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Proteasome-dependent
senescent tumor cells mediate
immunosuppression through
CCL20 secretion and M2
polarization in pancreatic
ductal adenocarcinoma

Mengwei Wu1†, Jiashu Han1,2†, Hao Wu1 and Ziwen Liu1*

1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of
Medical Sciences & Peking Union Medical College, Beijing, China, 2Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
The outcome of pancreatic ductal adenocarcinoma (PDAC) remains poor due to

few therapeutic options available and challenges with precision therapy to target

each tumour’s specific characteristics. In this study, a biologically meaningful

patient stratification-prognostic model with therapeutic suggestion value based

on tumor senescence was developed and validated in multiple independent

cohorts. Further mechanistic investigation based on single-cell transcriptomic

data and in vitro experiments revealed that complement derived from non-

senescent tumor cells stimulates M1 differentiation and antigen presentation,

while senescent tumor cells secrete CCL20 to favor immunosuppressive M2

polarization. Also, senescent phenotype depends on proteasome function,

suggesting that high-risk, high-senescence patients may benefit from

proteasome inhibitors, which reverse senescence-mediated resistance to

conventional chemotherapy and improve outcome. In conclusion, the current

study identified senescence as a tumor-specific, hazardous factor associated

with immunosuppression in PDAC. Mechanistically, senescence abrogates

complement-induced M1 activation and antigen presentation, and upregulates

CCL20 to favor M2 polarization. The senescence-related risk model is prognostic

and therapeutic-suggestive. In light of the reliance of senescent cells on

proteasomal functions, proteasome inhibitors are promising agents for high-

risk patients with senescent PDAC.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal

disease due to generally poor response to radiotherapy,

gemcitabine-based or mFOLFIRINOX chemotherapy, or

immunotherapy (1). Some patients with PDAC are rapidly

progressive within months, while some treatment-responsive

patients persist for years. Such disparity in prognosis is

unaccounted for by the conventional TNM and pathohistological

classifications (2). A molecular-centered approach dwelling into the

biological characteristics behind these clinical behaviors would not

only allow more accurate patient stratification, but also suggest

precise targeted therapy.

Marked by highly dysplastic tumor microenvironment and

complex heterogeneity, much effort has been put into the

molecular subtyping of patients with PDAC (3, 4). Single gene

alteration in BRCA1/2, BRAF, ERBB2s, PIK3CA, ATM, and MMR

has advantage in therapeutic suggestion, but limited application

value as less than 5% of patients with PDAC have such targetable

mutations (5). The Waddle signature, based on whole genomic

features such as copy number and chromosomal structural

variation, divided patients with PDAC into four subtypes: stable,

locally rearranged, scattered, and unstable (sensitive to platinum

and PARP inhibitors) (5). Transcriptomic-based subtyping

provided more comprehensive information. Earliest attempt

proposed the four subtypes, exocrine, classical, and quasi-

mesenchymal, based on expression of digestive enzymes,

epithelial adhesion genes, and mesenchymal genes (6). The most

widely accepted classical-basal defined tumor-specific classical

(GATA6, PDX1, and HNF1A) and more malignant basal-like

subtypes (7). Further analysis took the tumor microenvironment

into consideration and identified four subtypes with distinct

stromal and immune characteristics: basal, stromal activated,

desmoplastic, and the immune-classical subtypes (8). Application

of laser capture micro dissection allowed the characterization of

intratumoral spatial heterogeneity (9). However, all of these

schemes gave no explanation on the reason and biological-

molecular mechanisms underlying these different subtypes.

Cellular senescence is an induced state of growth arrest in

response to stress and aging, presented under both physiological

and pathological conditions (10). In contrast to uncontrolled cell

death from noxious stimuli, cellular senescence is a regulated

process associated with extensive epigenetic-transcriptomic-

metabolic reprogramming and activity of multiple signal

transduction pathways (11). Interestingly, senescence of cancer

cells has been reported to have context-dependent functions, with

both tumor-promoting and suppressive potentials (12). Senescent

cells are marked by senescence-associated secretory phenotype

(SASP) of cytokines (IL-1a, IL-1b, IL-6, IL-8), chemokines

(CCL2, CCL5, CXCL1), growth factors (HGF, EGF, TGFa), and
matrix-remodeling enzymes (MMP1, MMP3) (13). SASP has been

reported to aid immunosurveillance through CCL2+ macrophages

and CD4+ T cells, CXCL14/IGFBP3 mediated immune cell

infiltration, and innate effector function through p53 induced

apoptosis (14). However, SASP has also been associated with

immunosuppression in terms of JAK2/STAT3 pathway signaling,
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chronic inflammation, and M2 macrophages that negatively engage

with cytotoxic T and NK cells (15). The effect of cancer senescence

on the clinical course of PDAC and its role in microenvironment

remodeling remain obscure.

We hereby developed a senescence-based prognostic model that

not only stratify patients by risk and survival probability, but also

suggest subsequent therapeutic options. We further sought to

elucidate the context-dependent effect of SASP specifically in

PDAC, focusing on the exact axis of immunosuppression, leading

to potential targetable points to break the negative feedback loop

and precisely improve immunotherapy response in conjugation

with ICB and/or cellular therapies.
2 Materials and methods

2.1 Data collection and processing

Transcriptomic data and clinical information of patients with

PDAC were acquired from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/), the PACA-AU and the PACA-CA

databases (ICGC Data Release 28, https://dcc.icgc.org/). A

combined cohort of TCGA and GTEx normal samples

recomputed by UCSC Xena as log normalized count matrix was

obtained for the identification of DEGs in PDAC (UCSC Xena,

https://xenabrowser.net/). For the TCGA dataset, raw count

expression data was downloaded from the TCGA Data Portal

with the TCGAbiolinks R package (16). For the PACA-CA

dataset, raw count expression data was downloaded from ICGC

(ICGC Data Release 28, https://dcc.icgc.org/projects/PACA-CA).

Raw count expression data was then transformed into normalized

count with the Deseq2 R package and VST function (17).

Microarray gene-expression data of PACA-AU was downloaded

from the ICGC database (ICGC Data Release 28, https://

dcc.icgc.org/projects/PACA-AU). The data resources used in this

study were summarized in Table S1. All the R packages used in this

study run in the R software (version 4.1.2, https://www.r-

project.org). Single-cell transcriptomic data of cancerous and

normal pancreatic tissue were obtained from the Genome

Sequence Archive under project PRJCA001063, under the

accession number of GSA: CRA001160 (18). 554 patients with

PDAC were retrospectively enrolled and analyzed in this study: the

TCGA, PACA-AU and PACA-CA cohorts each included 141, 231

and 182 patients with detailed clinical information, survival follow-

up, and complete genomic and transcriptomic data, respectively

(Table S2).
2.2 Patient stratification

The “PlotPCA” function of the Deseq2 R package generated

principal component analysis (PCA) plots. Gene set enrichment

analysis (GSEA) revealed differences in pathway activities and

biological characteristics between cancerous and normal

pancreatic tissues. Genes that are differential expressed (DEGs),

defined as false discovery rate < 0.05 and the |fold change| > 1,
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between cancer and normal pancreatic tissues were identified with

the “Deseq2” R package based on raw count data obtained from the

combined cohort of TCGA and GTEx normal samples recomputed

by UCSC Xena. DEGs for arrays samples were identified with the

“Limma” R package under the same criteria for significance (19). A

senescence gene set was manually curated from published

literatures and databases, including Kyoto Encyclopedia of Genes

and Genomes database, the Gene Ontology database, the Reactome

database, the Molecular Signatures Database, the Csgene database

(20) and Cellage (21) (Table S3) and overlapped with DEGs in

PDAC. The resulting genes were used to cluster patients with PDAC

using “NMF” R package (22). The R package “ComplexHeatmap”

displayed the expression of key senescent genes along with

clinicopathological characteristics to compare between the two

groups (23). Kaplan-Meier (K-M) method and log-rank test with

the R packages “survival” and “survminer” were employed to

generate survival curves and determine the prognostic value.

Enrichment analysis was performed with DAVID, with KEGG,

GO, and REACTOME. GSEA analysis was performed with

clusterProfiler 4.0 R package (24).
2.3 Characterize immunosuppression
of senescence

The abundances of infiltrating immune cells of each subtype,

stromal cells, and cancer cells were inferred from bulk

transcriptomic data with the “IOBR” R package (25) and

displayed as an average of each group in heat map generated with

“ComplexHeatmap”. Pathway activities were calculated with the

ssGSEA algorithm in “GSVA” R package (26), using previously

annotated pathways obtained from the Molecular Signatures

Database, including “trafficking of immune cells to tumors”,

“priming and activation” , “CD8 effector functions and

exhaustion”, “immunogenic cell death”, “MHC class II”, “antigen

processing and presentation”, “phagocytosis”, “bad angiogenesis”,

“hypoxia”, “exosome release”, and “SASP”. The tumor purity score,

immune infiltration level, and stromal content were evaluated via

the “ESTIMATE” algorithm (27). The R package “Maftools” was

used to calculate tumor mutation burden (TMB) from whole-

exome sequencing (WES) data (28). The correlations between

SASP activity (determined with ssGSEA) and the abundances of

each cellular subtypes (inferred using the “IOBR” R package) were

calculated by correlation analysis and displayed on a lollipop

diagram generated in PRISM.

Single cell transcriptomic data was analyzed. Briefly, the gene-

barcode matrix provided was read into the Seurat R toolkit (29) for

subsequent processing and analysis; provided annotations on

sample information were selectively adopted. Quality control was

performed by removing cells with low quality (less than 200 genes

and mitochondrial genes above 10%). Genes expressed in less than 3

cells are also removed. Next, principle component analysis with the

3000 highly variable genes clustered all cells into 9 major cell types,

each with characteristically expressed markers displayed in feature

plots. Ductal 2 cells, macrophages, and T cells were individually re-
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clustered for subsequent analysis. Ductal 2 cells were annotated as

senescent and non-senescent tumor cells based on CDKN2A

expression, or CCL20+ versus CCL20- tumor cells based on

CCL20 expression. Subtype proportion were defined as the

number of cells in each subset divided by the total number of

cells in the major cell type. T-test was used to compare differences in

proportion, and Pearson’s analysis was used to determine

correlation between cell subtypes accounting for the sample from

which each cell was collected. The proportion of senescent tumor

cells was used to stratify patients into sene-high and sene-low

groups by median value. AUCell was employed to analyze ‘gene

set’ activity with the “Area Under the Curve” (AUC) method to

calculate whether a critical subset of the input gene set is enriched

within the expressed genes for each cell, employing consensus

antigen presentation gene modules from GSEA (30). Cellular

interaction was analyzed with the CellChat R package (https://

github.com/sqjin/CellChat) base on ligand-receptor interaction

database CellChatDB 2.0. Differential expression of ligands and

receptors for each cell type or subtype infer cellular

communications. The probability of interactions are visualized

through heat maps, weighted directed circular graphs, and

hierarchical plots (31).
2.4 Construction and validation of model

The PACA-AU dataset was employed as the primary

construction dataset in which the model was first established, and

the TCGA and PACA-CA datasets served as external validation

datasets for further extrapolation and fitting of the model. The

“WGCNA” R package (32), first under default parameters,

identified the key gene modules (pink) with the highest absolute

module significance and strongest association with C2. Least

absolute shrinkage and selection operator (LASSO) regression,

with the optimal penalty parameter and a minimum 10-fold

cross-validation, was applied to remove the multicollinearity

among these genes and to identify the most valuable prognostic

genes. Finally, 12 genes were included in the final model, with Cox

regression giving out a linear predictor equation and risk score for

survival probabilities for patient stratification.

The robustness of the model was evaluated by calibration at

different timepoints through time-dependent receiver operating

characteristic (ROC) curves made with the “survivalROC” R

package. Moreover, patients are stratified into high and low risk

groups by an optimal cutoff value according R package “maxstat”,

and generated survival curves via the Kaplan-Meier (K-M) method

and log-rank test with the R packages “survival” and “survminer”.

Collectively, area under the curve (AUC) of the ROC curve, Brier

Score, and K-M survival analysis were considered when evaluating

the model.

We further constructed a nomogram to improve the predictive

power of this model. Firstly, The “Ezcox” R package was used to

perform univariate proportional hazards (Cox) regression analysis

to identify survival-related clinical characteristics (including the risk

score). Secondly, multivariable Cox regression model screen out
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independent predictive characteristics, which were visualized with a

forest plot from the “survminer” R package. Thirdly, a stepwise

multivariate Cox regression combined these factors to construct the

final nomogram, including Sene-index, grade, N stage, and AJCC

stage. The nomogram was further evaluated for predictive

probability of survival at different timepoints in patients with

PDAC using the “survival” R package, along with calibration

curves and Brier Score for evaluation of accuracy. Decision curve

analysis (DCA), performed with “ggDCA” R package. is a suitable

method for evaluating alternative diagnostic and prognostic

strategies that has advantages over other commonly used

measures and techniques. The nomogram was internally validated

using the Bootstrap method with b=100 by “plotCalibration”

function of “riskRegression” R package.
2.5 Exploration of therapeutic sensitivities

“Oncopredict” R package, a tool based on the Genomics of Drug

Sensitivity in Cancer (GDSC) databases, was employed to predict

the half-maximal inhibitory concentration (IC50) of common

therapeutic drugs (33), which were then compared between the

high- and low-risk groups by unpaired t-test; the results were

displayed using the “ggpubr” R package. The correlations between

IC50 values and the risk score were analyzed with correlation

analysis and displayed on bubble plot generated in PRISM.
2.6 Experimental validations

2.6.1 Cell cultures
The pancreatic cancer cell lines PANC-1, BXPC-3, and ASPC-1

were obtained from ATCC and kept under recommended

conditions of RPMI 1640 medium (Thermo Fisher, 11875093)

with1% penicillin and streptomycin (Thermo Fisher, 15070063),

and 10%, 10% and 20% fetal bovine serum (Thermo Fisher, 10099),

respectively. The human monocyte cell line THP-1 was similarly

maintained. Treatment with 12-O-tetradecanoylphorbol-l3-acetate

(PMA) for 24 h at concentration of 10 ng/ml mediated monocyte to

macrophage activation, serving as non-differentiated control. M1

andM2 differentiation were maintained with 50 ng/ml recombinant

human IFN-g (Peprotech, 300-02) or 25 ng/ml of recombinant

human IL-4 (Peprotech, 200-04), respectively. Cell cultures were

regularly tested to ensure mycoplasma-free with MycoAlert

mycoplasma detection kits (Lonza, LT07) and sent for multiallelic

variable number of tandem repeats sequencing to rule out

cross-contaminations.
2.6.2 Cellular senescence
Pancreatic cancer cell lines were seeded into 6-well plates at 50%

confluence, rested overnight before exposed to 100 nm doxorubicin

(MCE, 23214-92-8) for 48 h, and maintained for 15 days for the

induction of cellular senescence. Conditioned media were collected

at day 7 and 9 after Dox treatment for quantification of CCL20

secretion by ELISA (Abcam, ab269562).
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2.6.3 mRNA quantification
RT-qPCR was employed to quantify mRNA expressions.

Briefly, total RNA was obtained with RNeasy kit (Qiagene 74004)

following manufacturer’s instruction. cDNA was synthesized with

the M-MLV reverse transcriptase kit (Thermo Fisher, 28025013).

RT-qPCR reaction was performed in a final volume of 20 m
containing 12 ml TaqMan® Universal PCR Master Mix, 5 ml
H2O, 1 ml of forward and reverse primers, and 1 ml cDNA

(approximately 10ng/ml). The reaction was put in an ABI

PRISM® 96-Well Optical Reaction Plate under the standard

thermal cycling conditions by ABI PRISM® 7000 Sequence

Detection System (TaqMan®): initial 50°C for 2 min and 95°C for

10 min followed by 40 cycles at 95°C for 15 sec and 60°C for 1 min

were used. All reactions were performed in three duplicates. The

following primers are used for qPCR reactions:

Gene Forward
sequence

Reverse
sequence

p16INK4A CTCGTGCTGA
TGCTACTGAGGA

GGTCGGCGCAGT
TGGGCTCC

P21 AGGTGGACCT
GGAGACTCTCAG

TCCTCTTGGAGA
AGATCAGCCG

IL-1a TGTATGTGAC
TGCCCAAGATGAAG

AGAGGAGGTTG
GTCTCACTACC

CCL20 AAGTTGTCT
GTGTGCGCAAATCC

CCATTCCAGAAA
AGCCACAGTTTT

20S TTCTGGCTCC
TTGGCAGCAATG

CAGGTCGTTGA
AGATGCCAGCT
2.6.4 Drug resistance
Cells seeded in 96-well-plates were rested overnight and treated

with gemcitabine (MCE, 95058-81-4), paclitaxel (MCE, 33069-62-

4) and/or bortezomib (MCE, 179324-69-7) over a wide spectrum of

concentrations. MTT assays (Thermofisher Scientific) were

performed according to the manufacturer’s instruction to evaluate

cell viability.
3 Results

3.1 Senescence in PDAC

A flowchart of the study is described in Figure 1. Using the

transcriptomic data of PDAC and paired control from the TCGA

and GTEx dataset, we first confirmed distinct transcriptomic

profiles between cancerous and normal tissue, representing

biological reprograming associated with tumorigenesis

(Figure 2A). Further GSEA analysis with REACTOME gene sets

suggested high senescence in cancerous compared to normal tissue,

with mutually agreeing result from multiple senescence pathways

including cellular senescence (NES = 1.5259, P < 0.001), DNA

damage/telomere stress induced senescence (NES = 1.5986, P =

0.007), oncogene induced senescence (NES = 1.4341, P = 0.059),

oxidative stress induced senescence (NES = 1.5104, P < 0.006), and
frontiersin.org
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senescence associated secretory phenotype (NES = 2.274, P < 0.001)

(Figure 2B). Considering senescence as a key feature for

malignancy, we subsequently created a curated senescence gene

set (Table S3) based on published literatures and databases,

including Kyoto Encyclopedia of Genes and Genomes database,
Frontiers in Immunology 05
the Gene Ontology database, the Reactome database, the Molecular

Signatures Database, the Csgene database and the CellAge database.

After the removal of repetitive genes, the resulting senescence gene

set included 1090 unique genes, among which 330 are up-regulated

and 57 down-regulated in cancerous versus normal pancreas
FIGURE 1

Overview of study design and flowchart.
B C

D E

A

FIGURE 2

Senescence in tumorigenesis of PDAC. (A) Principal component analysis (PCA) of normal pancreatic tissue (blue) and cancerous PDAC (red). (B)
Gene set enrichment analysis (GSEA) comparing the activity of REACTOME senescence gene sets in cancerous versus normal tissue. (C) Venn
diagram displaying the number of senescence related genes up- and down-regulated in cancerous versus normal tissue. Enrichment analysis of
DEGs between cancerous and normal tissues with (D) Kyoto encyclopedia of genes and genomes (KEGG) and (E) REACTOME databases respectively.
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(Figure 2C, Table S3). These 387 PDAC-senescence genes are

further analyzed by pathway enrichment analysis in the KEGG

and REACTOME databases, confirming their key correlation with

the biological process of senescence (Figures 2D, E).

To further elucidate the prognostic role of senescence in PDAC,

we performed NMF clustering of TCGA dataset based on these 387

genes (Figure 3A), giving rise to two populations of patients, noted

C1 and C2 respectively, with distinct transcriptomic profiles as clear

separation by PCA analysis (Figure 3B). Senescence was

characterized with GSEA analysis to be significantly higher in C2

(Figure 3C). Senescence related genes that are differential expressed

between C1 and C2 (Figure 3D), denoting C2 as the high-

senescence and C1 as the low-senescence group. Notably, the two

groups had comparable clinicopathological features in terms of age,

sex, stage, grade and status of relapse (Figure 3D), highlighting

senescence as an independent factor intrinsic to tumor biology.
Frontiers in Immunology 06
Kaplan-Meier analysis revealed worse outcome of C2 as rapid drop

in survival curve (log-rank test, P = 0.016; mOS 11 months versus

15 months, Figure 3E), suggesting a pro-tumor, hazardous role of

senescence in PDAC. As PCA suggested distinct transcriptomic

profiles, we further compared biological characteristics between the

two subtypes, revealing significantly more growth and cell division,

but suppressed immune activities in C2 (Figure 3F). The

aforementioned results are entirely reproducible in PACA-AU

(Figure S1).
3.2 Senescence-mediated
immunosuppression

Given the importance of anti-tumor immunity in

tumorigenesis, prognosis and therapeutic response of PDAC, and
A B

D

E

F

C

FIGURE 3

Senescence-based PDAC patients’ stratification by NMF clustering in TCGA. (A) Optimization of parameters employed by non-negative matrix
factorization (NMF) clustering based on differentially expressed senescence related genes. (B) Principal component analysis (PCA) of C1 (blue) and C2
(red). (C) Gene set enrichment analysis (GSEA) comparing the activity of REACTOME senescence gene sets in C2 versus C1. (D) Heatmap showing
differential expression of senescent genes between C1 and C2, along with distribution of clinicopathological characteristics including overall survival
(OS) and status of death event, relapse, grade, stage, sex, and age. (E) Survival analysis of C1 and C2 with Kaplan-Meier curve. (F) Enrichment analysis
of DEG between C2 and C1 with Gene-ontology: Biological Process (GO-BP).
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the strong correlation between immune and senescence as we

previously discovered (Figure 3F), we further compared the

immune microenvironment between C1 and C2, aiming to

characterize the immunological effects of senescence. TCGA

(Figure 4) and PACA-AU (Figure S2) have agreeing results.

Comparison of cellular signatures suggested an immune-desert

microenvironment in C2, with less immune and stromal cells but

more cancer cells (Figure 4A), consistent with the low immune

activity as previously portrayed. The course of an adaptive

antitumor immunity requires the following components: 1)

antigen availability and release from tumor cells, 2) activation and

antigen presentation by antigen presenting cells (APCs), and 3)

effector cell chemotaxis, activation and effector function, and finally

exhaustion. To find out which of these steps went wrong in

senescent tumors, we went through each of these processes step
Frontiers in Immunology 07
by step. T cell functions are significantly impaired by high

senescence, supported by impaired trafficking, priming/activation,

effector function (Figure 4B) along with decreased number of Teff

and even Treg and Tex (Figure 4A). Tracing backward, there was no

evidence for decreased antigen availability as the reason behind

immunosuppression in C2, as C2 seemed to have higher antigen

load due to higher tumor mutation burden (TMB) and comparable

immunogenic cell death (Figure 4C 1-2). However, C2 had lower

MHC II, macrophages, dendritic cells, and phagocytosis (Figure 4C,

D), suggesting impaired antigen presentation. The importance of

phagocytosis in APC has been further confirmed to be in strong

correlation with both APCs (Figure 4D). We further explored the

reasons behind APC suppression, and found a variety of potential

causes including bad-angiogenesis, hypoxia, and tumor-derived

exosome (Figure 4E). Markedly, senescence-associated secretory
B

C

D

E F

G

A

FIGURE 4

Immunosuppressive microenvironment associated with senescence in TCGA. (A) cell abundance inferred by IOBR are displayed in heat map to allow
comparison between C1 and C2. (B–F) Comparison of immune cell abundance (macrophage and dendritic cell) and immunological activities in
terms of pathways including “trafficking of immune cells to tumors”, “priming and activation”, “antigen processing and presentation”, “CD8 effector”,
“CD* exhaustion”, “poor-prognosis angiogenesis”, “hypoxia”, and “exosome” defined by IOBR, or “immunogenic cell death”, “MHC class II”,
“phagocytosis” and “SASP” defined by ssGSEA. Statistical analysis was performed with unpaired student t-test (****p<0.0001; ns, not significant).
Correlation between DC or Macrophage and Phagocytosis was analyzed by Pearson correlation analysis. (G) Correlation between SASP as defined by
ssGSEA and immune cell abundance was evaluated through Spearman correlation analysis, visualized as lollipop diagram.
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phenotype (SASP), which has gained much attention as the key to

senescence-mediated immunosuppression, is also higher in C2

compared to C1 (Figure 4F). Considering the importance of

SASP, we further evaluated its correlation with infiltrating

immune cells, showing a significant negative correlation with all

immune and stromal cells, but positively with cancer cells

(Figure 4G). Among key SASP factors, CCL20 was highly

expressed in C2 versus C1 (Figure S3A–C), and correlated with

poor prognosis of PDAC (HR, 1.10; 95% CI, 1.03–1.17; P = 0.004)

and multiple cancer types. PDAC patients with high versus low

expression of CCL20 were clearly separated on KM (log-rank test,

P = 0.0021; mOS 532 days versus 2084 days, Figure S3D, E).
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3.3 Mechanism of antigen presentation
impairment

We next utilized single-cell transcriptomic data to gain insight on

the mechanism by which senescent tumor cells and CCL20 suppress

antigen presentation and APC functions. We first annotated 9 major

cell types based on markers previously published by Wenming Wu

and other literatures: KRT9 for malignant ductal 2, CD3D for T cells,

AIF1 for myeloid cells, CDH5 for endothelial cells, MS4A1 for B cells,

LUM for fibroblasts, AMBP for benign ductal 1, RGS5 for stellate

cells, and insulin B for acinar cells (Figures 5A, B, Figure S4A). To

characterize senescence status of tumor cells, we re-clustered ductal 2
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FIGURE 5

Senescent tumor cell derived CCL20 favors M2 polarization. (A) Dimension reduction and major cell types annotation visualized by UMAP.
(B) Visualization of cell-type specific markers on feature plot. (C) Sub-clustering of Ductal 2 cells and definitional of CDKN2A expression +/-.
(D) Stratification of patients into two groups with high or low senescence based on medium cutoff of percentage CDKN2A positive Ductal 2
cells. (E) Comparison of percentage Ductal 2 cells positive for CCL20 expression. (F) Quantification of CCL20 in PANC-1 cell under doxorubicin-
induced senescence versus control with qPCR and ELISA. (G) Expression of CDKN2A and CCL20 in each major cell types. (H) The number of cellular
interactions between each major cell types as determined by CellChat. (I) Further clustering of macrophages projected on UMAP into 8 distinct
clusters. (J) Expression of specific markers of each macrophage subset. (K) Quantification of antigen presentation capacity in terms of activity of the
“antigen processing and presentation pathway” determined by AUCell. * p<0.05, **** p<0.0001.
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cells and annotated all ductal 2 cells as CDKN2A+ and CDKN2A-, or

senescent versus non-senescent tumor cells (Figure 5C). Then, based

on the proportion senescent tumor cells, we stratified patients into

sene-high and sene-low (Figure 5D). As CCL20 was identified to be

the key SASP factor in PDAC, we compared CCL20 secretion

between sene-high and sene-low patients, and found higher CCL20

associated with senescence (Figure 5E). Upregulation of CCL20

secretion in senescent tumor cells was further validated by RT-

qPCR quantification of mRNA expression and ELISA

quantification of protein (Figure 5F). Observing the expression

pattern among all major cell types, the expression of CDKN2A and

CCL20 are highly correlated and ubiquitous to malignant ductal 2,

suggesting the key role of senescent tumor cells as secretor of CCL20

in the tumor TME (Figure 5G).

We subsequently investigated the mechanism through which high

CCL20 exert immunosuppressive effects. Analyzing cellular interaction

between major cell types with CellChat revealed most extensive

interaction between ductal 2 and myeloid cells (Figure 5H, Table S4).

Therefore, we further clustered myeloid into eight subsets: fibroblastic

(fib), inflammatory (i), secretory (sec), interferon-stimulated (ifn),

extracellular matrix producing (eco), lipid metabolizing (lipid),

antigen presenting (ap), and precursor (p) macrophages (Figures 5I,

J). AUCell demonstrated active antigen presentation in lipid-M, ap-M,

and ifn-M and ecm-M; while i-M, sec-M, and fib-M had comparatively

lower antigen presentation capacity (Figure 5K, Figure S4B). Based on

these, we annotated p-M, inflammatory M1 (lipid-M, ap-M, and ifn-M

and ecm-M) and immunosuppressive M2 (i-M, sec-M, and fib-M). To

confirm the validity of our annotation in the complex TMEwith highly

dynamic myeloid functional and phenotypical spectrum, we further

annotated T cells into proliferating T (Prof), regulatory T (Treg), naive

T (Tnaive), activated T (Tact), effector T (Teff), and memory T (Tm)

based on conventional markers of T cell functions and highly expressed

transcripts specific to each cluster (Figure 6A, Figure S4C). Notably,

M1 macrophages were positively correlated with Tact and Teff, while

M2 macrophages are in negative correlation (Figure 6B). The cognate

receptor of CCL20, CCR6, is ubiquitously expressed in p-M, suggesting

the potential effect of CCL20 in macrophage differentiation (Figure 5J,

Figure S4D). Indeed, CCL20+ ductal 2 cells were positively associated

with M2 but negatively associated with M1, seeming to favor M2

differentiation over M1 (Figures 6B–D). On the contrary, analysis of

cellular interactions by CellChat revealed that M1 macrophages were

stimulated by complement from CCL20- but not CCL20+ tumor cells

(Figures 6E, F). In vitro experiment in the macrophage cell line THP-1

revealed that CCL20 treatment gave rise to M2-like phenotype with

high CD206 and TGFb expression, while complement stimulated M1

polarization and enhanced secretion of TNFa and CXCL10

(Figure 6G). In summary, senescent tumor cells secrete CCL20 to

induce immunosuppressive M2 polarization, while complement

derived from non-senescent tumor cells stimulates M1 antigen

presentation and antitumor immune responses (Figure 7).
3.4 Senescence risk model

We next sought to develop a predictive model with fewer genes

for better clinical utility and practicability. Construction of model in
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PACA-AU. The weighted gene co-expression network analysis

(WGCNA) was applied to all genes and parameters adjusted for

optimization (Figures 8A, B), giving rise to 21 modules by average

linkage hierarchical clustering, among which the pink module (704

genes) was the most correlated with C2 (Pearson’s correlation

coefficient = 0.53, P < 0.001) (Figures 8C, D, Table 5). Finally, the

LASSO regression algorithm screened out 12 genes to be included in

the senescence risk model (Table S5, Figures 8E, F), with time-

dependent ROC curve analysis showing good for OS prediction (1-

year AUC = 0.786, 2-year AUC = 0.739, 3-year AUC = 0.725)

(Figure 8G). Stratification of patients by an optimal cutoff value

determined from the maximally selected rank statistics (‘maxstat’ R

package) revealed two distinctly separated survival curves on

Kaplain-Meier analysis (log-rank test, P < 0.0001; mOS 1142 days

versus 413 days, Figure 8H). The model is further externally

validated in TCGA (1-year AUC = 0.730, 2-year AUC = 0.672, 3-

year AUC =0.664, Figure 8I) (log-rank test, P < 0.0001; mOS 1037

days versus 466 days, Figure 8J) and PACA-CA (1-year AUC =

0.646, 2-year AUC = 0.691, 3-year AUC = 0.715, Figure 8K) (log-

rank test, P < 0.0001; mOS 1359 days versus 482 days, Figure 8L),

suggesting validity and robustness of this model.

We further investigated each of the individual 12 genes included

in the model. All genes are unregulated in cancerous versus normal

pancreas tissue (Figure 9A). Individual survival analysis revealed

hazard ratios all bigger than 1 (Figure 9B). The potential biological

significance of each gene is further explored in the discussion

section. Furthermore, we used univariant Cox regression to

identify all OS-related characteristics with significant regression

coefficients and p-values (Table S5), and then used multivariate Cox

regression to determine that Sene-index is an independent and

robust prognostic factor (HR, 2.637; 95% CI, 2.077–3.350; P < 0.001;

Figure 9C). We then constructed a nomogram containing all

prognostic characteristics, specifically the Sene-index, grade, N

stage, and AJCC stage (Figure 9D). The nomogram had accurate

predictive power for the survival for pancreatic cancer patients at 1

year (AUC=0.802, Brier Score=0.141), 2 year (AUC=0.793, Brier

Score=0.185), and 3 year (AUC=0.725, Brier Score=0.181)

(Figures 9E, F). Further validated by internal validation with

bootstrapping (b=100), at 1‐, 2‐ and 3‐year (Figure 9G). 1 year

(AUC=0.783, Brier Score=0.152), 2 year (AUC=0.779, Brier

Score=0.193), and 3 year (AUC=0.724, Brier Score=0.201). The

DCA dataset demonstrated that this nomogram performed better

than sene-index alone in predicting the 1‐, 2‐ and 3‐year survival of

patients with pancreatic cancer (Figure 9H).
3.5 Senescence and drug resistance

The Oncopredict algorithm of drug response prediction

revealed resistance to most drugs in the Sene-high subtype

(Figure 10A) and significant correlation between senescence

status and IC50 (Figure 10B). Senescence seems to confer

resistance to the two most commonly used chemotherapeutic

drugs in pancreatic cancer patients, gemcitabine more than

paclitaxel, as validated in pancreatic cell line with radiation-

induced senescence (Figure 10C). In light of the seemingly low
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IC50 of bortezomib and the lack of resistance to MG132 when

comparing high and low senescence patients, proteasome inhibitors

are considered to have potential therapeutic value for the treatment

of senescent pancreatic cancers, as validated that bortezomib inhibit

the long-term persistence senescent cells in conjugation with

gemcitabine significantly in senescent cells but not normal

(Figure 10D). We sought to further elucidate the role of

senescence by defining the status of cellular senescence with

biomarkers, identifying up-regulated mRNA expression of p16,

p21, SASP IL1a and CCL20 in senescent cells by bortezomib

treatment (Figure 10E). As proteasome inhibition disrupted

senescence, we confirmed the importance of proteasome function
Frontiers in Immunology 10
in allowing senescence, as p20 is highly expressed in senescent cells

rather than normal cells (Figure 10F).
4 Discussion

PDAC has long been a challenging disease, with high death rate

ranking the fourth in place despite a relatively low frequency of

occurrence (34). Patients with PDAC only saw marginal benefits

from the advancements in chemotherapeutic agents and

immunotherapy that drastically improved the survival of many

other cancer types over the last decades. Attempting experimental
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FIGURE 6

Senescence abrogates complement-mediated M1. (A) Further clustering of T cells projected on UMAP into 6 functional states. Correlation between
the frequency of specific cell types evaluated by Pearson’s correlation analysis with r value presented as heat map (B) and correlation plot (C). (D)
Comparison of cell type frequencies between sene-low and -high patients. (E, F) Number of cellular interactions of the complement signaling
pathway between CCL20 + versus - Ductal 2 cells and macrophage subsets inferred by CellChat. (G) Characterization of typical M1 products (TNFa
and CXCL10) and M2 products (CD206 and TGFb) after stimulation with CCL20, complement protein, compared to control polarization phenotypes
of LPS-induced M1 and IL4-induced M2, with expression values normalized to baseline expression in PMA-activated, undifferentiated THP-1 cells. *
p<0.05, ** p<0.01, *** p<0.001, ns not significant.
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therapies is especially important for patients with PDAC. However,

it is important to keep in mind that each patient’s tumor may have

different biological characteristics, rendering them to respond

differently to the same therapy. Therefore, going beyond the

traditional classifications based on clinicopathological

characteristics and even molecular or microenvironment traits, to

develop new models of patient stratification based on activities of

biologically meaningful pathways, would help identify the key

problem of each tumor and allow specific therapeutic assignment

accordingly, achieve better response and bring precision medicine

into reality.

Cellular senescence is conventionally considered the permanent

arrest of cell cycle and inhibition of cell division, seemingly a tumor

suppressive mechanism as the solution to stop the rapid growth of

tumor cells (35). The senescence-related effects of conventional

chemotherapies and radiotherapies, especially DNA-damaging

mechanisms, have been well reported, suggesting senescence at

low dose but apoptosis at higher dose (36, 37). However, newer

opinions agree that cellular senescence is a potentially reversible

process of dynamic epigenetic and transcriptional remodeling, often

exploited by tumor cells for drug resistance, resistance to stress-

induced cell death, and immune-evasion. In clinical settings,

senescence has multimodal functions in different cancers: our

previous study identified hazardous role of senescence in breast

cancer (38), Zhou et al. reported that senescence is associated with

good survival in gastric cancer (39), but Dai et al. reported opposite

findings (40). This study supports the role of tumor senescence as a

hazardous factor, associated with significantly shorter survival

outcome, immunosuppression and therapeutic resistance in

patients with PDAC.

Mechanistically, our study suggested that in PDAC, senescence

is: (1) paradoxically associated with more cell division; (2) extensive
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suppression of immune activity leading to a high-purity TME.

Going over the key components of an immune response, we

discovered that despite comparable antigenicity (if not more

antigenic due to a higher TMB) of senescent tumors, APCs

activation, function and antigen presentation are impaired. SASP

refers to the specific secretory phenotypes of senescent cells. Given

the dynamic, context-dependent expression patterns of SASP

factors with broad functional ranges, we next identified CCL20 as

the key SASP factor mediating immunosuppression in senescent

pancreatic tumor, with its cognate receptor CCR6 highly expressed

on naive, precursor macrophages, to mediate M2 polarization and

immunosuppression. Also, senescent status seems to decrease the

release of immunogenic, pro-M1 complement proteins from tumor

cells, further enhancing immunosuppression. The dual potential of

in macrophages cancer were recently well reviewed, reflecting their

plasticity in response to environmental cues (41). In breast cancer,

tumor-derived CCL20 has been recently reported to signal on CCR6

in precursor macrophages, promote PMN-MDSC expansion and

exert pro-tumor effects (42). In osteosarcoma, complement-

associated macrophages have been reported to mediate M1

polarization and antitumor immunity (43). However, the role of

CCL20-stimulated M2 and complement-stimulated M1 remain

unreported in pancreatic cancer, a comprehensive consideration

in the context of senescence is also missing. These studies in other

cancer types provide further support to our conclusions, as the

underlying biological mechanisms and subtype-specific cellular

phenotypes are shared despite differences between cancer types.

We next attempted to translate these senescence-related

discoveries to clinical practice. A significant limitation of the

TNM staging system is that it does not account for biologic

factors with predictive and prognostic value (44). To address it, a

risk model was constructed to stratify patients with pancreatic
FIGURE 7

Mechanism of immunosuppression by senescent tumor cells. Senescent tumor cells acquire SASP with enhanced secretion of CCL20, acting on
CCR6 receptors of precursor macrophages to favor the immunocompromised M2 phenotype. Non-senescent tumor cells release complement and
elicit pro-inflammatory, effective M1 response.
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cancer into high- and low-risk subgroups with different senescent

statuses. Survival analysis, ROC curves and calibration covers all

confirmed the predictive capacity of this model at different

timepoints for the outcome of patients with pancreatic cancer.

The model is also validated in multiple individual datasets. For

high-risk patients identified through our model, we attempted to

identify potentially beneficial therapeutic improvements with the

Oncopredict algorithm. In line with other studies reporting that

cellular senescence is key to chemoresistance (45), we also found out

that most drugs have a higher IC50 value in the high-risk group,

especially the most used chemotherapeutic agent in pancreatic
Frontiers in Immunology 12
cancer, gemcitabine, with the mechanism of inhibiting DNA

synthesis through dFdCTP incorporation in S phase. Senescence-

mediated resistance to DNA-damaging chemotherapy is further

confirmed in vitro cellular experiment. On the other hand, the

microtubule-targeting agent paclitaexl, also commonly used for

patients with PDAC, is considerably less affected by senescence,

suggesting potential benefit in choosing paclitaxel-based therapy

over gemcitabine-based regime for these high-risk patients.

In addition, we discovered that metabolic drugs such as

proteasome inhibitors seem to have comparable IC50s between

the two groups unaffected by senescence. The therapeutic value of
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FIGURE 8

Establishment and validation of senescence-based prognostic signature. (A, B) optimization of WGCNA parameters. (C) Heat map of correlation
between gene modules and C2 characteristic. (D) Scatter plot of gene significance of body weight and module membership in the pink module. (E,
F) LASSO (least absolute shrinkage and selection operator) parameter optimization and selection of the most prognostic genes. Internal validation of
the signature in PACA-AU dataset by time-dependent ROC (G) for 1-, 2-, and 3-year survival probability and Kaplan-Meier survival analysis (H)
between sene-low and -high stratified by optimal cut-off value determined from maxstat, External validation of the signature in the TCGA (I, J)
dataset and PACA-CA (K, L) dataset.
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bortezomib was further confirmed in senescent tumor cells but

not regular, suggesting the dependency of senescent cells on

proteasome function.

As the data based on which we built our model was obtained

from public databases and all patients retrospectively enrolled, we

acknowledge the insufficiency in our study in the absence of

prospective validation and further support by prospectively

generated transcriptomic data. Our model, as a risk score

calculation based on 12 genes, have the advantage of cost-

effectiveness, practicability, and ease of clinical implementation.

Further validation on the protein level with preserved pathological

samples or prospective, observatory clinical trial in patients with

PDAC would provide better power to the value of this model.

Furthermore, despite seemingly clear mechanistic studies, the

therapeutic effects and actual gains from the addition of

proteasome inhibitor, namely bortezomib, onto conventional
Frontiers in Immunology 13
chemotherapies in the high-risk patients based on the result of

the stratification awaits further confirmation. Preliminary in vitro

results in senescent cell lines demonstrated promising results in the

ability of bortezomib to reverse senescence and gemcitabine-

resistance, and supports from in vivo experiment in xenograft or

PDX mice models would provide more confidence along the line to

clinical translation.
5 Conclusions

In this study, we identified senescence in PDAC as tumor-

specific, hazardous factor associated with immunosuppression. A

senescence-based model stratified patients with PDAC into two

populations with distinct clinical outcomes and therapeutic

opportunities. Mechanistic studies revealed that non-senescent
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FIGURE 9

Construction and application of senescence-based nomogram. (A) Compare the expression of the 12 genes of the senescence signature between
normal and cancerous pancreatic tissue. (B) Independent survival analysis of the 12 genes in PDAC. (C) Multivariate COX regression analysis of
prognostic value of sene-index and clinicopathological parameters, HR and p-values displayed on forest plot. (D) Nomogram. (E, F) Nomogram
calibration for OS-prediction at 1-, 2-, and 3-year. (G) Internal validation by bootstrapping (b=100) at 1‐, 2‐ and 3‐year, evaluation by AUC and Brier
score. (H) DCA comparing the nomogram and the sene-index alone.
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tumor cells release complement proteins to differentiate macrophages

towardM1 phenotype with T cell stimulatory capacities. This process

is impaired in senescent tumor cells, which secrete CCL20 to favor

M2 polarization and to abrogate antigen presentation, leading to an

immune desert microenvironment. Interestingly, the senescent

phenotype is highly dependent on proteasome functions, suggesting

potential value proteasome inhibitors in high-risk patients with

senescent pancreatic tumors to overcome resistance to conventional

chemotherapy and immunotherapy, ultimately improving outcome

through precision medicine.
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FIGURE 10

Proteasome inhibitors reverse chemoresistance conferred by senescence. IC50 of chemotherapeutic drugs in TCGA PDAC patients was predicted by
OncoPredict and compared between sene-high and -low (A) and correlation analysis with sene-score (B). (C) Control and doxorubicin-induced
senescent PANC-1 cells were treated with gemcitabine of various concentration (0, 0.05, 0.1, 0.5, 1, 10, and 20 uM) for 24 hours and cell viability
evaluated with MTT assay. (D) PANC-1 cells are with or without doxorubicin-pretreatment to induce senescence are challenged with gemcitabine
alone or gemcitabine + bortezomib for 24 hours before evaluation of cell viability by MTT assay. (E) RT-qPCR quantification of mRNA expression of
senescent genes (p16, p21,IL1a, and CCL20) in doxorubicin-pretreated senescent PANC-1 cells with or without bortezomib treatment for 24 hours,
using non-senescent PANC-1 as control. (F) RT-qPCR quantification of mRNA expression of proteasome subunit p20 in control versus senescent
PANC-1 cells. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns not significant.
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