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Introduction: The heterogeneity of tumor immune microenvironments is a

major factor in poor prognosis among hepatocellular carcinoma (HCC)

patients. Neutrophils have been identified as playing a critical role in the

immune microenvironment of HCC based on recent single-cell studies.

However, there is still a need to stratify HCC patients based on neutrophil

heterogeneity. Therefore, developing an approach that efficiently describes

"neutrophil characteristics" in HCC patients is crucial to guide clinical decision-

making.

Methods: We stratified two cohorts of HCC patients into molecular subtypes

associated with neutrophils using bulk-sequencing and single-cell sequencing

data. Additionally, we constructed a new risk model by integrating machine

learning analysis from 101 prediction models. We compared the biological and

molecular features among patient subgroups to assess themodel's effectiveness.

Furthermore, an essential gene identified in this study was validated through

molecular biology experiments.

Results: We stratified patients with HCC into subtypes that exhibited significant

differences in prognosis, clinical pathological characteristics, inflammation-

related pathways, levels of immune infiltration, and expression levels of

immune genes. Furthermore, A risk model called the "neutrophil-derived

signature" (NDS) was constructed using machine learning, consisting of 10

essential genes. The NDS's RiskScore demonstrated superior accuracy to

clinical variables and correlated with higher malignancy degrees. RiskScore

was an independent prognostic factor for overall survival and showed

predictive value for HCC patient prognosis. Additionally, we observed

associations between RiskScore and the efficacy of immune therapy and

chemotherapy drugs.
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Discussion: Our study highlights the critical role of neutrophils in the tumor

microenvironment of HCC. The developed NDS is a powerful tool for assessing

the risk and clinical treatment of HCC. Furthermore, we identified and analyzed

the feasibility of the critical gene RTN3 in NDS as a molecular marker for HCC.
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Background

Hepatocellular carcinoma (HCC), also known as liver cancer, is

a common malignancy with a high incidence rate. Drugs such as

sorafenib and lenvatinib (1), are widely used in the treatment of

HCC, and new drugs like atezolizumab combined with

bevacizumab and sintilimab combined with bevacizumab are

being developed (2, 3). These drugs target specific populations,

with some suitable for patients with unresectable HCC who have

not undergone systemic treatment, like doxorubicin and lenvatinib

(4, 5), while others are appropriate for patients with HCC who have

received specific treatments, like regorafenib and cabozantinib (6).

Despite promising results in clinical trials, these treatment methods

only benefit a small proportion of patients, highlighting critical

clinical challenges. Therefore, selecting the most appropriate

treatment plan based on the specific conditions of the patients

and the target population of the drug is crucial in the treatment of

HCC. Advancements in biotechnology, particularly high-

throughput sequencing technologies, have deepened our

understanding of tumor molecular subtyping, enabling tumor

treatment based on molecular subtypes. Gene-based molecular

subtyping has emerged as a new approach to the treatment of

tumors. Scientists have successfully developed personalized

treatment plans based on molecular subtyping for various cancer

types. For example, the PAM50 gene subtyping technology has been

successfully applied in chemotherapy decision-making for the

treatment of breast cancer (7). EGFR gene mutation subtyping

has also been widely adopted in the treatment of lung cancer for

selecting targeted drugs against EGFR (8). Similarly, BRAF gene

mutation subtyping has found extensive application in personalized

treatment plans for colon cancer and melanoma (9, 10). These

accomplishments indicate that gene-based molecular subtyping

technologies will be crucial in future treatments of tumors,

offering patients more accurate and effective treatment options.

The latest research has unveiled the immune microenvironment

subtypes of HCC through large-scale single-cell sequencing and

provided an in-depth analysis of the functional heterogeneity of

tumor-associated neutrophils. This study demonstrates that

targeting tumor-associated neutrophils may emerge as a new

immunotherapy strategy for HCC (11). Neutrophils play a crucial

role in the immune system by regulating immune responses,

combating infections, and maintaining tissue homeostasis. Recent

studies have indicated that neutrophil-mediated immune processes,
02
known as neutrophil extracellular traps (NETs), have a significant

impact on the development of tumors as they serve as a vital step in

innate and adaptive immune responses triggered by infectious and

sterile stimuli (12). Previous studies suggested that cancer-induced

NETs primarily function in the circulation, promoting cancer-related

thrombosis (13). Subsequent studies have revealed that NETs

influence every stage of the metastatic cascade, including the

progression, invasion, and migration of primary tumors, survival in

circulation, chemoattraction to secondary sites, extravasation,

colonization, and growth of metastatic tumor cells (14). These

findings highlight the fact that the functional transformation of

neutrophil subtypes in the tumor microenvironment is influenced

by the specific characteristics of the tumor microenvironment,

though the precise mechanisms remain unclear (15). In summary,

neutrophils play pivotal roles in the development, metastasis,

treatment, and immune evasion of HCC.

The advancement of single-cell research technology has

brought about the ability to accurately analyze the heterogeneity

of the tumor microenvironment in different clinical types of HCC

and discern distinct subtypes of neutrophils with unique

characteristics during the development of the tumor. These

findings have been instrumental in uncovering the dynamic

changes in levels of gene expression within these neutrophil

subtypes, shedding light on the molecular mechanisms underlying

the development of tumors, and identifying potential targets for

diagnosis and treatment. However, it is important to note that

neutrophils are fragile cell types that can easily be lost during tissue

dissociation. Moreover, neutrophils have a limited number of

expressed genes and tend to exhibit low expression levels of

characteristic genes, further complicating the analysis of their cell

subtypes and gene expression profiles. Additionally, the high cost

associated with single-cell sequencing technology poses a significant

barrier to its widespread clinical application for studying

neutrophils. Nonetheless, it is feasible to differentiate patients

with HCC based on neutrophils, thereby identifying subtypes and

evaluating patient prognosis for clinical treatment and medication

guidance. It is crucial to find a simple and effective method to

describe the “neutrophil characteristics” of patients with HCC.

With the advancements in bioinformatics technology, several

prognostic gene characteristics have been developed (16, 17). In

the case of HCC, numerous multi-gene signature characteristics,

such as the well-known ferroptosis signature (18), m6A signature

(19), and others (20), have been discovered to assess patient risk.
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However, the efficacy of these multi-gene expression signatures can

be challenging to validate and apply effectively due to single-

machine learning and inappropriate statistical methods.

In this study, we used machine learning to develop and validate

risk stratification characteristics for patients with HCC using

neutrophil-related characteristic markers. We assessed the value

of different risk stratifications in terms of biological and clinical

pathological characteristics, prognosis, and their application in

immunotherapy and targeted chemotherapy treatments across

four independent public datasets. Furthermore, based on the

analysis results, this study verified a new molecular marker for

HCC. Overall, this study aims to optimize precision treatment and

enhance the clinical outcomes of patients with HCC.
Materials and methods

Data resources

High-throughput sequencing data in TPM format for HCC

were obtained from The Cancer Genome Atlas (TCGA) database,

along with corresponding clinical phenotype data. We excluded

samples that lacked survival time or status and retained only those

with a survival time greater than 0 days. This resulted in 365 tumor

samples. Similarly, we obtained another HCC high-throughput

sequencing dataset, HCCDB18, from http://lifeome.net/database/

hccdb/download.html. We removed normal samples to retain only

tumor tissue and obtained survival data for all patients with a

survival time greater than 0 days. This yielded a final set of 212

tumor tissues. For the datasets GSE14520 and GSE116174, we

obtained expression profile data and survival times from the Gene

Expression Omnibus (GEO) database of the National Center for

Biotechnological Information (NCBI) database. We excluded

samples lacking survival time or status and included all patients

with a survival time greater than 0 days in the analysis. We

downloaded platform files and converted probes to gene names.

We removed data with one probe corresponding to multiple gene

names and averaged data with multiple probes corresponding to a

single gene. Ultimately, we identified 242 tumor tissues from the

GSE14520 dataset and 64 tumor tissues from the GSE116174

dataset. Additionally, we obtained single-cell sequencing data for

HCC (Accession number: GSE215428) from the GEO database.
Dimensionality reduction and cell
annotation of single-cell clusters

First, we filtered the single-cell data that required each gene to be

expressed in aminimum of three cells, while each cell had to express at

least 250 genes. Additionally, we used the PercentageCharacteristicset

function to calculate the proportions of mitochondrial and rRNA

genes, ensuring that each cell expressed fewer than 2000 genes.

Subsequently, we performed log-normalization on the data from six

samples to standardize them. To identify highly variable genes, we

utilized the FindVariableCharacteristics function, employing variance

stabilization transformation (“vst”). All genes were then scaled using
Frontiers in Immunology 03
the ScaleData function, followed by dimensionality reduction using

RunPCA to identify anchor points. The clustering of cells was

achieved through the utilization of the FindNeighbors and

FindClusters functions, and classical marker genes were used for cell

annotation. The clusterProfiler package was used for the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis of the marker genes across different subgroups.
Construction of molecular subtypes and
risk model

Using single-cell analysis, 208 marker genes specific to

neutrophils were identified. The ConsensusClusterPlus package in

R was used to cluster patients based on the expression of these

neutrophil marker genes in tumor tissues from the TCGA dataset.

The partition around medoids (PAM) algorithm was used, with

“pearson” serving as the distance metric. We performed 500

bootstraps, each including 80% of the patients from the training

set. Clustering numbers ranging from 2 to 10 were set, and the

optimal classification was determined by evaluating the consensus

matrix and cumulative distribution function.

Based on the neutrophil marker genes, univariate Cox analysis

was conducted to select prognostic-related genes with a P-value of

<0.001. These genes were further integrated into a high-precision

and stable model using our machine learning-based integration

program. For the TCGA dataset, we fitted 101 prediction models

using the LOOCV framework and calculated the concordance index

(C-index) of each model on all validation datasets. The model with

the highest average C-index was considered the best.
Analysis and comparison of
biological features

We compared different cell scores among the three subtypes

using the ESTIMATE algorithm, the MCPcounter package, and the

CIBERSORT algorithm. To calculate the scores of 28 immune cells,

we used single-sample gene set enrichment analysis (ssGSEA) with

28 characteristic genes of immune cells obtained from previous

research (21). Additionally, the tumor immune dysfunction and

exclusion (TIDE) software was used to evaluate the potential clinical

effects of immunotherapy and risk models. To assess the scores of

relevant pathways, we obtained the inflammatory pathway gene set

from the KEGG website and calculated pathway scores using the

ssGSEA method. Furthermore, the patient scores for KEGG

database-related pathways were determined using the gene set

variation analysis (GSVA) package in R, with gene sets

downloaded from the GSEA website. The maftools package

showed the top 20 mutated genes and generated a waterfall chart.

The copy number variation (CNV) dataset was also obtained and

analyzed to determine the proportion of deleted or amplified genes.

To explore potential therapeutic targets for high- and low-risk

groups, we used the Cancer Cell Line Encyclopedia (CCLE)

database of drug-sensitive cell lines as the training set. Using the
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Cancer Therapeutics Response Portal (CTRP) and Profiling

Relative Inhibition Simultaneously in Mixture (PRISM) methods,

we predicted the drug sensitivity of each patient in the TCGA

dataset. Potential regulatory drugs were screened based on |log2

(Fold Change [FC])| >0.2.
Cell culture and transfection

The human HCC cell line HepG2 (KCB200507YJ) was obtained

from the Chinese Academy of Sciences. The cells were cultured in

Dulbecco’s Modified Eagle’s Medium (Gibco, Carlsbad, CA, USA)

supplemented with 8.0% fetal bovine serum. To silence the expression

of RTN3, HepG2 cells were transfected with small interfering RNA

(siRNA) using hU6-MCS-CBh-gcGFP-IRES-puromycin (Shanghai

Gene Chem Co., Ltd.). The HepG2 cells were divided into two

groups: the control group and the si-RTN3 group.
Western blot assay

To obtain total cellular proteins from HepG2 cells,

radioimmunoprecipitation assay buffer (RIPA) lysate (Beyotime,

Shanghai, China) was used, and protein quantification was

performed using the bicinchoninic acid (BCA) assay kit

(Servicebio, Wuhan, China). Cell samples containing 30 mg of

total protein were loaded onto sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently

transferred to polyvinylidene fluoride (PVDF) membranes. The

membranes were then incubated overnight at 4°C with anti-RTN3

(Abcam, Cat# Ab68328) and anti-b-tubulin (Affinity Biosciences,

Cat# T0023). Subsequently, the membranes were incubated with

goat anti-rabbit immunoglobulin G (IgG; S0001, 1:5000, Affinity

Biosciences) and goat anti-mouse IgG (S0002, 1:5000, Affinity

Biosciences) for 50 minutes and visualized using Tanon-5200

(Tanon, Shanghai, China). Further details regarding these

experimental procedures have been described previously (22).
Colony formation and Transwell assay

For colony formation, cells were directly seeded into 6-well

plates at a density of 3 × 102 cells per well. After 14 days, the wells

were rinsed three times with phosphate-buffered saline (PBS) at

room temperature. Subsequently, cells were stained with

paraformaldehyde (1 ml/well) and incubated with crystal violet

solution (1 ml/well) for 30 minutes. In the Transwell assay, 8-mm
Transwell chambers (Corning, USA) were used. The upper

chamber, pre-coated with Matrigel (Corning, USA), was used for

cell plating, while the lower chamber was filled with a complete

medium. After fixing the cells with paraformaldehyde, they were

stained with a 0.1% crystal violet solution for five minutes and left to
Frontiers in Immunology 04
dry overnight. The specific steps of the Transwell assay were

conducted as described previously (23).
Statistical analysis

Statistical analysis was conducted using R software (version

4.0.5). Spearman’s correlation coefficient was used to evaluate the

correlation between two continuous variables. The chi-square test

was used to compare categorical variables, while the Wilcoxon rank

sum test, or t-test, was used for comparing continuous variables. A

significance level of P <0.05 was used to determine statistical

significance for all tests.
Results

Dimensionality reduction and clustering
of single cells

After applying quality control measures and filtering, a total of

17,277 cells were obtained. The statistical analysis of cell numbers

before and after filtering is shown in Figure S1A. To reduce

dimensionality and identify anchor points, we performed

Principal Component Analysis (PCA) using the RunPCA method

(Figure S1B). Additionally, t-distributed Stochastic Neighbor

Embedding (t-SNE) analysis was conducted on the 17,277 cells

using the Runt-SNE function, and Figure S1C shows the t-SNE cell

distribution maps for the six samples. For clustering analysis, we

used the FindNeighbors and FindClusters functions with a

resolution set at 0.2 and a dimensionality of 20. As a result, we

identified 10 distinct subpopulations. Cell annotation was carried

out using established marker genes, wherein subpopulations 0, 1, 2,

and 4 exhibited expression of T-cell markers CD2, CD3D, CD3E,

and CD3G, respectively. Subpopulation 6 showed expression of the

B-cell markers CD19, CD79A, and MS4A1. The dendritic cell

marker CLEC4C was expressed in subpopulation 9, while

neutrophil markers CSF3R, S100A8, and S100A9 were found in

subpopulations 3, 7, and 8, respectively (Figure S1D).

Figure 1A shows a t-SNE distribution map depicting different

sample populations. Figure 1B shows a t-SNE distribution map

specifically focusing on the 10 subpopulations. Furthermore,

Figure 1C shows an annotated t-SNE distribution map

highlighting the subpopulations. To identify marker genes within

these subpopulations, the FindAllMarkers function was employed

with specific parameters, including a logFC of 0.5 and a minimum

percentage of differentially expressed genes (Minpct) of 0.35. This

analysis yielded four subpopulations with a corrected P-value of

<0.05. Figure 1D shows the expression of the top five significant

marker genes in each of these subpopulations. Detailed information

about the marker genes is provided in scRNA_marker_gene.txt

(Table). Furthermore, KEGG annotation was conducted on the
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marker genes from the four subpopulations. The results revealed

their involvement in various functions and disease pathologies,

highlighting the vital role of immune cells in maintaining overall

health (Figure 1E).
Construction of molecular subtypes

Following the utilization of 208 markers specific to neutrophils,

we proceeded to construct molecular subtypes. To determine the
Frontiers in Immunology 05
optimal number of clusters, we used cumulative distribution

function (CDF) analysis. The CDF Delta area curve indicated that

a cluster selection of 3 yielded relatively stable clustering results

(Figures 2A, B). Consequently, we chose a “k” value of 3 to define

three distinct molecular subtypes (Figure 2C). Notably, these three

subtypes showed significant differences in prognosis (Figure 2D, P =

0.011), with patients in cluster 3 exhibiting the poorest prognosis.

Similarly, when applying the same methodology to the HCCDB18

dataset, we obtained three subtypes with comparable prognostic

implications (Figure 2E; P <0.0001). Detailed information about the
B

C

D E

A

FIGURE 1

Single-cell landscape of patients with HCC. (A): Distribution of each sample shown on a t-SNE plot; (B): Distribution of 10 subtypes shown on a
t-SNE plot; (C): Subtypes after cell annotation shown on a t-SNE plot; (D): Expression of the top five marker genes of annotated subtypes illustrated
on a dot plot; (E): KEGG enrichment analysis of annotated subtypes visualized on a dot plot.
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molecular subtypes for both datasets can be found in tables

tcga.subtype.cli.txt and HCCDB18.subtype.cli.txt. Furthermore, we

conducted PCA analysis based on the marker genes specific to

neutrophils, generating a scatter plot that illustrates the distribution

of the three subtypes as shown in Figure 2F. Our analysis suggests

that the significant heterogeneity observed among patients with

HCC may be attributed to distinct “neutrophil characteristics.”
Clinical features of molecular subtypes

Furthermore, we conducted a comprehensive analysis of the

clinical and pathological characteristics of different molecular

subtypes in the TCGA dataset. Specifically, we compared the
Frontiers in Immunology 06
distribution of various clinical characteristics among the three

molecular subtypes to identify potential differences. In our analysis,

while applying a chi-square test, we found that cluster 3 samples

exhibited a higher proportion of patients with G3 plus G4 stages

compared to the other subtypes. This finding suggests a potential

association between molecular subtypes and tumor grade (Figure 3).
Functional analysis of immune-related
pathways among molecular subtypes

First, we used the ESTIMATE algorithm to calculate the immune

scores of patients. The comparison showed that clusters 2 and 3,

which were associated with a poor prognosis, exhibited higher
B C

D E

F

A

FIGURE 2

Identification and analysis of subtypes with neutrophil characteristics in patients with HCC. (A): CDF curve of samples from the TCGA dataset.
(B): Delta area curve of consensus clustering for samples from the TCGA dataset, showing the relative change in the area under the CDF curve for
each category number “k” compared to “k-1.” The horizontal axis represents the category number “k,” while the vertical axis represents the relative
change in the area under the CDF curve. (C): Heatmap showing the sample clustering at consensus “k = 3.” (D): KM curves demonstrating the
prognosis of three subtypes in the TCGA dataset. (E): KM curves demonstrating the prognosis of three subtypes in the HCCDB18 dataset. (F): PCA
showing the distribution of three subtypes in the TCGA and HCCDB18 datasets.
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immune cell scores (Figure 4A). Subsequently, we used the

MCPcounter package to calculate scores for 10 different types of

immune cells. These results also indicated that clusters 2 and 3

showed higher immune cell scores (Figure 4B). Furthermore, we used

the Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) method to calculate scores for 22 different

types of immune cells. This analysis demonstrated significant

differences in the majority of immune cell types among the three
Frontiers in Immunology 07
subtypes (Figure 4C). Moreover, we conducted a comparison of the

expression levels of immune checkpoint genes. With the exception of

TNFSF4 and ICOSLG, the majority of the immune checkpoint genes

showed varying expression levels among the three subtypes. Notably,

clusters 2 and 3 showed higher levels of immune checkpoint gene

expression (Figure 4D). In summary, our comprehensive analyses

indicated that clusters 2 and 3, which were associated with a poor

prognosis, showed higher levels of immune infiltration.
B

A

FIGURE 3

Distribution of clinical characteristics across different subtypes. (A): Sample distribution of clinical characteristics across different subtypes in the
TCGA-LIHC cohort. The horizontal axis represents the different sample groups, while the vertical axis represents the percentage of clinical
information within the corresponding group samples. Different colors represent different molecular subtypes. (B): Sankey Diagram showing the
association between different subtypes and clinicopathological characteristics in patients with HCC.
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Analysis of inflammatory pathways among
molecular subtypes

We employed the TIDE online tool to predict the likelihood of

immune evasion in patients, where a higher TIDE score indicates a

more significant potential for immune evasion. As shown in Figure 5A,
Frontiers in Immunology 08
clusters 2 and 3, which were associated with poor prognoses, showed

higher TIDE scores compared to cluster 1, suggesting a greater

tendency for immune evasion. Since the molecular subtypes

constructed were closely associated with the immune system, we

acquired inflammation-related pathway gene sets from the KEGG

website and calculated the pathway scores using the ssGSEA method.
B

C

D

A

FIGURE 4

Comparative analysis of immune characteristics among different subtypes. (A): Comparative analysis of immune characteristics among different subtypes
in the TCGA dataset, focusing on the predicted immune scores by ESTIMATE. (B): Comparative analysis among different subtypes in the TCGA dataset,
examining the scores of 10 predicted immune cell types using the MCPcounter method. (C): Comparative analysis of immune characteristics among
different subtypes in the TCGA dataset of scores of 22 predicted immune cell types using the CIBERSORT algorithm. (D): Comparative analysis of
immune characteristics among different subtypes in the TCGA dataset, highlighting the expression of immune checkpoints across the three subtypes.
ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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As shown in Figure 5B, we observed that cluster 1 had significantly

lower inflammatory pathway scores compared to the other subtypes.
KEGG pathway analysis of
molecular subtypes

To explore the heterogeneity of patients with HCC, we obtained

KEGG pathway-related gene sets from the GSEA website and

calculated pathway scores for each patient using the R package

GSVA. By analyzing these scores, we identified multiple pathways

that showed significant differences among the three subtypes of

HCC, as shown in Figure 6A. Further details and the results of our

analysis are summarized in pathwy_p_fit.txt. Additionally, we

conducted a comparison of differential gene expression among

the different subtypes and performed GSEA analysis using the R

package clusterProfiler. Figures 6B–D show the patterns of pathway

activation and suppression observed across the distinct subtypes of

HCC. In summary, our findings demonstrated that marker genes

associated with neutrophils effectively distinguished the

heterogeneity of patients with HCC. Intriguingly, these marker

genes suggested the presence of “neutrophil characteristics”

among patients with different subtypes of HCC.
Construction of a neutrophil-derived
signature and investigation of the role of
RTN3 in HCC

Based on the identified “neutrophil characteristics” among

patients with HCC, we conducted an analysis to identify
Frontiers in Immunology 09
prognosis-related genes. Using univariate Cox regression analysis

with a significance level of P <0.001, we identified 20 genes, as

shown in Figure 7A. These genes were derived from marker genes

based on neutrophils and obtained from the TCGA database. To

develop a consistent prognostic model, we used a machine learning-

based integration program, using the 20 identified genes as input

characteristics. Specifically, we fitted 101 prediction models using

the Leave One Out Cross-Validation (LOOCV) framework. We

calculated the C-index of each model across all validation datasets,

as shown in Figure 7B. The optimal model, which combined

CoxBoost and RSF, yielded the highest average C-index of 0.671.

Further analysis focused on 10 critical genes, such as ANXA5,

ATP6V0B, GAPDH, GRB2, PRKCD, RAC1, RTN3, S100A9,

TALDO1, and TKT. We examined the expression levels of these

genes in both the TCGA dataset and other validation sets. By

employing the rfsrc function, we predicted the risk score for each

patient based on the expression levels of these 10 genes.

Subsequently, we standardized the risk scores into z-scores. Using

a cutoff of 0, we divided patients into high- and low-risk groups

within different datasets, including GSE14520, GSE116174,

HCCDB18, and TCGA-LIHC, as shown in Figure 7C. In

summary, our findings suggest that this 10-gene signature could

serve as a robust prognostic tool for patients with HCC.

The significant expression differences of RTN3 in multiple HCC

cohorts indicate an association between its expression level and HCC

patient prognosis(Figure S2). We conducted an experiment using

siRNA to manipulate the levels of RTN3 in HepG2 cells. In

comparison to the control group, the si-RTN3 group showed a

significant decrease in the expression of the RNT3 protein, as

shown in Figure 7D. The colony formation assay showed that the

proliferation ability of HepG2 cells was significantly inhibited in the
BA

FIGURE 5

Comparison of TIDE score and inflammation-related pathway score among different subtypes. ns, p ≥ 0.05; **, p < 0.01; ****, p < 0.0001.
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si-RTN3 group compared with the control group (Figure 7E).

Additionally, the Transwell assay demonstrated that there was a

decrease in the number of migrated and invaded cells in the si-RTN3

group compared to the control group (Figures 7F, G). Overall, our

findings indicate that the knockdown of RTN3 suppressed the

proliferation, migration, and invasion of HepG2 cells.
Comparison of RiskScore based on
different clinical characteristics

To examine the association between RiskScore and the clinical

characteristics of tumors, we conducted an analysis using the TCGA

dataset. Our findings revealed a positive correlation between clinical

grade and risk score (Figures 8A, B). Additionally, we compared the

high and low-risk scores across different clinical grades and

observed that patients with higher clinical grades showed higher

risk scores (Figure 8C). Subsequently, we performed both univariate

and multivariate Cox regression analyses to investigate the

prognostic significance of these clinical characteristics, as shown

in Figures 8D, E. The results indicated that T-stage (P <0.001), Stage

(P <0.001), and RiskScore (P <0.001) were all associated with

prognosis and served as independent risk factors. However, the

multivariable Cox regression analysis revealed that only RiskScore
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(P <0.001) remained significantly associated with prognosis.

Additionally, we constructed a nomogram incorporating

RiskScore, T-stage, and Stage. We assessed its performance by

calculating the area under the curve (AUC) value and found that

its predictive accuracy was similar to that of RiskScore alone

(Figure 8F). These findings indicate that our RiskScore-based

model holds significant prognostic value for patients.
Mutation features of the prognostic model

Using the R language maftools package, we generated a waterfall

plot showing the top 20 genes with mutations. The data showed

higher mutation frequencies in the high-risk group compared to the

low-risk group (Figure 9A). Furthermore, we conducted a

comparison between the high-risk and low-risk groups,

examining the distribution of homologous recombination defects

(P <0.001), fraction altered (P <0.001), number of segments

(P <0.001), and tumor mutation burden (P <0.001). As shown in

Figure 9B, there were significant differences in fraction altered,

number of segments, and tumor mutation burden between the

high- and low-risk groups. We also obtained CNV data and showed

the proportions of deletions and amplifications for the 10 genes

used in constructing the risk model (Figure 9C).
B
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FIGURE 6

Comparison of pathway characteristics among different subtypes in the TCGA dataset. (A): A heatmap showing the enrichment scores for enriched
pathways in three subtypes of the TCGA dataset. (B): A bubble plot showing the enriched pathways in cluster 1 of the TCGA dataset. (C): A bubble
plot showing the enriched pathways in cluster 2 of the TCGA dataset. (D): A bubble plot showing the enriched pathways in cluster 3 of the TCGA
dataset. ***, p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216585
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2023.1216585
B C

D

E

F

A

FIGURE 8

Clinical applications of the prognostic model. (A): Comparison of different clinical characteristics between high-risk and low-risk groups. (B): Distribution
of different clinical characteristics with increasing risk scores. (C): Comparison of risk scores among different clinical characteristics. (D): Forest plot of
univariate Cox analysis for clinical characteristics. (E): Forest plot of multivariate Cox analysis for clinical characteristics. (F): Trend of changes in AUC for
T-stage, Stage, and Risk Score for one to five years. ns, p≥ 0.05; ***, p < 0.001; ****, p < 0.0001.
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FIGURE 7

Construction of the prognostic model based on machine learning and biological functional analysis of RTN3. (A): A forest plot showing prognostic-
related genes identified in the analysis. (B): Optimal combination of machine learning-based feature selection for constructing the risk model.
(C): Kaplan-Meier curves demonstrating the high- and low-risk groups in the training and validation sets. (D): Western blot analysis showing the
expression of RTN3 protein in HepG2 cells after transfection of si-DUSP1. (E): Assessment of the proliferation activity of HepG2 cells using a colony
formation assay. (F, G): Evaluation of migration and invasion abilities of HepG2 cells using a Transwell assay. *, p < 0.05.
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Immune features of the prognostic model

We conducted an analysis to examine the correlation between

RiskScore and 28 immune cells using the ssGSEA method

(Figure 10A). Notably, several immune cells showed a significant

correlation with the RiskScore. To provide a visual representation of

these correlations, scatter plots were generated to depict the

correlation between 12 immune cells and RiskScore (Figure 10B).

Furthermore, we used the TIDE software (available at http://

tide.dfci.harvard.edu/) to assess the potential clinical effects of

immune therapy in conjunction with our risk model. Higher

TIDE prediction scores indicate a greater likelihood of immune
Frontiers in Immunology 12
evasion and a reduced possibility of benefiting from immune

therapy. As shown in Figure 10C, patients with a high RiskScore

tended to have higher TIDE prediction scores, suggesting a

diminished likelihood of benefiting from immune therapy.

Furthermore, our analysis revealed a higher proportion of high-

risk patients in the non-responsive group compared to the

responsive group (Figure 10D). Notably, the non-responsive

group exhibited higher TIDE prediction scores (Figure 10E).

These findings collectively indicate that our RiskScore-based

model has the ability to predict the response to immune therapy

and identify patients who may not derive substantial benefits

from it.
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FIGURE 9

Mutation characteristics of the prognostic model. (A): A waterfall plot of the top 20 gene mutations in high-risk and low-risk groups. (B): Comparison of
differences in homologous recombination defects, fraction altered, number of segments, and tumor mutation burden between high- and low-risk
groups in the TCGA dataset. (C): Distribution of the proportion of patients with gene CNV mutations in the TCGA dataset module. *, p < 0.05;
**, p < 0.01; ****, p < 0.0001.
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Identification of potential therapeutic
drugs for HCC

To identify candidate drugs with higher drug sensitivity, we

employed two distinct approaches using drug response data from

the Cancer Therapeutics Response Portal (CTRP) and Profiling

Relative Inhibition Simultaneously in Mixture (PRISM) datasets.

First, we conducted a differential drug response analysis by

comparing the top 10% and bottom 10% groups based on the

pharmacological profiling score (PPS). This analysis allowed us to

identify compounds with log2FC >0.10 that exhibited lower AUC

estimates in the high RiskScore group. Second, we conducted a

Spearman correlation analysis between the AUC values and the

RiskScore. We selected compounds that showed negative

correlation coefficients (Spearman’s r for CTRP and PRISM,

<-0.10 and <-0.1, respectively). The results from both approaches

consistently demonstrated that all identified compounds had lower
Frontiers in Immunology 13
AUC estimates in the high RiskScore group and were negatively

correlated with RiskScore (Figures 11A, B).
Discussion

Over the past few decades, the tumor, node, and metastasis

(TNM) staging system has played a critical role in the clinical

evaluation and treatment of cancer. It provides a framework for

describing the clinical course of cancer and categorizing patients

into different stages based on factors such as tumor size, lymph

node involvement, and distant metastases. Recently, new staging

systems have emerged, such as the eighth edition staging system by

the American Joint Committee on Cancer. The choice of a staging

system is important as it guides treatment selection and prognostic

evaluation based on the individual circumstances of the patients.

With advancements in molecular biology and immunology, the
B
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FIGURE 10

Immune characteristics of the prognostic model. (A): Correlation analysis between the scores of 28 immune cells and risk scores. (B): A scatter plot
analysis of the correlation between risk scores and immune cells. (C): Comparison of risk scores with TIDE scores. (D): Comparison of the
distribution of immune therapy response, non-response, and high- or low-risk groups. (E): Comparison of TIDE scores between the immune therapy
response and non-response groups. ****, p < 0.0001.
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treatment for HCC has become more diverse, including the use of

anti-angiogenic drugs like sorafenib and combination targeted

therapy with immune checkpoint inhibitors (24). This diversity

highlights the need for better-personalized assessment methods to

guide clinical decisions for patients. However, the identification of

reliable biomarkers that can accurately identify “personalized”

patients with HCC still requires further exploration. We deem it

unfeasible to extrapolate this genetic feature to other tumor types

due to the variability of biomarkers in different types and subtypes

of tumors. Unique biological and genetic features in each tumor

type may affect the expression of tumor biomarkers. Consequently,

a more comprehensive analysis and assessment are necessary before

exploring the suitability of biomarkers in specific tumors. Future

research aims to identify more generalized and broadly applicable

neutrophil characteristics, which will offer precise and convenient

guidance for studying tumor subtypes.

Currently, gene signature models have gained widespread

utilization in predicting and diagnosing various diseases,

including cancer, cardiovascular disease, and diabetes. These

models offer the advantage of simultaneously assessing the

expression levels of multiple genes using high-throughput

technology, allowing for comprehensive information gathering

and a deeper understanding of the underlying biological

mechanisms of diseases. By considering multiple genes, gene
Frontiers in Immunology 14
signature models can mitigate the impact of changes in the

expression level of a single gene on the prediction outcomes,

thereby improving the accuracy and reliability of the predictions.

Recent studies have emphasized the significance of neutrophils as

both a prognostic indicator and a target for immune therapy in

HCC. However, there is a paucity of studies that accurately predict

patient prognosis and determine the efficacy of drug treatment

using large-scale machine-learning models specific to HCC. To

address this gap, our study aimed to investigate the association

between the expression characteristics of neutrophil markers and

their potential for benefiting from specific drug therapies in HCC.

Recent advancements in high-dimensional single-cell analyses

have provided insights into the heterogeneity of neutrophils present

in both the circulation and tumor microenvironments. These

studies have revealed variations in transcriptomics and surface

protein expression among neutrophils, which can impact the

efficacy of immune therapies in patients with cancer (11). The

pivotal role of neutrophils in unraveling the heterogeneity of tumors

through the identification of molecular markers on their surface has

been elucidated. Based on these findings and the potential of

neutrophils as effective biomarkers for distinguishing the

heterogeneity of tumors, our study aimed to classify patients with

HCC based on the expression of neutrophil marker genes at the

transcriptome level. The results of the analysis showed significant
B

A

FIGURE 11

(A): Results of Spearman’s correlation analysis and differential drug response analysis of CTRP-derived compounds. (B): Results of Spearman’s
correlation analysis and differential drug response analysis of PRISM-derived compounds. Note that lower values on the y-axis of boxplots indicate
greater drug sensitivity. *, p < 0.05; ***, p < 0.001.
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differences among patients belonging to different subtypes after

stratification. Notably, these subtype differences correlated with

variations in patient survival, which were further validated across

multiple datasets. These findings highlight the feasibility of subtype

differentiation based on neutrophil characteristics.

Furthermore, this study further explored the biological

differences among the different subtypes of HCC and identified

significant differences in signaling pathways by comparing the

activity levels of key signal pathways. These findings imply that

neutrophils may have a crucial role in the dysregulation of signaling

pathways within tumors. However, intriguingly, when examining

clinical pathological characteristics, we observed significant

differences only in tissue grade among patients classified into

different subtypes. On one hand, this observation suggests a

potential correlation between subtype classification and the

grading of tumors, indicating that neutrophils may serve as a key

factor influencing the grading of patients with HCC—a relationship

that has not been previously reported. It is important to note that

these results may also be influenced by sample size or other factors,

warranting further investigation to elucidate the specific underlying

mechanisms. Nonetheless, the analysis outcomes of this study

vividly demonstrate the presence of distinct “neutrophil

characteristics” among patients with different subtypes of HCC.

Based on the feasibility of using “neutrophil characteristics” for

the classification of HCC, this study employed univariate Cox

regression analysis and a machine learning-based integration

program to screen 20 prognosis-related genes derived from

characteristic neutrophil genes. Subsequently, a prognostic model

was constructed using 10 essential genes. By predicting the

expression values of these 10 genes in the TCGA dataset and

validation gene set, patients from different datasets were

successfully classified into high-risk and low-risk groups. The

validation across multiple datasets consistently demonstrated that

the high-risk group exhibited a poorer prognosis, while the low-risk

group showed a better prognosis.

Furthermore, significant variations were observed in immune

cell infiltration levels and immune therapy responses among

different cells. Similar research methodologies have been adopted

in previous studies to investigate the long noncoding RNA

(lncRNA) characteristics of patients with colorectal cancer

(CRC), enabling effective evaluation of recurrence, prognosis,

chemotherapy response, and immune therapy. These findings are

consistent with the results obtained in our study (20). However,

lncRNA has inherent challenges such as a low expression level, long

and highly variable sequences, and complex detection and

measurement processes. In contrast, mRNA-based gene models

offer greater clinical translatability and the potential for in-depth

research in the future. Additionally, while this study employed

multiple datasets for verification, it primarily focused on liver

cancer research. In future studies, it is important to validate the

generalizability of the model across a broader range of cancer types

using additional datasets. Moreover, it is worth noting that this

study solely relied on RNA expression data and did not consider

other genetic and environmental factors that contribute to the

development of liver cancer. Therefore, further refinement of the

model is necessary to improve its accuracy by incorporating
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additional relevant factors. Nevertheless, the existing research

results presented in this study confirm and emphasize the

feasibility and promising clinical application prospects of the

methodology used.

In addition to identifying the “neutrophil characteristics” of

HCC, this study also conducted a comprehensive investigation of

the gene RTN3, which has a significant impact on prognosis. RTN3

is a membrane protein that plays a crucial role in the formation of

the endoplasmic reticulum and the regulation of membrane protein

acyltransferase activity in normal cells. Extensive research has

focused on the role of RTN3 in Alzheimer’s disease, where

transgenic mice overexpressing RTN3 show neuroinflammatory

abnormalities. Additionally, studies have highlighted the

interaction between RTN3 and the oncogene Ras within the

endoplasmic reticulum. Despite some studies reporting on RTN3

in research on HCC, there remain controversies surrounding its

role. For example, certain studies have reported significant

upregulation of the levels of RTN3 mRNA and proteins in tumor

tissues as a risk factor in risk models (25). Conversely, another study

showed that low expression of RTN3 in patients with HCC was

significantly associated with poor prognosis, suggesting a potential

tumor suppressor role for RTN3 (26). Based on previous studies, it

is hypothesized that the role of RTN3 in HCC is likely influenced by

the viral infection status of patients with HCC. On the one hand,

studies have reported that the hepatitis B virus (HBV) can induce

non-mutational inactivation of the p53 signaling pathway by

interacting with RTN3, which is a crucial mechanism promoting

the occurrence and development of HCC. Additionally, a study has

demonstrated that RTN3 can directly interact with the non-

structural protein of the hepatitis C virus (HCV), leading to the

limitation of HCV replication. Therefore, viral infection status may

serve as a key determinant of the role of RTN3 in HCC, although the

exact underlying mechanisms still require further investigation. In

summary, the research on the role of RTN3 in tumors remains

relatively limited, and the associated mechanisms and biological

significance necessitate further investigation. The results of this

study indicate that the knockdown of RTN3 effectively inhibits the

proliferation, invasion, and metastasis of tumor cells, thereby

confirming the importance of the genes identified in the risk

model and providing initial insights into the role of RTN3 in HCC.

The primary objective of this study is to demonstrate the

effective stratification of patients with HCC using neutrophil

characteristics of the genes. The application of NDS is

theoretically more efficient in clinical decision-making as it

primarily involves commonly expressed transcriptome genes. This

approach offers cost-effective and personalized molecular feature

descriptions to aid in formulating effective treatment strategies and

assessing disease progression. However, the study has certain

limitations that need to be considered. Firstly, differences in

sample sources, data preprocessing, and analysis methods may

lead to variations in gene signatures, affecting the stability and

reproducibility of predictions. Secondly, gene signature models rely

on differences in gene expression levels and may overlook other

types of genetic variation, post-transcriptional modifications, and

other factors that can influence predictions. Therefore, when

applying gene signature models, it is important to acknowledge
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216585
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2023.1216585
their limitations and complement them with other biological

knowledge and experimental results for a comprehensive analysis.

Thirdly, although HepG2 cells have been widely used in the

research of HCC, it is essential to recognize that this model may

not fully replicate all aspects of human conditions. Future studies

will explore the pathogenesis and progression of HCC by using an

RTN3 knockout mouse model. Nonetheless, based on extensive

bioinformatics analysis and machine learning algorithms, a stable

and powerful feature has been developed to effectively describe the

“neutrophil characteristics” of patients with HCC. The NDS model

shows promise as a tool for optimizing decision-making and

monitoring plans for individual patients with HCC. This study

provides a new perspective on understanding the role of neutrophils

in HCC and establishes a prognostic model based on NDS, which

can serve as a valuable tool for evaluating treatment efficacy and

prognosis, offering new ideas and strategies for the treatment and

prognosis assessment of patients with HCC.
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