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Medical College, Huazhong University of Science and Technology, Wuhan, China, 2Division of
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Immunotherapy showed remarkable efficacy in several cancer types. However, the

majority of patients do not benefit from immunotherapy. Evaluating tumor

heterogeneity and immune status before treatment is key to identifying patients

that are more likely to respond to immunotherapy. Demographic characteristics

(such as sex, age, and race), immune status, and specific biomarkers all contribute

to response to immunotherapy. A comprehensive immunodiagnostic model

integrating all these three dimensions by artificial intelligence would provide

valuable information for predicting treatment response. Here, we coined the

term “immunodiagnosis” to describe the blueprint of the immunodiagnostic

model. We illustrated the features that should be included in immunodiagnostic

model and the strategy of constructing the immunodiagnostic model. Lastly, we

discussed the incorporation of this immunodiagnosis model in clinical practice in

hopes of improving the prognosis of tumor immunotherapy.
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1 Introduction

The immune system is an interacting network of immune cells, the molecules they

produce, and the lymphoid organs that organize these components (1). Proper immune

system function is essential for health, and insufficient immune system activity can lead to

different types of diseases included tumor.

In recent years, immunotherapy has yielded new wave in treating tumors with brand-

new methods such as immune checkpoint inhibitors (ICIs), adoptive cell therapy (ACT),

and therapeutic vaccines. Some patients with tumor types that were previously considered

refractory (2) or advanced/metastatic tumors (3) were controlled after receiving ICI

treatment. However, most patients do not benefit from immunotherapy (4). In addition,

immunotherapy empower immunity against cancer and may lead to immune-related

adverse effects (irAEs) such as colitis, dermatitis, pneumonia, and thyroiditis (5). The

efficacy and toxicity of immunotherapy remains poorly predictable for given patients

till now.
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Why do patients with the same disease get dramatically different

outcomes when given the same immunotherapy? And how is it

possible to tell if a patient might benefit from immunotherapy? Since

immunotherapy acts on a strongly heterogeneous immune system of

the patient, immune status may be a critical bridge connecting the

patient’s characteristics to the outcome of immunotherapy.

Therefore, it is reasonable to diagnose the immune state of tumor

patients before taking immunotherapy - we pioneering name it as

immunodiagnosis (ID). We define immunodiagnosis (ID) as

systematically, comprehensively, and dynamically evaluating the

status of an individual’s immune system, to reflect at different

disease stages the systemic and local immune status. ID could help

clinicians judge the disease phenotypes, evaluate disease activity, and

predict the possible progress of disease and then develop a personal

treatment plan, rather than directly giving “one-size-fits-all”

immunotherapy to patients with very different immune status.

With ID, clinicians can qualitatively or quantitatively predict

possible immune responses of the local and peripheral immune

systems to endogenous and exogenous stimuli, thereby guiding

medical decisions. The ID idea has found its way into clinical

practice. For example, the FDA has approved the expression of

PD-L1 as a biomarker to predict how patients with tumors will

respond to ICIs. However, currently used models consist of only a

single target or a very small number of targets from a single test

sample, which does not fully reflect the complexity of the interaction

between the immune system and the host in real-world situations and

is therefore less efficient to detect.

Based on the existing research, how should the ID model be

constructed? An adult has relatively stable baseline levels of

immunity (6), and the composition and function of the immune

system are heterogeneous among people of different ages (7), sexes

(8), or races etc. As an important guardian of human health, the

immune system is continuously stimulated by endogenous and

exogenous factors, which can cause fluctuations in the immune

status, reflected in the number and composition of immune cell

groups, response to stimuli, and cytokine levels. At the same time,

the fluctuations of the immune system, stimulated by a diverse array

of physiological and pathological processes, should not be

neglected. To be more specific, when it comes to certain diseases
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and treatments, there are certain biomarkers that reflect the relevant

immune status. Based on the elaboration of the prognostic factors of

immunotherapy in previous literature, we believe that ID models

should contain multi-dimensional indicators, including patient

demographic characteristics which could basically stratify patients

into relatively stable groups, health status which could cause

fluctuation of the immune system, and some specific biomarkers

that are directly related to the mechanism of disease progression

or immunotherapy.

It is difficult for human experts to identify hidden associations

from such complex and large datasets. Fortunately, artificial

intelligence (AI) has the ability to find unstructured features in

such datasets that are large (containing a large number of samples)

and complex (each sample has many features). In recent years, AI,

especially machine learning and deep learning, has been widely

applied in disease clinical research, leading to remarkable predictive

performance. Studies have reported that traditional analysis

methods, such as statistical analysis and multivariate analysis, are

less accurate compared to AI, especially when AI is combined with

bioinformatics tools to significantly enhance the accuracy of disease

diagnosis and prognosis assessment (9, 10).

In this paper, we present for the first time the important concept

of ID, provide a preliminary blueprint for ID systems, analyze what

features should be included in ID models, and discuss how to

construct ID systems based on existing research (as shown in

Figure 1). Furthermore, we look forward to the application of AI

in the construction of ID systems, which may shed light on the

realization of tumor-precision immunotherapy.
2 Baseline of ID: population
stratification of immune status

The immune status can maintain a relatively stable state for

several years for an individual (6). However, some intrinsic

demographic characteristics are associated with immune status. It

is necessary to initially stratify the entire population based on these

characteristics and establish a baseline for the ID of

different subgroups.
FIGURE 1

The composition of Immunodiagnositic model.
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2.1 Sex

The prevalence and types of immune disorders vary

significantly between males and females. In general, women tend

to have a stronger immune response to external and internal

stimuli, and are more susceptible to generating antibodies and

suffering adverse side effects (11). Cancer rates in 2018 were

approximately 1.15 times higher in men compared to women,

and deaths from cancer were higher in men than in women (12).

As a potential prerequisite for ID, the immune status of males

and females showed significant differences. The researchers

analyzed the global immune cell composition of 49 men and 52

women and found that women had higher naive CD4+T cells, while

men had higher activated CD8+T cells (13). Single-cell

transcriptome analysis of immune cells from peripheral blood

revealed a higher proportion of NK cells in men than in women,

while GO analysis revealed higher levels of T and B cell activation

signaling in women than in men (14). Therefore, the cut-off for

these immunological features in ID should be sex-specific.

While sexual disparities in immune status are widely recognized,

little is known about how sex affects the efficacy and toxicity of

immunotherapies. A meta-analysis examining 7133 studies found

that only 20 randomized controlled trials of ICIs reported an OS

relationship with sex (15). Among 11351 pan-cancer patients (with

melanoma and non-small cell lung cancer (NSCLC) being the most

common types), the hazard ratio (HR) of OS in ICIs groups versus

control groups was 0.72 in males and 0.86 in females, revealing a

better efficacy of ICIs in males compared to females. Nonetheless,

there is potential gender discrimination when patients are enrolled, as

the number of female patients is less than half of the male patients,

thereby skewing the overall data pool. Consequently, the

representation and reliability of female data may be inadequate.

The sex disparity in the efficacy of immunotherapy varies with

disease type. In NSCLC, anti-PD-1/PD-L1 is more effective in

women, whereas in colorectal cancer, it is more effective in men (16).

Sex has also been linked to adverse events (AEs) following

immunotherapy. Consistent with higher rates of autoimmune

disease, women treated with ICIs had more severe AEs, with a 49

percent higher risk than men (17). As a result, women are more

likely to discontinue treatment, resulting in a poorer prognosis.

Together, these pieces of evidence support the need for a sex-

related ID.
2.2 Age

Aging is associated with several immune pathologies. The

incidence of cancer increases with age as the genetic mutation

risk accumulates (18). As age increases, the ability of B cells to

produce specific antibodies decreases, but their ability to produce

autoantibodies increases (19). Immunosenescence, defined as the

function of immune system decreases and the composition of

immune system remodeling with age (20), includes increased

immune memory cells, decreased bone marrow, decreased

antigenic diversity of immune cells, decreased co-stimulatory

molecules on T cells, and changes of several inflammatory
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mediators (IL-1a, IL-8, CRP, etc.) (21). However, it is still unclear

how immunosenescence affects the efficacy and safety

of immunotherapy.

For ICIs, as demonstrated by studies in glioblastoma (22),

NSCLC (23), and hepatocellular carcinoma (24, 25), older

patients aged 65 to 75 do not respond worse to ICI treatment

than younger patients. In other cases, old age has been shown to be

a predictor of better efficacy in immunotherapy. In NSCLC, a

benefit has been reported in patients over the age of 70 or 75

(26). In metastatic melanoma, a cohort analysis of 538 metastatic

melanoma patients found that anti-PD-1 antibodies were more

effective in patients over the age of 60 (27). Additionally, researchers

have tested this correlation in preclinical models. With transplanted

genetically identical tumors, aged mice (52 weeks) performed

stronger response to anti-PD-1 than young mice (8 weeks). This

phenomenon may be related to the higher Tregs in young mice (27).

Fortunately, the toxicity of immunotherapy has not increased in

older patients, as supported by anti-PD-1/PD-L1 and anti-CTLA-4

studies (26, 28). For CAR-T, the advantage of immunotherapy in

older patients is supported by a clinical trial that in large cell

lymphomas patients, the response rates of elders and youngsters are

comparable, but the elders have higher rate of complete responses

(62% versus 46%) (29).

However, when the age cutoff is reached at 75 years, several

studies have reported a trend towards ICI resistance in patients

older than 75 years (30). Nonetheless, the age disparity depends on

the status of the individual with the disease or on the different types

of disease. A retrospectively study collected data from 254 patients

with metastatic melanoma, and divided patients into 4 groups by

age (≤50, 50-64, 65-74, ≥75 years), revealing no significant

difference in median overall survival (mOS), progression-free

survival (PFS) and immune-mediated toxicities among these

groups (28). Older patients tend to be excluded from the cohort

due to higher levels of underlying disease and complications, so data

on immunotherapy in older patients is relatively limited.
2.3 Race and ethnicity

Racial ethnical disparities exist in the incidence, mortality, and

access to immunotherapy of tumor (31, 32). Furthermore, studies

have revealed variations in the normal range of a subset of

lymphocytes in people of different races or ethnicities. Indians

have higher levels of CD3+ T cells, CD4+ T helper cells, and

CD19+ B cells than Chinese or Malays (33). Caucasian Americans

have higher levels of gdT cells than African Americans (34). TH17/

TH22 is upregulated in Asian patients, while TH17/TH1 is absent in

African American patients (35). In addition, signaling activation of

immune cells varies across ethnic groups. Single-cell network

profiling analysis of a broad panel of immune signaling pathways

in peripheral blood mononuclear cell (PBMC) subsets from 60

healthy donors, and found that African Americans had lower B cell

anti-IgD-induced pathway activity, including PI3K, MAPK and

NF-kB pathway, compared to European Americans (36). These

evidences suggest that there are racial differences in immune status

and support race as a baseline stratification factor for ID.
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There are substantial evidences that race or ethnicity is

associated with the outcome of traditional treatments such as

chemotherapy for cancers (37), but few studies focused on

immunotherapy. It appears that race or ethnicity may be a

predictor of efficacy and/or toxicity of immunotherapy, but

depends on the treatment strategy.

For ICIs, an observational study enrolled 1,135 patients with

unresectable or advanced melanoma treated with anti-PD-1 drugs

from 5 institutions in USA, Australia and China, and revealed that

white patients have higher overall response rates (ORR) and longer

PFS than East Asian, Hispanic, and African (38). As for irAEs, white

patients tended to present gastrointestinal irAEs, while other

patients had higher rates of endocrine and liver irAEs. Another

retrospective cohort of 249 patients with advanced NSCLC treated

with anti-PD-1/PD-L1 found that African-American patients had

longer treatment discontinuities and longer OS than white patients.

The disease control rate was also higher (59.6% versus 56.5%) in

African Americans than in white patients (39).

For CAR-T, a retrospective analysis of five Phase I clinical trials

involving a total of 139 patients with hematologic malignancies

treated with CD19 CAR-T cells found that Hispanic patients were

more likely to have severe cytokine release syndrome (40).

For therapeutic vaccines, sipuleucel-T is an autologous cellular

vaccine developed for the treatment of asymptomatic/minimally

symptomatic metastatic castration-resistant prostate cancer. An

observative study involving 1902 patients with prostate cancer

treated with sipuleucel-T revealed that the HR of OS between

African American and Caucasian is 0.81 (95% CI: 0.68-0.97).

African Americans’ superior response to immunotherapy may

stem from their higher neoepitopes, which can be recognized by

the immune system (41).

Still, the disparity appears to vary by disease type and treatment

strategy. A study of patients with triple-negative breast cancer

treated with anti-PD-L1 combined with neoadjuvant

chemotherapy and reported a trend of lower pathologic complete

response (43% versus 48%) and lower three-year event-free survival

(71.4% versus 78.3%) in African American patients compared with

others, although with no statistical significance (42). Together, these

pieces of evidence point to the justification of using race and

ethnicity as stratification factors in ID. However, the types of

diseases and treatment strategies covered by existing studies are

insufficient, and most studies only present clinical information

without matching serological information to assess immune status.
3 Fluctuations: health states
regulate ID

Variant physiological or pathological status can also cause

fluctuations in immune status based on baseline immunity levels

after stratification of patients by their intrinsic demographic

characteristics. We collated the characteristics of immune status

and corresponding immunotherapy outcomes in several typical

physiological and pathological status.
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3.1 Body mass index

Obesity (BMI≥30kg/m2 according to WHO standard

definition) can promote inflammation and affect the distribution

and abundance of immune cells, and has been validated to relate

with the process of malignancy (43). Recently, obesity has been

shown to be associated with response to immunotherapy. A meta-

analysis of 13 eligible studies involving 5,279 patients with pan-

cancer treated with ICIs revealed that high BMI was associated with

improved PFS and OS (44), and this finding was also validated in a

multi-center clinical trial of patients with NSCLC treated with ICIs

(45). In contrast, a study involving 181 patients with advanced

NSCLC treated with second-line ICI after first-line chemotherapy

had failed found that lower BMI was associated with longer PFS and

OS (46). Some studies have found that obesity enhances

immunotherapy outcomes only in a subgroup of patients. A

randomized controlled trial included 207 melanoma patients

treated with anti-CTLA-4 plus chemotherapy, as well as one

retrospective cohort with 331 melanoma patients treated with

anti-PD-1/PD-L1 monoantibodies, also corroborated the positive

correlation between obesity and prolonged PFS and OS, and the

association was mainly seen in male patients, while no significant

difference was observed in female patients (47). Whether the

association varies by sex needs further study. Moreover, treatment

settings may affect the benefits of obesity. A multicenter study of

NSCLC also found obesity to benefit the efficacy of anti-PD-1/PD-

L1 antibodies, but only with the setting of ICI as second- or later-

line therapy, with no such difference in the cohort with high PD-L1

expression (≥50%) and treated with ICIs as first-line therapy (48).

However, a multi-center trial found the high PD-L1 expression

subgroup represent the strongest association between BMI and PFS

and OS when received ICI as the first-/second-/later-line

therapy (45).

Low BMI may indicate cachexia, defined as a body weight loss

>5% over the past 6 months or >2% in patients with a BMI< 20 kg/

m2, which was common in advanced cancer (49). Not surprisingly,

low BMI was associated with poorer clinical outcomes in several

studies involving pan-cancer patients treated with ICIs (50).

Consistently, cachexia was also associated with worse outcomes (51).

The correlation between the incidence of treatment-related

adverse events and BMI is under debate. A meta-analysis of 20

studies designed to reveal associations between irAEs and BMI in

pan-cancer patients treated with immunotherapy found a positive

association between BMI and higher risk of irAEs (52), and another

multicenter retrospective observational study involving 1,070

patients reported the same propensity (53). Nonetheless, a meta-

analysis suggested that there was no significant difference in the

incidence of all grades of IAEs among obese, overweight, and

normal patients (44), and a clinical trial involving 2,110 patients

with advanced NCSLC also supported this view (45). For CAR-T

therapy, a study included 64 patients receiving CD-19 CAR-T for

relapsed/refractory B cell malignancies and found that patients with

≥2 and earlier stage of cytokine release syndrome possessed a

significantly higher BMI (54).
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The mechanism explaining the predictive effect of BMI remains

unclear, as most studies do not distinguish between the amount of

skeletal muscle and the amount of adipose tissue, which have

completely different biological functions. A more careful

investigation is required. One study involved 74 pre-treated

NSCLC patients treated with anti-PD-1 therapy and used CT to

assess skeletal muscle, visceral adipose, and subcutaneous adipose

(55). They found that neither the visceral-to-subcutaneous ratio of

adipose nor the visceral fat area was associated with the efficacy of

ICI therapy, suggesting that adipose tissue may not influence

clinical outcomes. However, they reported that lower

intramuscular adipose tissue content was a prognostic factor of

longer OS, but was not significantly associated with PFS. Another

retrospective study found a correlation between lower muscle mass

and worse OS in NSCLC patients treated with ICIs in combination

with chemotherapies (56). The predicted values for the mass and

adipose content of skeletal muscles need to be further verified.
3.2 Exposure to drugs and food

Certain drugs have been observed to be associated with

immunotherapy outcomes. A classic example is acetaminophen

(APAP), which is widely used to manage mild-to-moderate pain

caused by advanced tumors, is suggested to have negative

immunomodulatory effects. For ICI therapy, a clinical study

involving three separate cohorts found that APAP exposure was

significantly associated with worse ORR, OS, and PFS in patients

treated with ICIs for advanced renal cell carcinoma (57). The

underlying mechanism may be that APAP induces Tregs

amplification and penetration into the TME and upregulates the

expression of the immunosuppressive molecule IL-10, thereby

mediating immunosuppressive effects and reducing the efficacy of

immunotherapy (57).

Antibiotics have also been reported in relation to

immunotherapy. A meta-analysis included 5,560 NSCLC patients

treated with ICIs from 23 studies, revealing that the exposure to

antibiotics around ICIs initiation (-60 days, +60days) could

dramatically decrease the PFS and OS (58). The analysis

demonstrated that the median OS decreased by 6.7 months in the

patients exposed to antibiotics. However, strong heterogeneity in

treatment-line settings and patient clinical data across studies

resulted in weak reliability of the analysis. The mechanisms

explaining the effects of antibiotics on the efficacy of

immunotherapy remain unclear. These drugs should be used with

caution in patients receiving immunotherapy. Whether this

principle applies to the onset or entire durat ion of

immunotherapy and to all immunotherapy regimens such as

therapeutic vaccines and CAR-T requires further study.

Probiotics are a large category of healthcare products and have

emerged as a beneficial complement during immunotherapy. A trial

surveyed the dietary habits and probiotics intake of 158 patients

with late-stage melanoma, 49 of 158 patients reported probiotic

usage in 1 month before the initiating of ICI therapy. The study

observed a correlation between probiotics and a significantly

reduced frequency of tumor-infiltrating IFN-g positive CD8+ T
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cells, as well as fewer tumor-infiltrating TH1 cells though not reach

significance, revealing a suppression of anti-tumor immunity

caused by probiotics (59). In contrast, other previous studies have

found that probiotics may benefit the efficacy of immunotherapy in

mouse models and clinical patients. Yusuke Tomita and colleagues

retrospectively surveyed 118 NSCLC patients treated with ICIs in

Japan and found that probiotic Clostridium difficile therapy was

associated with prolonged PFS and OS, even in patients with

antibiotic exposure (60). To identify whether diet change in the

onset of ICI can safely and effectively improve the clinical outcomes,

Christine N Spencer and colleagues are performing a phase II

trial (NCT04645680).
3.3 Gut microbiota

The gut microbiome can have a systemic effect on the immune

system. It has been reviewed that gut microbiome plays an important

role in cancer development, anti-tumor immunity, and response to

therapy (61). More recently, the gut microbiome has emerged as a

predictor of response to immunotherapy. For ICI therapy, studies

have shown that specific bacteria can stimulate the immune system

and have been demonstrated to augment the efficacy of ICI therapy in

mouse models (62, 63). Specifically, Bifidobacterium may improve

the activation of DCs and tumor-specific CD8+T cell responses (63),

while B fragilis may increase the activation of TH1 cells (62). For

adoptive T cell therapy, higher abundance of the Bacteroidales S24-7

family is correlated with higher IL-12 and more CD8a+ DCs in the

peripheral blood of mouse model, suggesting that this species could

improve anti-tumor immunity (64).

Clinical outcomes also vary depending on the gut microbiome

composition. A prospective study enrolled 70 Japanese patients

with advanced NSCLC and treated them with anti-PD-1/PD-L1

monoclonal antibodies and performed 16S rRNA sequencing of

stool samples. Lower alpha-diversity of gut microbes at baseline was

associated with worse OS. Besides, Ruminococcaceae UCG13 and

Agathobacter were enriched in patients with reassuring ORR and

PFS (65). In contrast, in another clinical trial involved 438

melanoma patients, the alpha and beta diversity of the gut

microbiota have no significant differences between ICI responders

and nonresponders (66).

Gut microbiome is also associated with toxicity, as supported by

an analysis involving 77 patients with advanced melanoma treated

with anti-CTLA-4 in combination with anti-PD-1 therapy (66).

Moreover, fecal material transplantation may modulate the

response to ICI. Preclinical studies have demonstrated that when

germ-free mice are treated with fecal microbiome transplants from

ICI responders, these mice also respond to ICI therapy. In contrast,

the mice did not respond to ICI therapy when the stool material was

from patients who did not respond to ICI (67). A Phase I clinical

trial evaluating the safety and feasibility of fecal material

transplantation in 10 patients with anti-PD-1 refractory

metastatic melanoma successfully induced 1 complete response

and 2 partial responses (68). The mechanisms underlying the

influence of gut microbiota on the efficacy and toxicity of

immunotherapy remain to be further demonstrated.
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3.4 Pregnancy

Pregnancy can be divided into three trimesters, and the immune

state also undergoes three phases. First, there is a pro-inflammatory

phase in the first trimester, during which the embryo is implanted

and the placenta is formed (69). Second, an anti-inflammatory

phase in the second and third trimesters is necessary for fetal

tolerance (70). Lastly, the immune state switches back to a pro-

inflammatory phase during delivery for uterine contraction and

placental expulsion (69).

The local immune status at the mother-fetus interface, or by

another name, uterine decidua, is critical for fetal-maternal

tolerance. The uterine decidua consists of trophoblasts, decidual

stromal cells, and immune cells (71). Throughout pregnancy, the

fluctuations and interactions of these cells aid in trophoblast

invasion and protect the fetus from rejection by the mother (71).

Here we focus on features that are directly related to common

immunotherapies. PD-1 and PD-L1 form a co-inhibitory signal that

modulates T cell activation and is important for fetal-maternal

tolerance (72). PD-1 is primarily expressed by lymphocytes, with

levels increasing in deciduous lymphocytes and decreasing in

peripheral lymphocytes during the first trimester (72). PD-L1 is

expressed by decidual stromal cells and trophoblasts, and the

expression levels of PD-L1 increases from the 10-12 weeks after

implantation (73). CTLA-4 and CD80/86 are also important

inhibitory signals. CTLA-4 is predominantly expressed on Tregs,

which show a constant expression during pregnancy (74). CD80/86

are costimulatory molecules on decidual stromal cells, and may

contribute to the Th2 propensity of decidual DCs (75). Common

ICI drugs target both signaling pathways. Therefore, when pregnant

women require immunotherapy, the pregnancy may be disrupted

and fluctuations in the expression of target molecules may

affect immunotherapy.

Immunotherapy is rarely administered during pregnancy

because of concerns about the potential effects on the fetus. For

ICIs, seven cases of women becoming pregnant while undergoing

ICI treatment have been reported (76–81), and four cases of ICI

therapy beginning during pregnancy, with or without

chemotherapy (76, 82–84). Three of the melanoma mothers

showed disease progression after delivery (80, 82, 83), and one

had an emergency Caesarean section at 24 weeks gestation due to

tumor progression and died the day after surgery (82). Five

placentas were pathologically examined in these studies, including

one from a patient with metastatic melanoma that showed several

metastases on the maternal side (82). During follow-up, none of the

children showed signs of tumor metastasis. Three women

developed irAE, one with diarrhea (83) and two with

hepatotoxicity (79), and one of the latter discontinued ICIs (80).

A case report indicated that exposure to ICIs may cause irAE in

newborns (82). For therapeutic vaccines, Calmette-Guerin (BCG) is

the tuberculosis vaccine and could be used to treat bladder cancer

by injecting it into the bladder. A female was diagnosed with

bladder cancer at 36 weeks gestation and treated with BCG. She

gave birth to a healthy baby and continued breast-feeding after the

baby received the intradermal BCG vaccine (85).
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3.5 Virus infection

Approximately 10-12% of all newly diagnosed cancer cases

worldwide are associated with viral infections (86). Eight viruses

have been found to contribute to cancer development, including

human papilloma virus(HPV), hepatitis B and C virus (HBV/HCV)

(86). Viruses affect host immunity and cell malignancy through

several mechanisms, such as directly increasing genomic instability

promoting tumor cells (87), indirectly providing an environment

for tumor progression by inducing chronic inflammation (88), and

impairing the immune system preventing tumor cells from being

excluded (89). Varies immunotherapy methods have been

developed based on the association of the virus and the

pathological process of cancer. Certain viral proteins are

continuously expressed in tumor cells, and tumor cells may be

specifically killed by targeting these proteins, known as therapeutic

vaccines (90). Several therapeutic vaccines have entered clinical

trials (90). Another approach is infusion of T cells carrying native

TCR, known as ACT therapy (91). However, whether viral infection

status in tumor patients affect immunotherapy has not been

fully elucidated.

3.5.1 SARS-CoV-2
The COVID-19 pandemic has and will inevitably have a long-

term impact on world health, and it is of interest to see how SARS-

CoV-2 infection in cancer patients affects immune status and

immunotherapy. SARS-CoV-2 is a single-stranded RNA virus. Its

spike protein interacts with ACE2 to facilitate cellular invasion by

the virus and stimulate immunity. In the first few days after SARS-

CoV-2 infection, innate immune cells identify pathogen associated

molecular pattern or damage associated molecular pattern via

pattern recognition receptors (PRRs). These PRRs are triggered,

causing a substantial release of cytokines that exert direct antiviral

effects and activate downstream immune responses (92). The

severity of COVID-19 is associated with immune imbalance and

sustained release of high levels of cytokines, not viral load (93).

Cancer patients are often accompanied by immune balances,

weakened immune cells, and destruction of immune-related

anatomical structures, making them more vulnerable to SARS-

CoV-2 infections. Tumor type, active tumor, and advanced tumor

stage are risk factors for death from COVID-19 (94).

SARS-CoV-2 infection can cause long-term perturbations in

immune status (95). Notably, change of immune cells, antibody

production, and cytokine release due to SARS-CoV-2 infection are

influenced by confounding factors such as age, gender, and tumor

treatment, which should be taken into consideration

comprehensively (96). Tumors and COVID-19 share similar

immune processes, such as excessive cytokine release and

weakened humoral and cellular immunity. Immunotherapy can

elevate IFN-g expression, thereby increasing ACE2 expression

which makes patients receiving immunotherapy more susceptible

to SARS-CoV-2 infection (97). This evidence suggests the

complexity of the immune status in the coexistence of tumors

and SARS-CoV-2, presenting a challenge for immunotherapy

and ID.
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Vaccination against SARS-CoV-2 is one of the most critical

measures to reduce COVID-19 mortality. However, the vaccination

efficacy (VE) for tumor patients (62-72%) is lower than that of the

normal population (94%), with hematologic tumors demonstrating

even lower VE compared to solid tumors (98). The treatment of

tumors with chemotherapy, anti-CD20, anti-CD38, and CAR-T has

been found to disrupt the humoral immune response induced by

SARS-CoV-2 vaccine and impair the VE, while surgery, ICIs,

endocrine therapy and radiotherapy did not affect the VE (98,

99). In addition, tumor patients often experience long-term chronic

depletion, requiring repeated consolidation of immune memory. A

study found that administering a third dose of the SARS-CoV-2

vaccine increased the detection rate of Omicron-specific serum

antibodies in tumor patients from 47.8% to 88.9% (100). COVID-19

should be considered a long-term infection and be included in the

ID model. Treatment decisions should be based on comprehensive

assessment of patients’ multiple diseases.

The safety and prognosis of comorbidities with cancer

immunotherapy and SARS-CoV-2 infection remain controversial.

Several studies have indicated that ICIs may increase the risk of

COVID-19-related deaths (101). The mechanism behind this

involves over-activation of CD8+ T cells, which not only

promotes acute respiratory diseases, but also causes subsequent

suppresses of cellular immunity, providing an opportunity for

tumor cells to thrive. Severe symptoms and need for

hospitalization due to SARS-CoV-2 infection have been reported

in 39 - 54% of cancer patients, a higher rate compared to individuals

without tumors (102). However, other studies have contradicted

these findings, demonstrating that ICIs do not increase mortality

due to COVID-19, and can even enhance the immune system’s

specific response to the virus, which is associated with developed OS

(103, 104). These conflicting results may be related to disease type,

cancer stage, and immune system status, highlighting the

importance of ID.

There are cer ta in commonal i t i es between cancer

immunotherapy adverse events and the pathogenesis of COVID-

19. For example, the co-occurrence of pulmonary irAEs and

COVID-19 pneumonia increases the potential risk of interstitial

inflammatory infiltration and diffuse alveolar damage, thereby

increasing the likelihood of death from terminal respiratory

failure (105). Additionally, there are similarities between the

process of acute respiratory distress syndrome caused by SARS-

CoV-2 through cytokine storm and cytokine release syndrome after

CAR-T treatment (106, 107). Cancer patients treated with CD19

CAR-T therapy may develop B cell aplasia, which impairs the

antiviral humoral immune response and puts them at increased

risk for complications of SARS-CoV-2 infection (97). In conclusion,

there are many interactions of the pathological processes and

immune mechanisms between viral infections and cancer.

Therefore, the predictive value of including viruses in ID models

for cancer and immunotherapy should be appreciated.

3.5.2 HBV/HCV
Recent evidence suggests that HBV/HCV may affect cancer

immunotherapy. A multicenter retrospective cohort of 180 patients
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with advanced CRC treated with anti-PD-1 found that HBV

patients had higher mismatch repair defects and fewer cancer

metastases than non-HBV patients (108). Nevertheless, there was

no statically significant difference in the ORR (both of 39%)

between HBV and non-HBV group. Notably, the CR rate in the

HBV group (17 CR, 13 PR) was higher than in the non-HBV group

(11CR, 19PR). Whether this indicates that HBV infection favors

anti-PD-1 therapy remains to be further investigated. Another

retrospective study, which included 50 cancer patients with HIV

and/or HBV/HCV infection, found no significant association

between viral load and anti-tumor immune response (109).

3.5.3 HIV
HIV can damage human T cells and cause acquired

immunodefic iency syndrome (AIDS) , and there are

approximately 3782700 HIV-infected individuals worldwide.

However, people with HIV are generally excluded from

immunotherapy cohorts, and most studies of HIV and cancer

treatment have been conducted in Europe and the United States,

rather than in Asia, Africa and Latin America, where 75 percent of

HIV patients live (110). Therefore, few clinical trials have provided

guidance for personalized treatment of HIV in cancer patients. A

phase I clinical trial found that Pembrolizumab is safe for the

treatment of advanced cancer in HIV-infected patients with a CD4+

T cell count of greater than 100 cells/mL (111). To recap, all of these

evidence supports the inclusion of more virus-infected cancer

patients for immunotherapy in the future to further determine

the impact of infection on cancer immunotherapy, thereby

developing the ID model with the concern of virus infection.
4 Biomarkers: direct predictive
factors in ID

The outcome of immunotherapy is highly heterogeneous

among individuals. Early practice has demonstrated that when

specific therapies are used to treat specific diseases, there are

biomarkers that may partially fulfill the function of ID as

envisioned. To enumerate all biomarkers and describe them in

detail is not the focus of this paper. Instead, we would like to try to

discuss the characteristics of ideal biomarkers to provide a reference

for the construction of ID systems. Moreover, we will provide some

successful cases to illustrate the feasibility of this idea.

An ideal biomarker should be accurate, discriminative between

the population of interest and controls, and repeatable. Biomarkers

from peripheral blood are an attractive option because they are

relatively non-invasive and can be taken multiple times. Biomarkers

within imaging methods such as CT/MRI are also worth

investigating. Biomarkers should be involved in pathogenesis

mechanisms and related to disease activity or therapeutic targets.

Tumor-related biomarkers have been widely discussed. We

analyze the role and characteristics of the major biomarkers in

the tumor-immune interaction mechanism and summarize these

biomarkers into five categories.
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Some biomarkers reflect the tumor’s ability to stimulate the

immune system. Deficient mismatch repair (dMMR) means the loss

of expression of mismatch repair proteins that could correct

mismatched bases during DNA replication, so the DNA

replication errors at microsatellite regions accumulated, causing

microsatellite instability-high (MSI-H). Furthermore, patients with

MSI-H/dMMR may have more tumor associated antigens (TAAs)

and tumor specific antigens (TSAs) that could stimulate the

immune system. The tumor mutation burden (TMB) is the

genetic mutation rate of tumor cells, and is also associated with

the TSAs, also known as neoantigens. The neoantigenic burden is

dominated by TSAs targeted by T cells. Recent studies have

provided evidence that MSI-H/dMMR (112), TMB (113), and

neoantigen burden (114) are emerging as promising biomarkers

for clinical outcomes in cancer immunotherapy. Also, Marta and

colleagues build a neoantigen fitness model based on immune

interactions of neoantigens that could predict survival in

melanoma patients and lung cancer patients treated with ICIs.

These studies demonstrate the potential of neoantigens and related

gene backgrounds as ID models, and suggest that ID may reveal

new therapeutic targets.

Another dimension is the immune system’s ability to recognize

malignant cells. CD8+ T cell dependent killing of cancer cells

requires appropriate presentation of tumor antigens by MHC,

which in humans is human leukocyte antigen (HLA) molecules,

resulting in at least three kinds of biomarkers: specific HLA

genotype for certain cancer type (115), some kind of HLA alleles

having strong antigen presentation ability (116), and high HLA

diversity which could provide a large library and are more likely to

have appropriate HLA (117). An exploratory study of multiple

myeloma patients treated with bortezomib found some HLA alleles

as candidates, as patients carrying HLA-DQB1*03:02, HLA-

DQB1*05:01, and HLA-DRB1*01:01 class II alleles are more likely

to get a complete response (115). In 1535 advanced cancer patients

treated with ICIs, the HLA-B44 supertype is associated with

extended survival, whereas the HLA-B62 supertype was associated

with poor outcomes (116). In patients with kidney cancer treated

with Lenvatinib and Pembrolizumab, it has been found that HLA-I

evolutionary divergence is associated with both improved clinical

benefit and response durability (117).

Tumors exploit multiple mechanisms to evade immune

recognition, and several features associated with immune evasion

could be excellent predictors. Overexpression of the PD-L1 protein

(a kind of immune checkpoint) on the cancer cells is a major

immune evasion mechanism, and antibodies to blockade the PD-1/

PD-L1 interaction could normalize anti-tumor immunity. PD-L1

expression levels are the first and most investigated biomarkers to

predict prognosis with respect to ICIs for certain cancer types.

KEYNOTE-024 provided the highest level of clinical evidence

certifying that immunotherapy accompanied with PD-L1

diagnosis could bring nearly clinical cure outcome to advanced

non-small cell lung cancer (NSCLC) (118). For solid tumors, CD8+

T cells need to infiltrate into the tumor to contact cancer cells and

kill them, but the TME may exclude T cells (119). Levels of

intratumoral tumor infiltrating lymphocytes were associated with
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a better prognosis in epithelial ovarian cancer (120). TME is rich in

immunosuppressive cytokines and cells, and may cause T cell

depletion and inhibit anti-tumor immunity. Researchers had

analyzed the immune cell composition and transcriptomic

features of hepatocellular carcinoma samples, and defined a 9-

gene signature related to T cell exhaustion, whose expression was

higher in responders, and independently predicted better

progression free survival (PFS) and overall survival (OS) (121).

Some markers can reflect the actual immune system response to

the tumor. For example, peripheral tumor antigen-specific T cell

expansion suggests a large therapeutic response. A clinical trial of

patients with metastatic urothelial carcinoma treated with anti-PD-

L1 demonstrated a higher number of neoantigen-specific CD8+ T

cells in the peripheral blood compared to disease progression in

patients with control disease (122). Other studies suggest the

peripheral blood neutrophil to lymphocyte ratio (NLR) as a

negative prognosis predictor of immunotherapy. A phase III trial

of advanced gastric cancer patients treated with nivolumab showed

that low blood NLR (≤2.9, median) was associated with better PFS

and OS (123), as lower blood NLR reflect to higher lymphocytes

expansion after immunotherapy.

With the development of sequencing and bioinformatics, a

growing number of studies have identified a number of genomic,

transcriptomic, or protein signatures associated with

immunotherapy outcomes. However, it remains unclear what is

the underlying mechanism behind these features affecting

immunotherapy. Numerous studies have constructed predictive

models by mining public or private databases. For instance, Qing

Liu and colleagues screened 1018 differentially expressed

immunologic genes (DEGs) of a dataset consisting of 414 bladder

cancer samples and 19 normal samples from The Cancer Genome

Atlas (TCGA), and constructed a predict risk model consisting of 15

genes (124). They validated the model in another dataset consisting

of RNA-seq data from 48 tumor tissues and the relevant clinical

information, GSE19423, from the Gene Expression Omnibus

(GEO). The proposed model demonstrated good predictive power

in predicting OS risk in the validation dataset. They reviewed the

literature and found that 10 out of 15 genes are involved in TME,

with the mechanism still to be investigated further. Similar studies

have sprung up in recent years, but are still far from clinical

practice. This type of research is promising as a prototype for an

ideal ID system with validation in larger external datasets, including

more dimensional variables, combined with a deeper understanding

of immune mechanisms.
5 AI helps to construct ID system

AI refers to the use of machines to imitate intelligent behavior

for performing complex tasks with minimal human intervention.

Machine Learning (ML) is a branch of AI, which involved the use of

algorithms such as Logistic Regression, Decision Trees, Random

Forests, and Support Vector Machines. Deep Learning (DL) and

Artificial Neural Networks represent new frontiers in ML that

encompass Convolutional Neural Networks (CNN) and Recurrent
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Neural Networks (RNN). CNN offer unique advantages for image

processing applications and have been successfully employed for

feature extraction in clinical imaging data. RNN is often used for the

analysis of time-series data and has shown advantages in dynamic

monitoring of disease. Additionally, DL can directly process

unstructured data such as images, sounds, and languages, making

it particularly suitable for clinical medical record texts, image

classification, and tumor diagnosis and treatment (125).The main

processes of AI are shown in Figure 2.

AI has been applied to multiple medicine fields such as diabetes

(126), including artificial pancreas (calculate and inject insulin

dosage automatically) and continuous blood glucose prediction;

ophthalmology (127), including detecting diabetic retinopathy and

macular oedema. In recent years, significant progress has been

made in the research of AI application for early tumor diagnosis.

Studies have demonstrated that AI can achieve comparable

accuracy and specificity to specialist physicians in diagnosing

various cancers, such as breast cancer (128), lung cancer (129),

skin tumors (130), and ovarian cancer (131). In addition to accurate

identification and early diagnosis of cancer, AI can also assist in

long-term follow-up and health management of cancer

recurrence (132).

ID is a challenging prediction problem. The input dataset

should be large enough and contain enough representative

features. An ideal ID system requires simple, inexpensive, and

reproducible detection techniques. The rapid development of

microfluidic chip platforms in recent years has provided a

miniaturized and highly controlled environment for the

occurrence of biochemical reactions. It is also compatible with

analytical methods, and can give rapid detection results from trace

samples (133). Another area that has received a lot of attention is

wearable devices. Wearable devices can collect health information

noninvasively and continuously, and have shown promising
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potential to support and implement medical decisions (134).

These innovations in detection and monitoring methods,

combined with AI, promise to expand the dataset amount.
5.1 Opportunities of AI in precise
immunotherapy

5.1.1 Standardizing the diagnostic criteria for
existing biomarkers

Currently, immunohistochemistry (IHC) detection of PD-L1

expression as a predictive biomarker for ICIs has been clinically

implemented. The staining results are semi-quantitatively evaluated

by pathologists. However, due to the heterogeneous expression of

PD-L1 in tumor cells and various immune cells, manual

interpretation lacks consistency and reproducibility. Moreover,

accurate expression values cannot be provided, and manual

scoring is subjective, leading to diagnostic bias. To address this

issue, several studies have utilized AI for quantitative analysis of

digital slides. The established models demonstrated good

consistency with human experts’ scores and have significantly

improved the diagnostic efficiency of untrained pathologists

(135–137).

5.1.2 Identify unstructured data
Traditional statistical methods are often insufficient to extract

features from high-dimensional clinical images such as CT, MRI,

and PET/CT, while subjective interpretation by clinical experts can

lead to bias. Recently, advances in AI-based medical image

biomarkers have shown great potential for noninvasive

characterization of tumors and TME, enabling patient selection

and efficacy prediction for immunotherapy. For instance, AI has

been utilized to automatically analyze CT features of NSCLC and
FIGURE 2

Main processes and sample model of AI in Immunodiagnosis. Different data related with immune status are collected and processed before inputted
into the model for the training, validating and testing. In general, the model consists of one input layer, many hidden layers and one output layer.
The output layer is associated with different labels refer to outcomes of immunotherapy.
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melanoma patients, resulting in the development of a noninvasive

radiomic biomarker that effectively distinguished immunotherapy

responders and non-responders (138). Odors are also unstructured

data. Using AI technology, researchers have trained a device called

the “electronic nose” to detect volatile organic compound patterns

in exhaled breath that were related to the response of NSCLC

patients to anti-PD-1, enabling accurate prediction of treatment

outcomes (139).

5.1.3 Developing personalized drugs
The combination of AI and multi-omics data holds the potential

of developing personalized drugs quickly. Researchers have developed

an AI-based platform named PIONER for target discovery that

enabled the selection of neoantigens suitable for personalized DNA

vaccine EVX-02. The approach involved sequencing both tumor and

healthy tissues from cancer patients, identifying genetic mutations in

the tumor tissue through comparison with healthy tissue, and

utilizing AI to predict which mutations are most likely to generate

neoantigens capable of elicitin an immune response in patients. The I/

IIa clinical trial of EVX-02 combined with nivolumab achieved good

results, with no instances of recurrence observed among the 10

patients enrolled during the trial period (140).

5.1.4 Integrated multidimensional unstructured
data to build ID model

The complexity of tumor-immune interactions necessitates a

multi-dimensional model for accurate prediction. To this end,

Timothy Chan’s team has comprehensively integrated multiple

biological features relevant to immunotherapy efficacy, including

but not limited to TMB, MSI, BMI, sex, NLR, tumor stage/type, and

age. They included 1,479 patients across 16 cancer types and

established two AI models named RF11 and RF16 that

incorporated 11 and 16 biological features, respectively. In the

training set, RF16 had an AUC exceeding 0.8 in various cancers,

far surpassing the independent predictive efficacy of single indicator

(~0.6) (141). Another study found that merely measuring the

quantity of TILs cannot accurately reflect the tumor-immune

interactions and the functional status of T cells and developed an

AI-based PhenoTIL system incorporating multidimensional factors.

The PhenoTIL system exhibited a superior AUC (0.738 versus

0.683) compared to TNM staging in NSCLC patients (142).
5.1.5 An ID system in the whole process of tumor
diagnosis, treatment, and follow-up

The explosive growth of biology data and the development of

portable devices to monitor patients’ health state enable the

application of AI on generating tumor decision support ID

systems. AI can be used to optimize immunotherapy methods in

search of a balance between efficacy, adverse reactions, and cost (143).

AI could also be used to predict the risk of recurrence. Patients with

low recurrence risk can avoid unnecessary radiation exposure and

tedious hospital follow-ups, improving their quality of life (132).

These findings, along with numerous emerging findings, strongly

support the use of AI in facilitating precision immunotherapy.
Frontiers in Immunology 10
5.2 Barriers to adopting AI in the
clinical transformation

Despite the notable advancements in immune evaluation

facilitated by AI, the clinical transformation practice of this

technology remains confronted with several challenges that can

be categorized into three distinct aspects:

5.2.1 Accessibility of big data
The efficacy of AI is optimized when it is trained and validated

on extensive data sets. However, the paucity of publicly available

data may be attributed to the imperative of safeguarding patient

privacy or commercial conflicts of interest. Consequently, it is

imperative to establish a comprehensive public data platform of

considerable magnitude. Zlatko and colleagues have created The

Cancer Immunome Atlas (https://tcia.at/) to characterize the

intratumoral immune landscapes of 20 solid cancers and used

machine learning to develop a scoring scheme for the

quantification termed immunophenoscore, which showed the

predicted value of response to CTLA-4 and PD-1 inhibitors in

two independent cohorts (144). In addition, medical records consist

of a variety of unstructured data types, including text, images, and

voice. In order to enable effective input of this information for use

by AI, it is necessary to create a uniform data format.

5.2.2 Open the black box
The nature of AI algorithms is often referred to as ‘black box’,

the output of which is difficult to interpret for the engineers who

develop it and for the doctors and patients who use it. Laboratory

studies may be required to provide a biological basis, but it may take

more time.

5.2.3 What if AI made a mistake?
In situations where AI produces errors, it is essential to

determine how to identify and address these inaccuracies.

Furthermore, if a mistake made by AI impairs the health or well-

being of a patient, it becomes necessary to assign responsibility for

the error. A study involving 657 NSCLC patients entered 34 clinical

data into an AI model and compared the combination of 8 feature

reduction methods and 10 machine learning classification

algorithm (145). The researchers discovered notable variances in

the AUC among multiple combinations, and the best combinations

for predicting RFS, recurrence, and death were different, which

suggested us to select appropriate AI approaches for different

clinical scenarios. One plausible solution is to incorporate

multiple AI algorithms and feature selection methods

concurrently. Additionally, a group of human experts should

review when different AI models yield conflicting outcomes.

We envisioned the components of an ID model and a blueprint

for using AI to establish an ID system for cancer management

(Figure 3). The model can diagnose the immune status of patients,

determine whether they are suitable for immunotherapy, and even

recommend best therapeutic strategies. From the review above, we

summarized that the model contains three levels of features:

demographic characteristics obtained from the patients’ medical
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record to determine a baseline immune level; some variable

physiological or pathological factor, reflects the influence of the

patient’s current health level on immune status; cellular, molecular

and genetic characteristics obtained from the patients’ tumor

histopathologic and blood samples, serve as biomarkers that

match the tumor types and therapeutic strategies. By making

immunotherapy decision with ID model, and continuously

evaluating patients’ immune status and immune response through

wearable devices and other monitoring methods, it is expected to

contribute to the precision of tumor immunotherapy.
6 Conclusion

In this paper, we first present the important concept of ID and

describe the method to construct an ID system. There is significant

individual heterogeneity in the outcomes of immunotherapy for

immune-related diseases and ID should be performed prior to

treatment planning. Different demographic characteristics,

physiological and pathological conditions have many disturbing

effects on the human immune system. As a result, management

protocols for patients should be tailored to address their needs at

different points in the course of the disease. Depending on the
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treatment mechanism, there may be some characteristic biomarkers.

Combining cutting-edge AI methods to integrate multidimensional

information will hopefully build an ideal ID system. Of course, the

blueprint of ID system we came up with is just a prototype of an ideal

system.With the in-depth research on the mechanism of immune and

tumor development and immunotherapy, as well as the continuous

iteration of AI, we can expect more accurate and sensitive ID system

to be applied to real clinical practice.
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