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Since the late 1970s, there has been an alarming increase in the incidence of

asthma and its morbidity and mortality. Acute obstruction and inflammation of

allergic asthmatic airways are frequently caused by inhalation of exogenous

substances such as allergens cross-linking IgE receptors expressed on the

surface of the human lung mast cells (HLMC). The degree of constriction of

human airways produced by identical amounts of inhaled allergens may vary

from day to day and even hour to hour. Endogenous factors in the human mast

cell (HMC)’s microenvironment during allergen exposure may markedly

modulate the degranulation response. An increase in allergic responsiveness

may significantly enhance bronchoconstriction and breathlessness. This review

focuses on the role that the ubiquitous endogenous purine nucleotide,

extracellular adenosine 5’-triphosphate (ATP), which is a component of the

damage-associated molecular patterns, plays in mast cells’ physiology. ATP

activates P2 purinergic cell-surface receptors (P2R) to trigger signaling

cascades resulting in heightened inflammatory responses. ATP is the most

potent enhancer of IgE-mediated HLMC degranulation described to date.

Current knowledge of ATP as it relates to targeted receptor(s) on HMC along

with most recent studies exploring HMC post-receptor activation pathways are

discussed. In addition, the reviewed studies may explain why brief, minimal

exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably

lead to intense clinical reactions. Furthermore, potential therapeutic

approaches targeting ATP-related enhancement of allergic reactions

are presented.
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human lung mast cells, LAD2 cell line, P2 purinergic receptors, allergic degranulation,
FcϵRI, PI3K(d), P2Y11R
Abbreviations: eATP, extracellular adenosine 5’-triphosphate; ATP; 2-MeSATP, 2-methylthio-ATP; ATPgS,

adenosine 5’-(3-thio)triphosphate; HMC, human mast cell; HLMC, human lung mast cell; PDK-1,

phosphoinositide-dependent kinase-1; PI3K(d), phosphoinositide 3-kinase type d; P2XR, purinergic

receptor P2X ligand-gated ion channel; P2YR, metabotropic purinergic P2Y receptor; P2Y11R,

metabotropic purinergic P2Y11 receptor; CD39, ectonucleoside triphosphate diphosphorylase-1; CD73,

ecto-5’-nucleotidase; WAS, weak allergic stimulation.
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Introduction

Within minutes of allergic activation of IgE receptors expressed

by HMC, the cells release histamine and a spectrum of other pro-

inflammatory mediators to induce airway bronchoconstriction and

contribute to acute and chronic lung inflammation (1–3). Preformed

cytoplasmic granular mediators are released over seconds (e.g.,

histamine and TNF alpha), select chemicals are newly formed over

minutes (e.g., leukotrienes and other lipids), and other mediators

including cytokines over hours (e.g., Interleukin (IL) -5, IL-13, IL-8,

and GM-CSF) (1, 4). Depending on the strength of the stimulation,

the localized inflammatory milieu, and the organs involved, mast cell

(MC) activation can result in multiple responses including edema,

hives, bronchoconstriction, or systemic anaphylaxis, which can not

only decrease the quality of life but may also be life-threatening.

Many publications have described studies of “human mast cells.”

Most of these studies have used neoplastic MC (5–7) or cells cultured

in vitro derived from differing precursor cells (e.g., cord blood,

peripheral blood, and fetal liver), using culture media that include

various combinations of cytokines (8–19). Relatively few studies used

freshly isolated and purified human lung mast cells (HLMC) as a

model of the organ-specific responses of the human lung (20). Also,

there is increasing appreciation that MC are heterogeneous, and their

biology can differ markedly not only between species (e.g., mouse vs.

human) but also between MC isolated from different human organ

sources (e.g., skin vs. lung), within the same organ (e.g., gut), and

freshly isolated organ-derived MC vs. in vitro-derived MC (8, 21–26).

Progress in understanding HLMC biology has been extremely

slow because of difficulties in procuring freshly resected human

specimens, time-consuming and technical challenges associated

with the isolation and purification of these cells, and their limited

survival in vitro (i.e., 2-4 days). Our seminal report on the methods

of isolation and purification of HLMC (27) facilitated many

subsequent studies on their biology including ultrastructure (28–

32), heterogeneity (33–35), mediators’ release biochemistry (36, 37),

secretagogues (38–45), mediators (46–55), and pharmacological

modulation of mediators’ release (40–42, 45, 56).

The text below focuses on the progress made in recent years in

our understanding of the critical interaction of the extracellular

purine nucleotide adenosine 5′-triphosphate (ATP), with IgE-

mediated activation of the HLMC (57, 58) and intracellular signal

transduction pathway associated with IgE receptor activation in

LAD2 cell line (6, 59, 60). Our own interest in this regard mostly

relates to allergic asthma, but other important aspects of ATP’s role

in pulmonary pathophysiology have been investigated including

cystic fibrosis, pulmonary embolism, cough, bronchoconstriction,

pulmonary fibrosis, lung cancer, mechanical ventilation-induced

lung injury, and pulmonary hypertension (61–68).
Intracellular ATP

Intracellular ATP plays a critical role in cellular metabolism and

energetics (69). ATP is found at a concentration of 5–10 mM in

every cell, except for platelets, in which its concentration is far

higher. The concentration of ATP in chromaffin cells’ secretory
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granules approaches 100 mM; platelets’ ATP level is up to 500 mM.

However, the concentration of extracellular ATP is only

approximately 10 nM (70)(see below).
Extracellular ATP

Release of ATP from cells
In 1929, Drury and Szent-Gyorgyi described the effects of a

simple extract of heart muscle and other tissues on the

cardiovascular system. The active ingredient in this extract was

identified as adenylic acid (71). Subsequent studies have shown that

adenosine and ATP were the most active vasodilators and

bradycardic ingredients of these extracts (72–74). ATP is released

from cells by various mechanisms under physiologic and

pathophysiologic conditions in response to different stimuli or

micro-environmental conditions. These include exocytosis, large

membrane pores, and specific trans-cell membrane ionic channels

(75, 76). There are several sources of extracellular ATP (23, 77).

Large amounts of ATP are found in platelets and ATP is released

during platelet activation. Upon platelet aggregation, the serum

concentration of ATP and adenosine diphosphate (ADP) reaches 50

uM but is much higher at the cell surface (78–80). ATP is also stored

in red blood cells (RBC) from which it is released under conditions

of imbalance between O2 supply and O2 demand (81–84). In

addition, several biologic substances as well as increased blood

flow can induce the release of ATP from vascular endothelial cells

(77, 85–88) and smooth muscle cells (89, 90). Other ATPs release

stimuli and cellular sources including mechanical deformation of

cells, ischemic cells, immune cells, and necrotic/apoptotic cells (23,

91–94). Pannexin channel and connexin hemichannel play a critical

role in this release (95). ATP is also released from neural elements as

a co-transmitter and from exercising skeletal muscles (96). In the

heart, ATP is released into the extracellular fluid under various

conditions. Specifically, ATP release is evoked by sympathetic nerve

stimulation and by catecholamines (97–101). In addition, ATP is

released in the heart during acute myocardial ischemia (102) and

from cardiac myocytes in response to hypoxia (103, 104).

Importantly, during inflammation, ATP is released from

inflammatory cells. For example, elevated extracellular levels of

ATP have been found in the lungs of COPD patients (105, 106).

Similarly, pulmonary levels of ATP were increased in a mouse

model of smoke-induced acute lung inflammation and emphysema

(107–109).

Degradation of extracellular ATP
Extracellular ATP is rapidly and sequentially degraded by

ectonucleotidases including ectonucleoside triphosphate

diphosphorylase-1 (CD39), and ecto-5’-nucleotidase (CD73).

CD39 hydrolyzes extracellular ATP and ADP to AMP. CD73

catalyzes the hydrolysis of AMP, releasing inorganic phosphate

and adenosine, which exerts its own effects by activating P1

purinergic receptors (A1, A2a, A2b, and A3) (110–113).

CD73 is widely expressed in a variety of tissues, including the

colon, kidney, brain, liver, heart, lung, spleen, and bone marrow

(114). CD39 is expressed by multiple cell types including epithelial,
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endothelial, and immune cells. It is highly expressed in different

human tumor types (115). Adenosine is rapidly eliminated from the

extracellular space by ectoadenosine deaminase and actively

transported into cells (109). Therefore, the levels of CD39 and

CD73 and their enzymatic activities play a critical role in

controlling the duration and magnitude of autocrine and

paracrine effects of ATP and adenosine. Multiple studies have

shown that the level of these enzymes is altered during

pathophysiologic conditions. For example, increased expression of

CD39 and CD73 by pulmonary epithelial and endothelial cells was

observed during high inspiratory pressure level-induced lung injury

(116). Also, upregulation of CD39/CD73 expression has been

observed in patients with small-cell lung cancer and patients with

a broad spectrum of solid cancers (117).

ATP: A paracrine and autocrine agent
Extracellular ATP acts as a paracrine and autocrine agent (23,

91, 118), the actions of which are mediated by cell surface

purinergic receptors (P2R) (109). The latter are divided into two

families: P2Y: seven trans-cell membrane domain G-protein

coupled receptors (metabotropic), and P2X: trans-cell membrane

cationic channels (ionotropic). Eight P2YR and seven homotrimeric

P2X receptors (P2X1-7) have been cloned heretofore (Figure 1).

Multiple heteromeric assemblies comprising P2X subunits have

been described including P2X2/P2X3, P2X4/P2X6, P2X2/P2X6, and

P2X1/P2X5, but not all have been detected in native tissues (119).

In contrast to P2XR, which is principally activated by ATP,

P2YR shows striking differential sensitivity for varying nucleotides.

Single cells commonly express more than one P2YR, for which a

given nucleotide has an affinity. Pharmacologically, P2YR are

subdivided into adenine-nucleotides sensitive group responding

mainly to adenosine diphosphate (P2Y1R, P2Y12R, and P2Y13R:

ADP), adenosine triphosphate (P2Y11R: ATP), uridine
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triphosphate (P2Y4R: UTP), uridine diphosphate (P2Y6R: UDP),

UDP and sugar derivatives sensitive receptor (P2Y14R: UDP-

glucose and UDP-galactose), and receptors manifesting mixed

agonist affinity (P2Y2R: ATP=UTP) (120) (Table 1). ATP is also

an antagonist or partial agonist at the P2Y1 receptor (121).

Furthermore, whereas ATP activates human P2Y11 receptors,

ADP is a canine P2Y11 receptor agonist (122). P2Y1, -2, -4, -6,

and -11 receptors belong to the P2Y1-like subfamily and couple to

Gq/11, Go, G12/13, and Gs protein, whereas P2Y12, -13, and -14

receptors are categorized as P2Y12-like and couple to Gi/o protein.

ATP is the only agonist that can activate both P2XR and P2YR (23,

123) (Table 1).

Inhalation of aerosolized ATP triggered bronchoconstriction in

healthy and more so in asthmatic human subjects; in the latter, ATP

was 50-fold more potent than methacholine and 87-fold more

potent than histamine in producing a 15% decrease in FEV1

(124). In 2002, based on multiple studies in both canine and

human models (124–126), a mechanistic role of ATP in

pulmonary disorders was proposed for the first time in a seminal

review, and termed “Adenosine 5′-triphosphate axis in obstructive

airway diseases” (127, 128).
ATP enhances IgE-mediated
HLMC degranulation

Early experiments in HLMC suggested that ATP plays an

important modulatory role in degranulation as measured by the

percentage of total cellular histamine released within minutes

following IgE-mediated challenge (58). In these experiments,

freshly purified HLMC (10-50 x 103/tube) were incubated with or

without purine nucleotides for 15 min prior to a 20 min challenge

with anti-IgE (3 ug/ml), calcium ionophore A23187 (0.1 ug/ml), or

buffer control. Cells were exposed to ATP, UTP, the stable ATP

analogs a, b methylene-ATP (a, b-MeATP), (b, g methylene-ATP

(b, g-MeATP), and 2-methylthio-ATP (2-MeSATP), as well as

adenosine, the product of ATP’s degradation.

Neither the nucleotides (10-7-10-3M) nor adenosine (10−6–10−3M)

directly triggered degranulation, contrary to results obtained using

murine mast cell models (129–133). In HLMC, adenosine exhibited a

bimodal effect on anti-IgE-induced histamine release, enhancing it at

10−6 to 10−4 M (P > 0.05, NS) and inhibiting it at 10−3 M (P < 0.05)

(58), in congruence with prior reports on HLMC (41, 134, 135). ATP

(10−4 M) enhanced anti-IgE–induced histamine release (10.9 ± 2.7% to

19.2 ± 2.9%, n = 20, P < 0.01). Importantly, ATP’s effects were most

striking in cells manifesting low (< 3%) IgE-mediated net histamine

release termed a weak allergic stimulation (WAS). When WAS-

dependent histamine release was “low”, i.e., 1.8 ± 0.4%; range: 0.5–

2.9%; n=6), ATP (10-4 M) enhanced histamine release to 13.5 ± 2.7%

(750% enhancement). In contrast, ATP had no effects on the ionophore

A23187-induced histamine release (n = 10). All adenine nucleotides

enhanced IgE-mediated HLMC histamine release, but ATP was the

most potent followed by 2-MeSATP, a, b-MeATP, and b, g-MeATP.

This potency order strongly suggests that the action of ATP is mediated

by a P2YR subtype (136). Further evidence against the involvement of a

P2XR, especially P2X7R, was the failure of the selective P2XR
FIGURE 1

P1 and P2 Purinergic Receptors. Extracellular signals triggered by
ATP, its hydrolytic products ADP and adenosine, and other
nucleotides and nucleotide sugars (UTP, UDP, and UDP-glucose)
regulate physiological and pathophysiological processes. Two
families of purinoceptors are shown. P1R consists of four subtypes
of adenosine-activated receptors. P2R is divided into P2XR
ionotropic ligand-gated ion channel receptors, principally activated
by ATP, P2YR, and G-protein-coupled (metabotropic) receptors.
Also shown are multiple heteromeric assemblies comprising P2X
subunits, but not all have been detected in native tissues (119).
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antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid

(PPADS) (137) to affect ATP’s enhancement.

The P2YR- agonist UTP also significantly enhanced anti-IgE–

induced histamine release, which is most consistent with a P2YR

and not P2XR mediation. However, UTP was less potent than ATP.

Control anti-IgE–induced histamine release of 14.9 ± 3.9% was

enhanced by ATP (10-4 M) to 23.0 ± 4.7% (p < 0.05), compared with

19.2 ± 5.0% (p < 0.05) in the presence of an equimolar

concentration of UTP. This result did not support sole mediation

by P2Y2R, of which UTP is the preferred agonist over ATP (138).
HLMCs fail to exhibit functional
ecto-ATPase activities

Over the course of 15-minute incubations with ATP, HLMC’s

media did not contain breakdown products of ATP, indicating that

the histamine-release enhancement by ATP was not mediated by

ADP, AMP, or adenosine. It should be noted that under identical

experimental conditions, products of ATP’s degradation were

found in media containing whole fragments of the human lung (58).
Expression of P2Rs in HLMC

Further support for a P2YR mediating the effects of ATP on

IgE-mediated degranulation enhancement from HLMC was the

constitutive expression of P2Y1R and P2Y2R and weak expression

of P2Y4 demonstrated by reverse transcription–polymerase chain

reaction (RT-PCR) of freshly purified HLMC (58). A receptor,

previously known as P2Y7, was weakly manifested in the RT-PCR

assay in one of five individual fresh isolations of HLMC. P2Y7 was

later identified as the receptor for leukotriene B4 (B-LTR) (139).

Feng et al. reported the expression of P2Y1, P2Y2, P2Y11, P2Y12,

and P2Y13 by RT-PCR in cord blood-derived human MC and

highlighted the potential roles of different P2YR in complementary

or opposing functions in cell activation (140). Wareham et al.

reported P2X7 expression by RT-PCR in HLMC that were

cultured in a cytokine mix pre-experimentation. In addition,
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using a whole-cell patch-clamp technique, they described a P2X7-

like non-desensitizing current in response to high concentrations of

ATP (1–5 mM). P2X1 and P2X4 transcripts were also found in their

HLMC preparations (141).

Stimulation of the P2YRs can result in the activation of two

different pathways: one that involves pertussis toxin (PTX)-sensitive

G protein(s) and adenylyl cyclase (Gi-coupled; P2Y12, P2Y13, and

P2Y14), and the other that involves PTX-insensitive G protein and

phospholipase C (Gq-coupled; P2Y1, P2Y2, P2Y4, P2Y6, and Gq/s-

coupled; P2Y11) (142). Because PTX failed to modify the enhancing

effect of ATP on IgE-mediated histamine release, it seems likely that

the latter pathway mediates the effect of ATP (58). However, the

exact post-P2YR mechanism(s) by which this pathway(s) operates

to enhance IgE-mediated degranulation in HLMC remains to

be elucidated.
ATP enhances IgE-mediated LAD2
HMC degranulation

Though P2YRs are expressed by HMC of different sources (58,

140, 143), until recently, only one receptor (i.e., P2Y14R) in LAD2

cells was proposed to be linked to allergen/IgE-induced

degranulation (60). To further elucidate the specific receptor(s)

and, importantly, post-receptor pathways accountable for

nuc l eo t ide -P2YR med ia t ed e ff e c t s on IgE-med ia t ed

degranulation, sufficient cell numbers were needed beyond what

the HLMC model could provide. The LAD2 human-derived MC

line was developed at the NIH from a patient with systemic

mastocytosis (5, 6, 10). As recently reported, LAD2 cells express

five P2YRs (P2Y1, P2Y6, P2Y11, P2Y12, and P2Y14) along with

three P1Rs (A2aR, A2bR, and A3R), and two P2XRs (P2X1 and

P2X7) (59). LAD2 cells express CD39 but not CD73, suggesting

extracellular nucleotides could be degraded to AMP but not to

adenosine (59).

In non-sensitized LAD2 cells challenged with P1R and P2R

agonists [adenosine, ATP, ADP, UTP, UDP, 2-methylthio-ATP (2-

MeSATP)], and the P2Y11R non-hydrolysable agonist [adenosine 5’-

(3-thio) triphosphate (ATPgS)] at physiological concentrations (1–
TABLE 1 P2Y Receptor Family.

RECEPTOR
PREFERRED
AGONIST

G-PROTEIN
COUPLING

COMMENTS

P2Y1 ADP>>ATP Gq ATP can be an agonist, depending on receptor reserve (antagonist or partial agonist).

P2Y2 ATP=UTP Gq (+ Gi) No agonist activity of ADP

P2Y4 UTP Gq (+ Gi) ATP is a partial agonist in humans and a full agonist in rat

P2Y6 UDP Gq Uracil nucleotides play a role as intercellular messengers independent of adenine nucleotides.

P2Y11 ATP Gq + Gs No murine P2Y11 gene

P2Y12 ADP Gi

P2Y13 ADP Gi

0P2Y14
UDP-Glucose
UDP-Galactose

Gi
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100 mM), none of the agonists alone triggered degranulation as

measured by histamine or beta-hexosaminidase release. High

concentrations (1mM) of BzATP, a P2X7R agonist, triggered

degranulation in non-sensitized LAD2 cells. Sensitized LAD2 cells

were then challenged in the absence and presence of P2YR agonists,

using a predetermined low concentration of antigen to produce a

weak allergic stimulation (WAS) and a low level of degranulation

(<10% release). As noted above for HLMC, ATP’s enhancement was

most pronounced under WAS conditions; only the P2Y11R non-

hydrolyzable agonist, ATPgS (144–147), mimicked the effects of ATP

and produced a net 7-fold increase in release (n = 4; p < 0.01). The

failure of UTP and ADP to enhance the release of histamine excluded

the involvement of their respective receptors, P2Y1R, P2Y2, P2Y4R,

P2Y12R, and P2Y13R. P2Y11R protein expression by LAD2 cells was

confirmed by Western blot. The effects of ATPgS were dose-

dependently inhibited by NF157, a P2Y11R antagonist (148, 149).

Further evidence for P2Y11 as the receptor mediating the

degranulation-enhancing effect of ATP in LAD2 cells is its known

coupling to both Gq/11 and Gs proteins that are known to be linked to

induction and suppression of MC degranulation, respectively.

None of the P2YR agonists tested in LAD2 cells, including high

concentrations of ATPgS (1000 mM) enhanced the WAS-induced

intracellular Ca2+ mobilization, which is an essential component of

activated FcϵRI-induced degranulation. The effects of ATPgS on the

phosphorylation of key kinases related to intracellular PI3K(d)’s
activation cascades showed that both PI3K(d) and Akt were

phosphorylated by ATPgS and are further upregulated by WAS,

especially in the case of Akt. However, PDK-1, which is known to be

a link between PI3K(d) and Akt, was not phosphorylated. These

data indicated that the P2YR-mediated enhancement effect on IgE-

mediated degranulation in an HMC is via the PI3K/protein kinase B

pathway (Figure 2). In further experiments, a shRNA directed

against PI3K(d) and a PI3K(d) inhibitor, compound 15e (150,

151), suppressed ATPgS’s effect on WAS-induced degranulation

enhancement, the latter in a concentration-dependent manner. In

additional experiments, an antagonist of the P2Y11R and NF157

significantly inhibited the enhancing effects of ATPgS (100 mM) on

WAS-induced degranulation and experiments using siRNA

knockdown of the P2Y11R, which itself abolished the enhancing

effects (59).
Discussion

Historical perspective

Over the past four decades, adenosine, but not adenine

nucleotides, has received considerable attention for a potential

role in human allergies and asthma (41, 57, 130, 134, 135, 152–

156). In 1996, Pelleg and Hurt showed for the first time that

extracellular ATP stimulates vagal sensory nerve terminals in the

canine lungs by activating P2XR (125). Subsequent studies have

indicated that this action of ATP leads to bronchoconstriction and

cough and is probably also pro-inflammatory due to the localized

release of neuropeptides via the axon reflex (62, 157, 158). The

suggestion that this latter pathway could be mechanistically
Frontiers in Immunology 05
involved in asthma (159) prompted us to investigate the potential

effects of extracellular ATP on HLMC. Our early findings indicated

that ATP potentiates IgE-mediated degranulation from HLMC

(58). Subsequent studies have shown a similar phenomenon in

LAD2 cells, which was not mediated by adenosine, which is the

product of ATP’s degradation by ecto-enzymes. Since then,

additional studies have investigated the role of extracellular and

intra-MC ATP in MC’s role in allergic inflammation (160).
Mechanisms of actions of ATP

Mediation by P2R
ATP is unimodal, only enhancing degranulation, whereas

adenosine is bimodal; at high concentrations, it inhibits

degranulation and at low concentrations, it potentiates

degranulation. At equimolar concentrations, ATP is more potent

than adenosine in enhancing HMC degranulation (57–59). ATP’s

enhancing effects on IgE-mediated degranulation in freshly isolated

HLMC, without exposure to varied cytokine mixtures over days to

weeks in cultures, is substantial and reproducible. The specific P2R

subtype (s) mediating this degranulation-enhancing effect in HLMC

remain unknown, but several lines of evidence strongly suggest the

involvement of P2YR and not P2XR. It is also possible that two or

more P2YRs are activated in concert during different physiologic

conditions. Along these lines, Feng et al. reported the expression of

multiple P2YRs in human cord blood-derived MC, including

P2Y1R, P2Y2R, P2Y11R, P2Y12R, and P2Y13R, that could play

complementary and opposing functions during mast cell activation

(140). Regrettably, the difficulties involved in procuring specimens

of human lungs and isolating and purifying HLMC stymied efforts

to fully elucidate the relevant mechanisms of ATP’s enhancement of

the immune reaction-dependent MC degranulation.

More recently, insights into pathways involving P2YR

expressed by HMC were obtained by quantifying the effects of
FIGURE 2

P2YR11 Modifies a WAS in LAD2 Human MC. This schematic shows
that P2Y11R, an endogenous purine (ATP) receptor, modulates the
enzymatic cascade between PI3K(d) and Akt, leading to the
enhancement of a weak allergic stimulus (WAS). PDK-1, though a
known link between PI3K and Akt, is not phosphorylated and is not
involved in the degranulation enhancement.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216580
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schulman et al. 10.3389/fimmu.2023.1216580
ATP on LAD2 cells, which are proliferating neoplastic HMC lines.

However, LAD2 cells are more analogous to MCTC-type HMC

which predominate in skin and other organs and represent a

distinct minority population in the human lung where MCT

predominates (25, 161–163). That notwithstanding, LAD2 cells

do show similarity to HLMC: ATP does not trigger degranulation

of these cells by itself as it does in murine MCs (130, 132, 141, 164),

and ATP-induced enhancement of IgE-mediated degranulation is

observed in both HLMC and LAD2 cells.

There is no evidence for P2X7R expression in freshly isolated

HLMC which contrasts with the positive RT-PCR for P2X7R and

functional activity under whole-cell patch clamp conditions

reported in cultured HLMC by Wareham et al. (141). The latter

also reported that HLMC express P2X1R and P2X4R and

suggested that the differential findings related to P2X7R could

be the result of different cell isolation techniques and/or

differences in HLMC receptor expression at the time of fresh

isolation vs. the pre-experimentation culture of the cells in

cytokine-containing mixtures. However, we have performed

long-term HLMC culture (2 weeks to 4 months) in a medium

containing a combination of Stem Cell Factor and IL-4 (56) and

still failed to identify the expression of P2X7R using RT-PCR. By

contrast, RT-PCR assays showed that the HMC-1 mast cell

leukemia line (58) and the LAD2 cell line do robustly express

P2X7R, and in the latter’s case, when challenged with BzATP

triethylammonium salt, the prototypic P2X7R agonist will lead to

degranulation. This agonist failed to trigger degranulation in

HLMC (58).

Matsuoka et al. (165) and Yoshida et al. (166) clearly

demonstrated that P2X4R activation potentiated Mas-related G

protein-coupled receptor X2 (MrgprB2)-mediated pseudo-allergic

responses in murine MC. MrgprB2 is the mouse ortholog of human

MRGPRX2. However, few reports have demonstrated potentiating

effects on P2X4R-stimulated allergic responses in HMC. Bonvini

et al. reported that a Transient receptor potential cation channel,

subfamily V, member 4 (TRPV4) agonist will cause ATP release

from, but not contraction of, isolated airway smooth muscle.

Smooth muscle contraction required co-incubation with HLMC.

TRPV4-mediated ATP release by the airway smooth muscle-

stimulated HLMC to release cysteinyl leukotrienes via a P2X4R-

dependent mechanism which subsequently induced smooth muscle

contractions in an IgE-independent fashion (167). In any case, these

reports suggest that P2X4R, but not P2X7, expressed on MC may

also be associated with pathological effects.

Additional evidence for a P2YR subtype(s) and not a P2XR

subtype mediating the effects of ATP on HLMC goes beyond

transcriptional data. Specifically, the pattern of pharmacologic

responsiveness to stable analogs of ATP (i.e., ATP > 2-MeSATP >

a, b -MeATP > b, g-MeATP) is consistent with mediation by P2YR

and not P2XR (23, 91, 118, 136). Second, we examined the putative

P2XR-selective antagonist PPADS (137) on ATP’s effects on

enhancing IgE-mediated HLMC degranulation. The failure of this

agent to influence ATP-induced enhancement of degranulation

a long wi th the prev ious ly s ta ted fa i lu re of BzATP

triethylammonium salt to stimulate HLMC release further argues

against the involvement of P2XR.
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ATP-induced enhancement of IgE-mediated degranulation in

LAD2 cells shows responses linked to P2Y11R activation. This

conclusion was based on (i) the robust expression of P2Y11R, (ii)

the lack of enhancing effect of ADP and UTP, which excluded

P2Y1R, P2Y2R, P2Y4R, P2Y12R, and P2Y13R, (iii) strong

enhancing effects of ATPgS, which acts as an agonist at the

P2Y11R (145, 168, 169), (iv) the marked inhibition of ATPgS’
effects by NF157, which is a selective P2Y11R antagonist (148, 149),

and (v) the fact that P2Y11R is coupled to both Gq/11 and Gs

proteins (118), the former mediating enhancement of allergen-

induced degranulation.

Gao et al. (60) reported that P2Y11R is the most robustly

expressed among P2YRs in LAD2 cells, and P2Y11R agonists,

including ATPgS, do not directly trigger degranulation. Gao et al.

also investigated the role of P2YR in ATP’s enhancement of allergic

degranulation in LAD2 cells. They failed to find an effect of ATPgS.
However, their test dose was at 10 mM, whereas ours was 100 mM. In

addition, those investigators studied the effects on maximal but not

minimal antigen-induced degranulation; they also proposed that

multiple P2Rs including UDP-glucose-sensitive P2Y14R may play a

role in this action of ATP.

Intracellular signal transduction pathways
P2Y11R activation in LAD2 cells leads to activation of

intracellular pathways involving PI3K/Akt (Figure 2). As

previously reported, the PI3K/Akt pathway can operate without

the induction of intracellular Ca2+ mobilization (170, 171). It is well

known that IgE receptor (FcϵRI) activation itself, leading to

degranulation, is associated with intracellular Ca2+ mobilization

(172). Intracellular Ca2+-independent steps in MC degranulation

have previously been reported (173–176). This suggests that the

potentiating effect of extracellular ATP on anti-IgE–induced

degranulation is due to a complex interaction between the two

relevant signal-transduction pathways, rather than merely an

increase in Ca2+ influx induced by ATP.

That PI3Kd plays a critical role in ATP enhancement is shown

by a dose-dependent inhibition of the ATPgS’ enhancing effects by
compound 15e, a PI3K inhibitor (150, 151), and marked

diminution of enhancing effects in PI3Kd knockdown LAD2 cells

(59). PDK-1 is a key element of the PI3K/Akt pathway (177–179),

but the lack of PDK-1 phosphorylation does not support its

involvement in ATPgS’ enhancement of WAS in LAD2 cells.

Modulation by ecto-enzymes
The enhancement of WAS by ATPgS in LAD2 cells was

unrelated to its rate of breakdown by ectonucleotidases. However,

expressions of multiple purinergic receptors, and/or up- or down-

regulation of ectonucleotidases in vivo may affect cell responses to

extracellular nucleotides. Experiments showed that LAD2 cells’

exposures to ATPgS did not affect extracellular concentrations of

ATP for at least 60 minutes. However, under experimental

conditions, ATP could be released from LAD2 cells.

We have previously reported that the half-life of extracellular ATP/

ADP (1 mM) was 14.88 min in another human cell line expressing

ectonucleotidases CD39, CD73, and alkaline phosphatase (180).

Studies have emphasized the role of ectonucleotidases in the
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magnitude of ATP’s effects in pulmonary and other organ disorders

(68, 181). Tsai and Takeda (160) have recently shown in mice that E-

NPP3, an activation marker induced in IgE-mediated reactions,

hydrolyzes extracellular ATP on basophil and MC surfaces to

prevent ATP-dependent excess activation. In the absence of E-NPP3,

basophils and MC become overactivated and the mice experience

severe chronic allergic inflammation (160). This work suggests a

potential therapeutic role for ATP hydrolysis strategies to control

MC-mediated allergic responses. It increasingly appears that a

complex of physiological factors interacts to either maintain or

degrade extracellular ATP in vivo, depending on localized

physiological conditions such as pH.
Concluding remarks

Extracellular ATP is a potent modulator of immune reaction-

induced HLMC degranulation and thereby release of inflammatory

mediators. Since extracellular ATP is rapidly degraded to ADP and

adenosine by ecto-enzymes, and adenosine exerts its own effects on

inflammatory cells, the variable levels of these enzymes under

physiologic and pathophysiologic conditions are critical modulators

of the effects of extracellular ATP and adenosine in this setting.

Although the exact mechanism of ATP’s effect on HLMC

degranulation has not been delineated heretofore, the voluminous

relevant data strongly suggest that extracellular ATP plays an

important mechanistic role in HLMC allergic reactions. Thus,

because of the exponential research work in this arena over the

past two decades since the original hypothesis of the “ATP axis in

the Lungs” was put forward (127), we are now on the cusp of

developing novel therapeutic approaches for allergic disorders in

general and asthma in particular. This view is supported by the

recent developments in a parallel field of ATP-chronic cough, in

which pre-clinical studies and clinical trials with P2X3R antagonists

are being evaluated as novel anti-tussive agents (182).

The effects of ATP are most pronounced with a concurrent

WAS. It is plausible that the cellular ATP environment may change

over short periods (e.g., exercise, irritants, etc.), while antigen

exposure may not vary and/or remain weak (e.g., dust, cat,

mouse, and grass), yet a full-blown asthmatic exacerbation or

urticarial episode may ensue. The identity of the receptor(s)

mediating the effects of ATP on HMC and the ectoenzymes that

hydrolyze ATP in different tissues must be further explored so that

novel therapeutic approaches can be tested in the clinical setting.
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178. Lee-Rivera I, López E, Parrales A, Alvarez-Arce A, López-Colomé AM.
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