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Introduction

Oesophageal adenocarcinoma (OAC) is now the predominant subtype of oesophageal

cancer in Western countries and its incidence is rapidly increasing due to rising levels of

obesity (1). OAC principally affects the distal oesophagus and gastroesophageal junction

(2). The main risk factors for OAC include obesity, gastro-oesophageal reflux disease and

the pre-malignant condition Barrett’s Oesophagus (3). OAC has one of the poorest long-

term outcomes of all solid tumors with an overall 5 year survival rate in the region of 20%

(4). Despite advances in endotherapy and surgical approaches, a significant proportion of

patients present at an advanced and inoperable stage due to the indolent nature of the

disease (5). In the contemporary era in which combination therapies complementing

surgery are standard in the curative approach to patients presenting with locally advanced

disease, this has improved survival in OAC patients (6, 7). However, significant

pathological response rates to the standard of care first-line chemotherapy (FLOT:

5-fluorouracil , leucovorin, oxaliplatin, docetaxel) and chemoradiotherapy

(CROSS: carboplatin, paclitaxel and 1.8 Gy radiation over 23 fractions) regimens are

approximately 20% (1). Recent FDA approvals of immune checkpoint blockers (ICBs)

targeting the PD-1 axis has sparked new possibilities for designing more tolerable and

effective treatment options for OAC patients (8, 9). The effectiveness of PD-1/PD-L1

blockade as monotherapies or in combination with FLOT has been limited to a subset of

patients, a phenomenon typically observed across several cancer types (8, 9). A multitude of

mechanisms conferring both primary and acquired resistance have been documented in

other tumor types which have been useful in forming different hypotheses behind the lack

of efficacy for PD-1/L1 blockade in OAC (10, 11). To broaden the benefits of PD-1/L1

blockade to a wider spectrum of OAC patients, a biology-first approach must be adopted to

successfully identify the right immune checkpoint to target in combination with PD-1/L1

blockade. It is widely accepted that the primary function of these evolutionary conserved

immune checkpoint proteins is to regulate immune homeostasis by fine-tuning the
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immune response to ensure sufficient immune activation to

eradicate an invading or foreign entity but also to prevent

overstimulation of the immune system avoiding collateral

damage to normal tissues that might lead to the development

of autoimmune diseases (12). Immune checkpoints also

inhibit activation of autoreactive T cells that could promote

autoimmunity (12). These well-characterized functions of

immune checkpoint proteins have formed the central dogma for

many years (13). Following T cell activation, inhibitory immune

checkpoint receptors are upregulated on the surface of T cells (14).

Due to chronic antigen stimulation and the inhospitable hypoxic

and nutrient deprived tumor microenvironment several inhibitory

immune checkpoint receptors such as PD-1, TIM-3, LAG-3 and

CTLA-4 are upregulated on T cells that cooperatively inhibit T cell

proliferation, cytokine production and function creating an

exhausted T cell phenotype (15, 16). Blockade of inhibitory

immune checkpoints reinvigorates anti-tumor T cells, unleashing

powerful anti-tumor immune responses, increasing T cell

proliferation and production of anti-tumor cytokines to mediate

eradication of the tumor (17). Immune checkpoint receptors are

also expressed by other immune cells such as natural killer cells

(18), macrophages (19), dendritic cells (20–22), myeloid-derived

suppressor cells (23). Ultimately, intrinsic immune checkpoint

signaling inhibits their anti-tumor function, propagating pro-

tumorigenic properties, inducing apoptosis in natural killer cells

or polarizing these cell types toward a more tumor-promoting

phenotype such as anti-inflammatory macrophages (24).

More recently, novel immune-independent functions have

also been discovered for immune checkpoint proteins in OAC

(25) and other cancer types (25). It is well-known that tumor cells

upregulate inhibitory immune checkpoint ligands such as PD-L1

to facilitate immune escape (26). However, we now know that

tumor cells such as OAC cells can also express inhibitory immune

checkpoint receptors and via tumor cell-intrinsic signaling these

inhibitory immune checkpoint receptors can promote various

hallmarks of cancer in OAC cells such as a cancer stem-like

phenotype, DNA damage repair (27), proliferation (27, 28),

chemo(radio)therapy resistance (27, 29, 30) and altered

metabolism (25). These immune checkpoints include the well-

known PD-1 and PD-L1 as well as novel immune checkpoints

such as TIM-3, TIGIT, LAG-3 and A2aR (25, 27–29). These

immune-independent functions of immune checkpoints have

also been uncovered in many other cancer types outside of OAC

including melanoma (31), colorectal, cervical (31, 32), lung (33)

and head and neck cancer (34, 35).
Recent successes for PD-1 blockade
in OAC

PD-1 blockade has undoubtedly been the most successful

immunotherapy in the clinic and is anticipated to form an

integral pillar for cancer care in the future. However, identifying

what anti-cancer therapies will work best with PD-1 blockade and

extend its durable efficacy to more patients is a significant clinical
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challenge. A multitude of resistance mechanisms to PD-1 blockade

have been documented, with significant inter-patient variability (10,

11, 36). Clinicians and patients are in need of a functional precision

biomarker or test that can 1) predict response and 2) assign the

‘right’ therapy to the patient that will successfully convert a PD-1-

blockade ‘non-responder’ into a ‘responder’. Currently, this remains

a significant clinical challenge in the field.

PD-1 blockade has demonstrated efficacy in OAC and has led to

two FDA approvals, one in the neoadjuvant setting and another in

the adjuvant setting. The CheckMate 649 trial led to the FDA

approval of nivolumab in combination with the FLOT

chemotherapy regimen after demonstrating an improved overall

survival of 13.8 vs. 11.6 months in advanced gastric cancer,

gastroesophageal cancer and OAC (9). Pre-clinical findings

highlighted that FLOT directly upregulated PD-L1 on the surface

of stem-like OE33 and SK-GT-4 cell lines in vitro and on OAC-

donor-derived T cells ex vivo, possibly creating a therapeutic

vulnerability that was capitalized on by using anti-PD-1 therapy.

PD-1 blockade inhibited both immune-independent and dependent

mechanisms in OAC cells. Firstly, PD-1 blockade directly enhanced

FLOT-mediated killing of OE33 and SK-GT-4 cells and decreased

the percentage of stem-like ALDH+ OAC cells in vitro (27, 28). In

addition, anti-PD-1 enhanced OAC-donor lymphocyte killing of

OE33 cells. These findings highlight the complementary effects of

FLOT and PD-1 inhibition, which collectively propagate anti-tumor

immunity and the cytotoxicity of first-line chemotherapy providing

possible mechanistic insights behind the beneficial results observed

in the CheckMate 649 trial (28, 37).

Furthermore, the landmark CheckMate 577 phase III

trial led to the approval of nivolumab in resected oesophageal

or gastroesophageal junction cancer patients (8). Nivolumab

significantly improved disease free survival compared to placebo.

(22.4 vs. 11.0 months) (8). Research in several cancer types (38–41)

including oesophageal cancer (42) revealed that the Th2-like wound

healing response triggered by the surgical wound promotes a

systemic pro-metastatic and immunosuppressive response. The

function of nivolumab is to enhance an anti-tumor Th1-like

response (43). Understandably, use of PD-1 blockade in the post-

operative setting may help subvert the surgery-induced pro-

tumorigenic effect and propagate a stronger anti-tumor immune

response enhancing immune surveillance and prolonging disease

recurrence. A recent study (44) showed that the systemic effects of

surgery decreased lymphocyte cytotoxicity and production of anti-

tumor cytokines in PBMCs derived from OAC patients. The ability

of OAC-derived lymphocytes to kill OE33 OAC cells in vitro

was significantly decreased in PBMCs obtained 1 and 7 day post-

surgery compared PBMCs obtained pre-operatively (on the day of

surgery - day 0) or 6 weeks post-surgery. The use of PD-1 blockade

treatment enhanced lymphocyte-mediated killing of OE33 cells and

increased production of anti-tumor cytokines in lymphocytes,

overcoming the surgery-mediated suppression of lymphocyte

cytotoxicity. This phenomenon was similarly observed in renal cell

carcinoma patients who received adjuvant pembrolizumab or

placebo and the progression-free survival at 24 months was 77.3%

vs. 68.1% (45).
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Next generation immune checkpoint
blockers are on the horizon
Considering the multitude of immune checkpoint proteins that

exist, this suggests that some immune checkpoints may likely have

overlapping functions and/or have tissue and organ specific functions.

Therefore, examining the immune checkpoint expression profile along

the normal-pre-malignant-adenocarcinoma disease sequence would be

a logical first step to uncover rational immune checkpoint targets in the

context of OAC. The immune checkpoint expression profile of normal

oesophageal epithelial cells (HET1A), pre-malignant Barrett’s

oesophagus (BO) cells (QH cells) and OAC cells (OE33 and OE19

cells) were examined (28). Protein expression analysis revealed that

PD-1 and TIGIT were expressed on 30-40% of normal oesophageal

epithelial cells, that decreased to 20-30% on pre-malignant BO cells and

were further downregulated to 5-10% in OAC cells in vitro (28). It is

very surprising that non-cancerous non-immune cells also express

immune checkpoint receptors. This phenomenon has also been

observed in gastric (46) and cervical tissues (32), whereby normal

non-cancerous gastric and cervical cells express TIM-3 immune

checkpoint receptor. Considering the homeostatic immunoregulatory

role of immune checkpoint proteins, this may indicate that PD-1 and

TIGIT could play an important role in maintaining immune

homeostasis in oesophageal tissue. The binding of TIGIT to its

ligands expressed on pro-inflammatory macrophages (47) or

dendritic cells (48) promotes a regulatory phenotype and PD-1 can

bind with PD-L1/L2 expressed on Th1 cells or myeloid cells to enhance

an anti-inflammatory phenotype (49). Strategies like this would be

useful in controlling the inflammatory response induced by gastric

reflux in the oesophagus, a risk factor for the development of OAC

(50). If TIGIT and PD-1 are prominent players in oesophageal tissue

for controlling immune activation, then targeting both TIGIT and PD-

1 in tandem to remove the brakes on anti-cancer immunity may be an

effective combination to test in OAC.

Combination ICB is gaining further interest for treating OAC

patients. The approval of dual anti-PD-1 plus anti-CTLA-4

blockade for front-line treatment of unresectable/metastatic

oesophageal squamous cell carcinoma patients has ignited hope

that the effectiveness of combination ICBmay also translate to OAC

patients (51). Higher levels of circulating CD45+CTLA-4+ cells

correlated with advanced stage disease and a poor response to

neoadjuvant chemo(radio)therapy regimens in OAC patients (15).

Notably, first-line FLOT chemotherapy regimen upregulated

CTLA-4 on the surface of T cells which might be a potential

mechanism for promoting disease progression and suppressing

anti-tumor immunity leading to inferior responses to neoadjuvant

regiments (37). Use of anti-CTLA-4 in combination with FLOT to

exploit this therapeutic vulnerability and prevent immune

dysfunction could be an effective strategy to boost treatment

success and warrants further investigation. Ex vivo findings

demonstrated that combining anti-CTLA-4 with nivolumab

increased OAC donor lymphocyte production of IFN-g more

substantially than either agent alone (16). CheckMate 032 phase

III clinical trial is currently ongoing testing the efficacy of

combination nivolumab-ipilimumab in OAC patients (51). Early
Frontiers in Immunology 03
data suggest that the dual combination is superior to single agent

nivolumab and improved 12-month progression-free survival (17

vs. 8%) (51).

Careful evaluation of the immunosuppressive effects of the

tumor microenvironment on the efficacy of immune checkpoint

blockade will be important in maximizing the therapeutic benefit.

Tumor microenvironmental studies revealed that tumor-associated

acidosis abrogated the ability of dual nivolumab-ipilimumab to

enhance IFN-g production in OAC donor PBMCs ex vivo (16).

Notably, this acidic environment upregulated multiple immune

checkpoints including PD-1, PD-L1, CTLA-4, TIM-3 and LAG-3

on the surface of T cells (16). The authors observed that high LAG-3

expression on T cells was significantly associated with a decreased T

cell production of anti-tumor TNF-a (16). It is plausible to

postulate that perhaps the upregulation of LAG-3 and Tim-3 on

T cells under acidic conditions may be a mechanism to hinder the

efficacy of dual nivolumab-ipilimumab treatment. An increased

expression of LAG-3 on the surface of tumor-infiltrating CD8+ T

cells also correlated with advanced stage disease in OAC patients

(37). Further investigation is required to elucidate whether blockade

of LAG-3 and/or TIM-3 in combination with dual nivolumab-

ipilimumab may overcome immune checkpoint blockade failure in

acidic tumors. Optimistic findings for the success of anti-LAG-3 as

a complementary partner to PD-1 blockade has been reported in

melanoma patients (52). The phase II/III RELATIVITY-047 trial

led to the momentous FDA approval of relatlimab (anti-LAG-3) in

combination with nivolumab in untreated advanced melanoma

patients (52). The median progression-free survival was 10.1

months vs. 4.6 months (52). With a comparable efficacy profile to

dual nivolumab-ipilimumab therapy and a substantially improved

toxicity profile (59% vs. 21%), these results offer optimism in the

quest to find tolerable and more effective ICB combinations to treat

OAC patients in the future (52). Trials testing dual LAG-3 plus PD-

1 blockade are warranted in OAC patients.

Upregulation of TIM-3 has been identified as a mechanism of

acquired resistance to PD-1 blockade in several solid tumors and so,

may also likely be a relevant and druggable mechanism of resistance

in OAC (53). The AMBER phase I trial testing the safety and

efficacy of cobolimab (anti-TIM-3) plus nivolumab/dostarlimab

(anti-PD-1) in a range of solid tumors (melanoma, mesothelioma

and neuroendocrine carcinoma) confirmed its safety profile and has

moved to phase II. Early data reported that patients in the

monotherapy arms experienced no clinical benefit (54). However,

patients in the combination arms achieved partial responses. These

are promising findings in support of the potential efficacy of dual

anti-PD-1 plus anti-TIM-3 combinations, clinical testing will need

to be performed in OAC to determine if this combination could

benefit OAC patients.

FLOT chemotherapy regimen reportedly upregulated A2aR on

the surface of OE33 and SK-GT-4 cell lines (28). Administering

A2aR blockade directly induced OAC cell death as a monotherapy

and elicited an additive effect in combination with FLOT

chemotherapy (27). Clinical trials have yet to be carried out in

OAC patients to test the effectiveness of A2aR blockade as a

monotherapy or in combination with other ICBs. Encouraging

trial data reported in refractory renal cell carcinoma patients that
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combined A2aR antagonism with anti-PD-L1 therapy induced

partial responses in 11% of patients (55). Clinical trials will be

necessary to determine if this paired combination could improve

efficacy of anti-PD-1 therapy in OAC.

OE33 and OE19 cells were cultured under glucose deprivation

and hypoxic conditions (0.5% O2) to mimic the inhospitable tumor

microenvironment (25). Under such conditions TIGIT was

upregulated on the surface of OAC cells, which the authors

postulated was an adaptive survival strategy to withstand harsh

conditions (25). To test this, OE33 and OE19 cells were treated with

anti-TIGIT under these hostile conditions and it was observed that

blockade of TIGIT induced OAC cell death suggesting that TIGIT

may provide OAC cells with some form of survival advantage (25).

These pre-clinical findings laid down convincing evidence for

TIGIT as a novel immunotherapeutic target in OAC. Data from a

phase Ib trial testing anti-TIGIT (tiragoliuab) plus atezolizumab

(anti-PD-L1) in heavily pre-treated metastatic oesophageal cancer

patients achieved an objective response rate of 27.8% with an

acceptable toxicity profile (7 patients - oesophageal squamous cell

carcinoma, 3 patients - oesophageal adenocarcinoma, 1 - patient

neuroendocrine carcinoma) (56).

Like TIGIT, PD-1 expression on OE33 and OE19 cells

reportedly increased under glucose deprived hypoxic conditions

(25). Considering that PD-1 blockade was shown to induce cell

death in OE33 and SK-GT-4 cell lines in normal culture

conditions as well as enhancing OAC cell death in combination

with the FLOT regimen (27), it was hypothesized that PD-1

blockade may play a survival role in OAC cells under glucose

deprived hypoxic conditions. Surprisingly PD-1 blockade

enhanced OAC cell survival under these conditions (25). In the

same study under normal culture conditions, PD-1 blockade
Frontiers in Immunology 04
enhanced basal respiration and glycolytic reserve in OAC cells.

This finding may suggest that PD-1 blockade may promote a

more metabolically ‘fitter’ phenotype that might allow OAC cells

to better survive in a nutrient deprived and hypoxic environment.

However, that remains speculative, and the precise mechanisms

remain to be elucidated (25). The findings from this study

support a rationale to combine anti-TIGIT with anti-PD-1

blockade in OAC. Both are known to enhance anti-tumor T cell

immunity, and in the case of a nutrient deprived hypoxic tumor

TIGIT blockade could counteract the pro-survival benefit

provided by anti-PD-1 under those precise conditions. Table 1

summarizes the immune-dependent and -independent functions

of immune checkpoints and their clinical status in OAC.
Safety profile of ICB and standards of
care in OAC

Emerging evidence in cancer types outside of OAC suggest that

the incidence of immune-related adverse events following

treatment with ICB might be associated with clinical outcomes,

this has yet to be elucidated in OAC (62). However, the benefit from

ICB is tempered by the emergence of toxic side effects which involve

diverse organs, has varying biology, onset time, and severity (63).

When designing ICB combinations for OAC patients it will be

important to appreciate the accompanying toxicity profiles with

blockade of multiple immune checkpoints. The degree of toxicities

associated from blockade of the most common immune checkpoint

proteins are depicted in a hierarchical pyramid in Figure 1 (64).

CTLA-4 is at the top of the pyramid, regulating early T cell

proliferation primarily in the lymph nodes and its blockade is
TABLE 1 The immune-dependent and -independent functions of immune checkpoint pathways in OAC and the pre-clinical or clinical status of
pharmacological agents designed to target these pathways in OAC.

Immune
checkpoint
Pathway

Immune-dependent functions
in OAC

Immune-independent functions in OAC Pre-clinical/clinical status
in OAC

PD-1/PD-L1/
PD-L2

Promotes Th1 cell dysfunction and an
anti-inflammatory or regulatory T cell
phenotype (57).

Promotes a cancer stem-like phenotype, DNA damage repair,
proliferation, decreases chemotherapy sensitivity and
radiosensitivity in OAC.

FDA approved adjuvant nivolumab in
OAC (8).
FDA approved neoadjuvant nivolumab
+ FLOT in OAC (9).

TIGIT/PVR Promotes Th1 cell dysfunction, regulatory
T cell, macrophage and dendritic cell
phenotype (58).

Alterations in tumor metabolism, promotes tumor cell survival
in OAC.

Pre-clinical testing of anti-TIGIT in
vitro in OAC and clinical testing in
OAC (25, 56).

TIM-3/
Galectin-9

Promotes Th1 cell dysfunction and
induces apoptosis.

Unknown Only clinical testing of anti-TIM-3 in
other cancer types and not in OAC
yet.

LAG-3/MHC
II

Promotes Th1 cell dysfunction and
exhaustion (59).

Unknown Only clinical testing of anti-LAG-3 in
other cancer types and not in OAC
yet.

A2aR-
Adenosine

Promotes Th1 cell dysfunction and
exhaustion (60).

Promotes tumor cell viability and reduces chemotherapy
sensitivity in OAC.

Pre-clinical testing of anti-A2aR in
vitro in OAC (27).

CTLA-4-
CD80/86

Inhibits T cell priming (61). unknown Clinical testing of anti-CTLA-4 in
OAC (61).
PD-1, programmed death-1; PD-L2, programmed death ligand-1; PD-L2, programmed death ligand-2; TIGIT, T cell immunoglobulin and ITIM domain; PVR, Poliovirus receptor; TIM-3, T cell
immunoglobulin and mucin domain 3; LAG-3, Lymphocyte activation gene 3; MCH II, major histocompatibility complex II; A2aR, adenosine A2a receptor, CTLA-4, cytotoxic T lymphocyte
antigen-4.
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associated with often severe immune related adverse events (65).

PD-1 regulates T cell proliferation later in the immune response

mainly in peripheral tissues and is in the middle of the pyramid

with more tolerable adverse events compared with CTLA-4

blockade (65). TIGIT, TIM-3 and LAG-3 are more specialized,

possessing unique functions that they exert at specific tissue sites

regulating distinct aspects of immunity (64). These three immune

checkpoints are located at the bottom of the pyramid and their

blockade is associated with a much greater safety profile than PD-1

and CTLA-4 (64). Indeed, a deeper insight into the precise function

and expression profile of immune checkpoints in OAC will be

critical in guiding the rational selection of the ‘right’ immune

checkpoint protein to target with PD-1/L1 blockers to harness the

power of the anti-cancer immune system, analogous to the concept

of precision medicine. Early clinical trials suggest that these more

specialized immune checkpoints namely LAG-3 in combination

with PD-1 blockade exhibit a superior safety profile compared with

PD-1 plus CTLA-4 blockade with equivocal anti-tumor activity

(Figure 1) (52). The advent of the next generation of ICBs and their

early success in clinical trials in other cancer entities creates

optimism that finding the ‘right’ ICB to combine with PD-1/L1

blockade to improve therapeutic efficacy in OAC might be a fast-

approaching possibility (52). Another prudent observation when

considering the future of current standards of care for OAC
Frontiers in Immunology 05
patients, is that ICB has a more tolerable safety profile than

conventional chemo(radio)therapy regimens. Nivolumab has

been shown to possess a much greater safety profile in OAC with

only 10% of patients receiving neoadjuvant nivolumab experiencing

grade 3 or 4 immune-related adverse events in the ATTRACTION-

2 trial (66) and only 10% of patients receiving adjuvant nivolumab

discontinued treatment in the CheckMate 577 trial (8). This is in

stark contrast to only 35% of OAC patients receiving all 8 cycles of

the first-line FLOT chemotherapy regimen due to grade 3 and 4

treatment-related toxicities (67). This means that OAC patients

could experience a better quality of life while receiving

immunotherapy over the current cytotoxic regimens that

comprise the standard of care. The safety data for the use of ICB

in combination with current standards of care is limited. In the

CheckMate 649 trial which led to the approval of nivolumab with

FLOT chemotherapy, an increase in grade 3 and 4 treatment-

related adverse events compared with FLOT alone were observed

(59% vs. 44%) (68). According to a met-analysis of 4,379 patients

with a variety of solid tumours combining ICB (PD-1/L1 or

CTLA-4 blockade) with chemotherapy, there was an increased

incidence of grade 3 and 4 treatment-related adverse events and

consequently discontinuation of treatment observed (69). However,

mortality rates were not increased suggesting that combination

chemoimmunotherapy approaches and careful management of

treatment-related toxicities is instrumental to prevent treatment-

related mortality (69).
Conclusion

Several trials testing the effectiveness of anti-PD-1 as a dual

checkpoint approach with novel ICBs such as anti-TIGIT, anti-

LAG-3 or anti-TIM-3 are ongoing. The results are eagerly awaited

with anticipation that these novel ICB combinations will represent

the next generation of immunotherapies to benefit OAC patients.
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FIGURE 1

Hierarchy of immune checkpoint proteins in regulating immune
homeostasis: Immune checkpoints are placed in a hierarchical order
based on their importance relating to immune homeostasis, safety
profile and pharmacological activity with regards to blocking each
individual immune checkpoint protein. A higher tier in the pyramid
denotes immune checkpoints with a more extensive role in
maintaining immune tolerance in the body. Blockade of immune
checkpoints residing in the lower tiers is accompanied with a more
favorable safety profile than those in higher tiers. The
pharmacological activity associated with blocking immune
checkpoint proteins is also depicted, blockade of CTLA-4 has shown
efficacy in only a subset of patients compared with PD-1 blockade,
whose efficacy extends to a much larger proportion of patients. The
efficacy of TIM-3, TIGIT and LAG-3 blockade isn’t as well
investigated but preliminary findings suggest their combination with
PD-1 blockade will be just as effective as combination with CTLA-4
blockade but with a greater safety profile.
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