently, this axis recruits macrophages and

neutrophils, effectively reducing MRSA infection (67). These

studies highlight the diverse mechanisms by which the Panx1-IL-

33 axis regulates immune responses in the liver, with low levels of

Panx1 potentially limiting its immunoregulatory effects.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1217366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1217366
Moreover, studies have suggested that Panx1 may also influence

the population of infiltrating phagocytes during peritonitis

development, further emphasizing its involvement in

immunomodulation (68). As previously mentioned, Panx1 acts as

an upstream modulator, influencing pro-inflammatory and anti-

inflammatory responses via the purinergic pathway. However, given

the intricate nature of this regulatory network, the mechanisms

underlying Panx1’s anti-inflammatory effects are not yet fully

elucidated, underscoring the need for further research in this area.
3.2 Panx1’s contribution to
immunosuppression through
immunocyte death

In sepsis, the impairment of effector immune cells through

various forms of programmed cell death exacerbates the

immunosuppressive state. Pyroptosis, apoptosis, autophagy, and

ferroptosis have been observed in immune cells during sepsis,

collectively contributing to compromised immune function and

hindering the body’s ability to combat infections (64). While the

relationship between Panx1 and autophagy has yet to be definitively

established (69), a study by Su et al. has reported a potential role of

Panx1 in promoting ferroptosis of human renal cells during

ischemia-reperfusion injury of the kidney (70). However, further

investigations are needed to elucidate these connections fully.

Pyroptosis, a lytic and pro-inflammatory type of cell death, is

characterized by cell swelling, pore formation, and rapid disruption

of membrane integrity. It is activated by the inflammasome (71),

and as discussed earlier, Panx1 may promote pyroptosis by

activating the inflammasome (35, 72). Yang et al. reported that

Panx1 promotes pyroptosis of macrophages upon LPS challenge,

where cytosolic LPS induces caspase-11-dependent cleavage of

Panx1, activating downstream P2X7 receptors (31). High levels of

pyroptosis in immune cells impair the host’s ability to eliminate

infections and worsen the overall condition (73). Notably, ablation

of PANX1 has been shown to reduce the level of pyroptosis and

enhance resistance to sepsis.

In contrast, apoptosis is a non-inflammatory type of

programmed cellular death frequently observed during sepsis.

During apoptosis, the C-terminus of Panx1 undergoes irreversible

cleavage, a critical functional structure required for Panx1 activity

(74). The effector proteins caspase-3/7 shear the C-terminus of

Panx1, particularly the DVVD region at the C-terminus, as reported

by Chekeni et al. (75), resulting in a sustained increase in Panx1

hemichannel activity, ultimately promoting apoptosis (49, 75–77).

Furthermore, during apoptosis, Panx1 releases ATP as “find-me”

signals, which attract macrophages to efficiently clear apoptotic cells

(75, 78). Studies have indicated that Panx1 participates in Fas-

induced apoptosis of leukocytes via the caspase-8/Panx1/P2X7R

signaling cascade, wherein caspase-8 induces the cleavage of Panx1

and promotes cellular death in Jurkat cells (79). In neurons, elevated

levels of Panx1 may exacerbate apoptosis by promoting the TLR2/

TLR4/NF-kB pathway (80), mediating Ca2+ current, and

upregulating the levels of caspase-3 and Bax, a member of the

pro-apoptotic BCL-2 (B cell lymphoma-2) protein family, further
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contributing apoptosis (81). Nevertheless, whether Panx1

expression levels influence the apoptosis level of immune cells

requires further investigation.
4 Panx1’s regulation of blood flow
and implications for
microcirculation disorder

Under normal physiological conditions, the body carefully

regulates microcirculatory blood flow to ensure adequate oxygen

supply to tissues. However, in the context of sepsis, the release of a

multitude of pro-inflammatory molecules into the bloodstream

disrupts microcirculation, encompassing vessels with a diameter

of approximately 100 mm, such as arterioles, capillaries, venules,

and micro-lymphatics. This disruption affects various crucial

elements involved in microcirculation, including endothelial cells,

immune cells, red blood cells, white blood cells, and platelets.

Consequently, a significant number of capillaries become

dysfunctional, and microcirculatory blood flow undergoes

abnormal redistribution, contributing to the establishment of

organ dysfunction (82).

Notably, Panx1is expressed in various cells of the microcirculation,

such as vascular smooth muscle cells (83, 84) and vascular endothelial

cells (85). The widespread distribution of the Panx1 protein suggests its

potential impact on microcirculation in several ways, such as

regulation of blood flow, promotion of microcirculatory thrombosis,

and modulation of endothelial permeability (Figure 2).
4.1 Panx1’s role in regulating blood flow

Panx1 plays a significant role in regulating blood flow through

its influence on vascular tone. In VSMCs (vascular smooth muscle

cells), Panx1 is coupled to a1-adrenergic receptors and located on

the caveolae of the cell membrane. Panx1 promotes VSMC

contraction, following sympathetic adrenergic signals stimulation,

resulting in vasoconstriction and increased blood pressure (83, 84).

The inhibition of Panx1 hemichannels using specific inhibitors like

mefloquine and probenecid has been shown to reduce blood

pressure by attenuating adrenergic-mediated vasoconstriction (83).

Panx1 is also involved in blood flow regulation under hypoxic

conditions in the pulmonary circulation. Hypoxia induces the

phosphorylation of the Tyr198 site of Panx1 in PASMCs

(pulmonary artery smooth muscle cells) by SFK. This activation

leads to the opening of Panx1 hemichannels and subsequent Ca2+

influx, facilitating pulmonary vasoconstriction and blood transfer from

under-ventilated to well-ventilated areas during mechanical ventilation

(86). Previous studies have found that TRPV4 (transient receptor

potential cation channel subfamily V member 4), a channel that

mediates Ca2+ influx, is involved in PASMCs’ response to hypoxia

and subsequent vasoconstriction (87). However, Panx1 conducts Ca2+

influx through a TRPV4-independent pathway (86). Further research

is needed to verify the TRPV4-independent mechanism by which

Panx1 regulates vascular tone in VSMCs, as interactions between
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Panx1 and TRPV4 appear to participate in regulating vascular tension,

as we will explore in subsequent sections.

Panx1 has been implicated in various signaling pathways in

regulating vascular endothelial tension, with a particular focus on

the NO (nitric oxide) pathway (88, 89). Studies have shown that

Panx1 is closely linked with TRPV4, contributing to lowering

pulmonary artery pressure (85). In murine PASMCs, Panx1

hemichannels, P2Y2 receptors, and TRPV4 are co-localized on

caveolae, forming the Panx1-ATP-P2Y2R-PLC (phospholipase C)-

PKCa (protein kinase C a)-TRPV4 pathway (84, 90). This signaling
cascade leads to NO-mediated pulmonary artery relaxation, as

TRPV4 facilitates Ca2+ influx, which activates NO synthase in

vascular endothelial cells (89). Furthermore, this pathway exhibits

a negative feedback mechanism: NO-induced S-nitrosylation of
Frontiers in Immunology 06
specific sites on the Panx1 protein, namely Cys-40, and Cys-346,

inhibits Panx1 opening, downregulating the activity of the signaling

pathway (91).

Panx1 may also impact NO production for NO-dependent

regulation of vascular tone through inhibitory actions on eNOS

(endothelial nitric oxide synthase). By modulating phosphorylation

levels at Ser-1177 of eNOS, Panx1 can ultimately lead to reduced

NO synthesis (92, 93). Additionally, Panx1 may promote vascular

relaxation through NO-independent pathways, such as EDH

(endothelium-derived hyperpolarization) regulation, as reported

by Gaynullina et al. (94).

Beyond its involvement in vascular smooth muscle cells and

endothelial cells, Panx1’s widespread distribution extends to

erythrocytes, which also influences vasodilation regulation.
FIGURE 2

Panx1 mediates blood flow and dampens microcirculation. Panx1 regulates vascular tone in several ways. In VSMCs, adrenergic signals or
phosphorylation by SFK opens Panx1 and leads to downstream Ca2+ signals, causing vasoconstriction. In vascular endothelial cells, Panx1 promotes
activation of TRPV4 channel via purinergic signaling and enhances activity of NOS, leading to NO-dependent vasodilation. Activation of Panx1
hemichannels, which is widely distributed in the circulatory system, dampens microcirculation by promoting platelet aggregation and elevating
venous permeability.
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Studies suggest that in arterioles, ATP released from erythrocytes

reaches higher concentrations in the cell-free layer, activating

purinergic signaling pathways in vascular endothelial cells (95).

This leads to Ca2+ wave propagation and relaxation of upstream

VSMCs, ultimately resulting in vessel dilation (10). This supports

the notion that hypoxia-induced opening of Panx1 hemichannels

dilates blood vessels and modulates tissue perfusion (96). Moreover,

erythrocytes may release substantial amounts of ATP in capillaries

under the influence of hematocrit. This leads to endothelial cell

hyperpolarization, propagating along the capillary network to

upstream vessels, thereby regulating oxygen supply (95, 97). This

mechanism is reminiscent of the EDH-like regulation

described above.
4.2 Panx1 in promoting microthrombosis

During sepsis, the immune response triggered by invading

pathogens also activates pathways involved in hemostasis. While

coagulation activation can promote innate immunity (98), extensive

coagulation during sepsis may lead to microcirculation disruption

and even disseminated intravascular coagulation (DIC). Panx1,

expressed on human platelets and interacting with P2X1

receptors, plays a crucial role in platelet aggregation by

promoting Ca2+ influx (99, 100).

When endothelial cells are damaged, collagen is exposed,

activating GPVI (glycoprotein VI) on platelets, which in turn

promotes SFK phosphorylation. The interaction between SFK and

Panx1 leads to the opening of Panx1 and the subsequent release of

ATP. ATP then activates P2X1 receptors on platelets, causing a

further influx of Ca2+ and platelet aggregation (99). Notably, the

genetic variation of PANX1 400A>C (rs1138800) encodes a gain-

of-function with increased platelet reactivity to collagen in healthy

individuals, providing additional evidence for the involvement of

Panx1 in inducing platelet aggregation (101).

Furthermore, Panx1 on platelets responds to mechanical stress by

releasing ATP, inducing inward Ca2+ flow, and promoting platelet

aggregation, thereby contributing to arterial thrombosis (99). Deletion

of PANX1 prevents the aggregation of platelets (102), underscoring

the potential of Panx1 as an inhibitory target for microthrombosis.

Given its role in promoting microthrombosis, Panx1 represents

a critical factor in the delicate balance between beneficial

coagulation and harmful microcirculation disruption during

sepsis. Targeting Panx1 may offer a promising therapeutic

approach to mitigate the adverse effects of excessive coagulation

and microthrombosis in septic patients. However, further research

is needed to fully understand the complex interplay between Panx1,

platelet function, and microcirculation in the context of sepsis,

ultimately leading to the development of targeted therapies.
4.3 Panx1’s impact on endothelial
permeability and leakage

During infections, the endothelial barrier is dynamically regulated

to allow leukocyte access to tissues through diapedesis, facilitating
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pathogen clearance. However, sepsis severely compromises the

integrity of the endothelial barrier, leading to persistent

permeability elevation, leakage, edema, hemodynamic disorder, and

potentially respiratory failure. Panx1 has been identified as a key

player in increasing vascular permeability, and intriguingly, its effect

appears to be contingent on the type of blood vessel involved.

Studies by the same research group revealed that venous

endothelial cells express higher levels of Panx1 and are more

susceptible to Panx1-induced permeability elevation than arterial

endothelial cells (103, 104). In response to stimulation signals like

TNF-a (tumor necrosis factor-a), Panx1 hemichannel is activated

through SFK-mediated phosphorylation at the Tyr198 site. This

activation opens Panx1, leading to the release of ATP. Extracellular

ATP is then broken down into adenosine by ectonucleotidases

CD39 and CD73. Adenosine binds to A2 receptors, initiating

downstream activation of TRPV4 through the cAMP/PKA

pathway. Consequently, the arrangement of CLD11 (claudin 11),

a major cadherin in endothelial cells, is disrupted, resulting in

increased venous permeability. However, it’s important to note that

these experiments were conducted on human umbilical vein

endothelial cells. A2 receptors may vary across different

endothelial cells, such as those in the alveolar microcirculation

(105). Therefore, further research is required to clear the role of this

Panx1-involved pathway in the microcirculation of specific organs.

In addition to its impact on venous permeability, Panx1 has

been implicated in the inflammatory response of microcirculation-

associated cells (20), such as pyroptosis, apoptosis, and immune cell

chemotaxis, which can contribute to increases vascular

permeability. Several potential mechanisms have been proposed

for how Panx1 influences vascular permeability: Panx1 can

upregulate VCAM1 (vascular cell adhesion molecule 1) on venous

endothelium, promoting immune cell chemotaxis and adhesion

(104); Panx1-mediated Ca2+ influx can trigger the NK-kB cascade,

leading to inflammation (106); and Panx1 hemichannels on

erythrocytes can be activated by fluid shear, promoting gap

formation between endothelial cells, further increasing vascular

permeability (107).

While PANX1 is expressed in lymphatic vessels, limited studies

suggest a possible association between Panx1 in lymphatic vessels and

lipid metabolism and atheromatous plaque development (108).

However, there is currently no evidence to indicate that Panx1 is

directly involved in the clearance of edematous exudate. The

understanding of Panx1’s role in endothelial permeability and

leakage is an area of ongoing research, and further investigations are

needed to comprehensively unravel its involvement in the complex

processes underlying sepsis-induced microcirculation disruption.
5 Panx1 in organ dysfunction
during sepsis

Sepsis-3 defines sepsis as a dysregulated host response to

infection, often resulting in organ failure (109). The organs

commonly affected during sepsis are the lungs, kidneys, liver,

heart, and brain. The severity and extent of organ failure can vary

from patient to patient, with some experiencing mild dysfunction in
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one or two organ systems. In contrast, others may face multiple

organ failures, posing life-threatening situations. Identifying the

specific target organs affected during sepsis is crucial for effective

management. In this section, we will focus on Panx1’s involvement

in various organs and its role in promoting inflammatory injury

recognizing that its functions can differ significantly across different

organs (Figure 3).
5.1 Lungs

Panx1 is expressed on the pulmonary vascular endothelial and

epithelial cells (20, 110). Its precise function in lung inflammation

remains largely unexplored. Studies have focused on understanding

Panx1’s physiological mechanisms in the lungs. For instance,

elevated hydrostatic pressure was found to activate Panx1

hemichannels in pulmonary epithelial cells, resulting in the efflux

of K+ through the purinergic pathway, indicating a potential role for

Panx1 in pressure transduction of non-agitated cells (111).

Mechanical stress has been implicated in Panx1 hemichannel’s

activation, with piezo 1 channel activation leading to the opening

of Panx1 hemichannels on alveolar epithelial type I cells and

influencing surfactant secretion by alveolar epithelial type II

cells (110).

Given this information, it is reasonable to consider Panx1’s

potential involvement in the development of ALI (acute lung

injury). The integrity of the alveolar-capillary barrier is crucial for

normal blood-air exchange, and any damage to this barrier can

result in ALI or ARDS (acute respiratory distress syndrome). ALI

can be triggered by inhaled pathogens, mechanical stress, and pro-

inflammatory molecules (112). Pulmonary circulation plays a vital

role, with arterioles, capillaries, and veins collectively contributing

to pulmonary vascular resistance. When insulted by factors such as

pulmonary endothelial dysfunction, microthrombosis, altered

vascular permeability, vasoactive mediator imbalance, hypoxic
Frontiers in Immunology 08
pulmonary vasoconstriction, and vascular remodeling (113–115),

pulmonary vascular pressure may increase, leading to pulmonary

vascular dysfunction and contributing to severe diseases like ARDS

and sepsis (116, 117).

During inflammation, pro-inflammatory molecules like TNF-a
may activate Panx1 hemichannels in the lung, triggering the

activation and recruitment of immune cells in the alveolar

microcirculation. Simultaneously, mechanical stress arising from

improper mechanical ventilation or autonomous respiratory

attempts may activate Panx1 hemichannels in the alveolar

microcirculation, leading to pyroptosis and further damaging the

alveolar-capillary barrier, exacerbating pulmonary edema and

promoting an inflammatory response. Although there is limited

research on Panx1’s specific role in ALI, a recent study has

suggested its potential involvement in pulmonary ischemia-

reperfusion injury, pointing toward its potential therapeutic

significance in treating ALI (20).
5.2 Kidney

Immunodetection studies have provided insights into the

distribution of Panx1 within the renal system, revealing its

presence in various segments of renal tubules, including proximal

tubules, thin descending limbs, and collecting ducts. Additionally,

Panx1 expression is observed explicitly in VSMCs of afferent and

efferent arterioles within the renal vasculature (118). This diverse

expression pattern suggests a potential role for Panx1 in

renal functions.

One intriguing aspect of Panx1’s involvement in renal

physiology is its implication in ATP-independent control of

renin secretion from juxtaglomerular cells, which modulates

intracellular Ca2+ concentration (119). Moreover, Panx1’s

mechanosensitivity has been associated with the development

of renal diseases (120).
FIGURE 3

Panx1’s role in the development of sepsis-induced MODS. In the early phase of sepsis, Panx1 contributes to hyperinflammation by activating
inflammasome and attracting immunocytes, while it promotes immunosuppression via IL-33-mediated Tregs and immunocyte apoptosis in the late
phase. Activation of Panx1 hemichannels dampens microcirculation, aggravating hemodynamic disorder and organ dysfunction. Further, expression
of Panx1 in different organs deteriorates injury. Overall, during sepsis, Panx1 contributes to MODS.
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Under hazardous conditions, such as ischemia-reperfusion

injury, Panx1 has been shown to cause damage to renal tubular

epithelial cells through the purinergic pathway, leading to the

subsequent activation of inflammasome (121). Yin et al.

demonstrated that in hypoxia/reoxygenation conditions

simulating renal ischemia-reperfusion injury, upregulated

caspase-11 cleaves Panx1, triggering inflammasome activation and

resulting in cell injury and death. This suggests the potential

involvement of the caspase-11/Panx1/NLRP3 pathway in renal I/

R (ischemia/reperfusion) injury (21). Panx1’s role in kidney

inflammation is also evident in vascular endothelial cells (122).

Additionally, Panx1 on macrophages enhances the inflammatory

response, with necrotic tubular epithelial cells generating danger

signals that activate the inflammasome via the TLR2/caspase-5/

Panx1 pathway, leading to the transformation of macrophages into

a pro-inflammatory phenotype (44).

Furthermore, it has been demonstrated that Panx1 is involved

in ferroptosis following kidney I/R injury (70). Inhibitors of Panx1

hemichannels, such as probenecid, have shown the potential to

reduce renal I/R damage, highlighting the significance of Panx1 in

the context of AKI (46, 121).
5.3 Brain

Panx1 is found in various regions of the CNS, including the

cortex, hippocampus, striatum, thalamus, and cerebellum. It is

predominantly found in principal excitatory neurons, GABAergic

interneurons, and residing immune cells (123). Interestingly, Panx1

expression is not constant throughout life; it is most prominent

during early development and gradually diminishes with age,

suggesting a role for Panx1 in CNS development (124).

Within the CNS, Panx1 hemichannels play a pro-inflammatory

role and can be activated by various factors. For instance, after

ischemia, activation of SFK leads to the phosphorylation of Panx1

hemichannel at Tyr-308, resulting in hypoxia-induced

depolarization, mitochondrial dysfunction, Ca2+ dysregulation,

and neuronal death (13, 125). Furthermore, Panx1 hemichannels

can be activated by nitrosylation in their intracellular region by NO,

leading to neuronal inflammatory damage (91, 126).

In addition to directly causing neuronal injury, Panx1 can

influence blood flow regulation and contribute to ischemic injury

in the nervous system. Interestingly, vascular endothelial cell-

specific PANX1 knockdown, but not VSMCs, has reduced

cerebral infarct volume after I/R injury during middle cerebral

artery occlusion (127).

During the early phase of inflammation, activation of Panx1

hemichannels can lead to inflammatory cellular death through the

purinergic pathway, amplifying the inflammatory response and

causing a large-scale release of pro-inflammatory molecules, such

as IL-1b and HMGB1 (high mobility group box 1). Panx1 contributes

to brain dysfunction in sepsis-induced encephalopathy by promoting

pyroptosis (72). The inhibition of Panx1 hemichannels, such as with

probenecid, has shown promise in reducing levels of inflammatory

factors (e.g., IL-1b, IL-6, and TNF-a) in the CNS, as well as
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improving memory retention and ameliorating behavioral

deficits (128).

These findings collectively highlight the significant role of

Panx1 in CNS physiology and pathology, indicating its potential

as a therapeutic target for managing neuroinflammatory conditions,

specifically in sepsis. Further research is essential to fully

comprehend the precise mechanisms and therapeutic implications

of Panx1 modulation in the CNS.
5.4 Liver

Despite the growing evidence suggesting that Panx1 increases

the inflammatory response, its specific role in the liver hasn’t been

extensively discussed. However, recent studies have shed light on

the significant involvement of Panx1 in liver physiology

and pathology.

Panx1 is highly expressed in both murine and human livers,

under both healthy and diseased situations (129), and primarily

engages in inflammation and immunomodulation within the liver.

In non-alcoholic hepatitis, Panx1 has been implicated in mediating

the production of IL-1b, contributing to the development of hepatic

inflammation (130). Additionally, Panx1 appears to play a role in

liver fibrosis through an ATP-dependent mechanism (131, 132).

In models of infection following liver transplantation, Panx1

exhibits immunomodulatory effects through the Panx1-P2X2R-IL-

33 signaling axis. This leads to increased infiltration of Treg cells,

thereby reducing bacterial infection-induced liver injury (66, 67).

Intriguingly, the role of Panx1 in the progression of acute liver

failure appears to be sequential. Specifically, PANX1 knockdown

effectively reduces liver injury within the first 24 hours, as evidenced

by relatively low levels of serum AST (aspartate transaminase) and

ALT (alanine aminotransferase). However, beyond the initial 24

hours, PANX1 deletion shows no significant protective effect, and

by 48 hours, PANX1 knockdown fails to reduce the necrotic area

(133). This suggests that Panx1 may have a time-sensitive impact on

inflammatory injury in the liver, and its role in liver

pathophysiology is more complex than that of a simple pro-

inflammatory regulator.
5.5 Heart

Panx1 is widely expressed in the cardiovascular system and is

crucial in cardiac rhythm regulation (134). The Cl- permeability of

Panx1 determines its contribution to cardiac rhythm. When Ca2+

efflux from the sarcoplasmic reticulum activates Panx1

hemichannels on cardiomyocytes, it leads to high conductance.

However, in the absence of Ca2+ current, episodic opening of Panx1

causes action potentials, potentially resulting in arrhythmias (135).

Panx1 serves distinct roles during acute and chronic heart

inflammation, operating through separate signaling pathways. In

cases of I/R injury, Panx1 and P2X7 receptors are involved in the

release of cardioprotectants. Pre- or postconditioning with P2X7R

agonists, such as ATP, has been shown to reduce the damaged area,
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indicating that the cardioprotective effects associated with Panx1

and P2X7 receptors are likely mediated through the release of ATP.

However, the exact mechanism remains unknown (136, 137).

However, in chronic inflammation, such as myocardial fibrosis,

ATP via Panx1, combined with P2X6 receptors, activates the

heterotrimeric G12 family G protein. The activation promotes the

expression of fibrogenic genes, leading to myocardial fibrosis (138).

The role of Panx1 in the heart during sepsis and its potential

therapeutic efficacy remains to be discovered due to a lack of studies

in this specific context.
6 Pharmacological inhibition of
Panx1 hemichannels

There are currently no drugs available that specifically target

and inhibit Panx1. Still, some compounds have been reported to

exhibit inhibitory effects on Panx1 activity and have been

extensively studied in experimental settings. Among these

compounds, probenecid, carbenoxolone, and 10panx1 have shown

promise and potential for future therapeutic approaches (139, 140).

Detailed information can be referred to a Review by Koval

et al. (141).

Probenecid, a medication commonly used for gout, is clinically

used to increase effective concentrations of antibiotics,

chemotherapeutics, and other drugs (142). Probenecid has been

found to inhibit Panx1 currents in a concentration-response

manner (143) and has been widely used to inhibit the transport

activity of Panx1 hemichannels. It can suppress inflammasome

activity (144), inhibit a-adrenergic receptor-mediated

vasoconstriction (145), and enhance microtubule stability (146).

Besides Panx1, probenecid broadly inhibits other transport

channels and suppresses receptors, such as P2X7 receptors, which

can limit its application in experiments (47). Nevertheless,

probenecid significantly alleviates sepsis-associated damage in

experimental settings. Studies have revealed that probenecid can

mitigate cerebral I/R injury (147), skeletal muscle cellular energy

crisis, and histopathological damage in sepsis (148), as well as

promote recovery from renal I/R injury (121). Interestingly,

published reports demonstrated that probenecid efficiently

inhibits virus replication in cells and murine models (149, 150).

Along with its contribution to anti-inflammation, probenecid may

be a competent agent in treating SARS-CoV-2-associated sepsis.

Initially developed as an anti-ulcer medication, Carbenoxolone

inhibits Panx1 activity by binding to its first extracellular loop of

Panx1 (151). It has been demonstrated to inhibit Panx1

hemichannels in various cell types, including neurons, astrocytes,

and macrophages (152–154). Although widely used to investigate

Panx1’s role in various physiological and pathological processes, its

non-specificity and off-target effects may limit its experimental

application (155, 156). Carbenoxolone exerts protective impacts

in septic conditions (46). The underlying mechanisms may involve

its inhibition of Cx hemichannels, which also allows the passage of

ATP, and blockage of HMGB1 release (154, 157), in addition to its

interference with the Panx1 protein. Carbenoxolone can potentially
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treat sepsis by alleviating vascular leakage and renal injury in septic

conditions (46, 158).
10panx1, a 10-amino acid peptide derived from the extracellular

loop of the Panx1 protein, provides selective inhibition of Panx1

without affecting ATP-evoked currents, distinguishing it from

probenecid and carbenoxolone (159). Studies have shown that
10panx1 effectively inhibits Panx1-mediated ATP release and

inflammasome activation, reducing inflammatory responses in

various experimental models (160–162). However, it’s essential to

note that the long-term safety and efficacy of 10panx1 as a

therapeutic agent for sepsis are still being investigated, as research

by Chen et al. has suggested that 10panx1 may exacerbate sepsis-

induced animal lethality (23).

Though inhibitors of Panx1 show promising outcomes in

animal models of sepsis, there is still a long way before clinical

application in treating sepsis, as no clinical trials have been

reported yet. Moreover, as discussed above, Panx1 involves both

hyperinflammation and immunosuppression. As a result, solely

targeting it may not be sufficient to address the complexity of sepsis

and sepsis-induced MODS. It could worsen immune disorders and

organ damage in patients. Therefore, further evidence is required to

understand the pattern of Panx1 hemichannel activation in sepsis

before exploring its clinical therapeutic potential. More

comprehensive research is needed to elucidate Panx1’s role

and potential as a therapeutic target in sepsis and sepsis-

induced MODS.
7 Conclusion

This comprehensive review delves into the potential

roles of Panx1 in the pathogenesis of sepsis, examining its

contribution to the excessive inflammatory response in the early

phase, immunosuppression in the late phase, and impairment of

microcirculation. Considering Panx1’s expression in multiple

organs and its involvement in organ inflammatory injury, it is

reasonable to suggest that Panx1 may play a role in the development

of MODS. Inhibiting Panx1 hemichannels emerges as a promising

therapeutic strategy against sepsis and sepsis-associated

MODS; however, further research is essential before its clinical

translation can be realized. As the scientific investigation on Panx1

hemichannels in sepsis is limited, it becomes crucial to explore its

distinct functions at different phases of sepsis and understand how

it contributes to organ injuries. This makes Panx1 an intriguing

potential therapeutic target for sepsis and sepsis-induced MODS,

offering a fresh approach to therapeutic interventions against these

challenging disorders. Given its significant involvement in various

critical processes, Panx1 represents a promising therapeutic target

for sepsis and MODS.
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