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Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for

clinicians in surgeries such as renal transplantation. Functional loss of renal

tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury,

delayed graft function (DGF), and allograft rejection. The available evidence

indicates that cellular oxidative stress, cell death, microvascular dysfunction,

and immune response play an important role in the pathogenesis of IRI. A variety

of immune cells, including macrophages and T cells, are actively involved in the

progression of IRI in the immune response. The role of B cells in IRI has been

relatively less studied, but there is a growing body of evidence for the

involvement of B cells, which involve in the development of IRI through innate

immune responses, adaptive immune responses, and negative immune

regulation. Therefore, therapies targeting B cells may be a potential direction

to mitigate IRI. In this review, we summarize the current state of research on the

role of B cells in IRI, explore the potential effects of different B cell subsets in the

pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in

renal IRI.
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1 Introduction

Renal ischemia-reperfusion injury (IRI) is a common kidney disease that occurs as a

result of kidney surgery, cardiac surgery, kidney transplantation, and disruption of the

renal blood supply (1). During renal ischemia, renal tissues are affected by insufficient

oxygen supply and accumulation of metabolites, leading to cellular damage and death.

Then, the reperfusion process re-inflows blood into the kidney, but causes a series of

inflammatory reactions and cellular damage that further aggravates kidney injury (2). The

mechanisms of renal IRI include calcium overload, inflammatory response, reactive oxygen

species damage and apoptosis, in which immune cell-mediated immune response also plays

an important role (3–5). B lymphocytes are an important class of immune cells that usually

produce antibodies, present antigens, and participate in immune regulation (6). More and
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more studies have shown that B lymphocytes play an important role

in IRI. B lymphocytes are part of the inflammatory cells recruited to

the kidney in renal IRI, involved in immune response exacerbates

kidney damage. B cells participate in the immune response and

inflammation by presenting antigens and secreting cytokines to

cause further renal damage. And some B-cell subsets are

immunosuppressive and play a protective role in IRI (7). In this

review, we summarize the possible mechanisms of the role of B cells

in renal IRI, including innate immune response, adaptive immune

response, and negative immune regulation. This may help to

provide new directions for the prevention and treatment of renal

IRI in the future.
2 Molecular pathophysiology of IRI

Renal IRI is one of the main causes of acute kidney injury (AKI),

which can lead to acute damage to renal tissue. Studies have shown

a bidirectional interaction between AKI and the immune system.

AKI provokes intrarenal, systemic inflammation and both innate

and adaptive immune system that play important roles in the

pathogenesis of kidney injury. B cells are related to AKI as part of

innate and adaptive immunity (8). IRI involves both ischemic and

reperfusion processes, ischemia leads to intracellular hypoxia,

which promote the production of reactive oxygen species (ROS)

and lead to tissue damage (9). In addition, cellular depletion of ATP

allows sodium and water to enter the cell, causing significant

cellular edema (10). These processes can cause disruption of the

cytoskeleton, cell membrane and mitochondrial membrane (11).

During reperfusion, the accumulation of ROS aggravates

cellular damage and the increasing intracellular calcium ion levels

activate calpain (12). It also leads to mitochondrial dysfunction,

causing the release of cytochrome C, mitochondrial DNA (mtDNA)

and other substances (13). These can cause the release of multiple

inflammatory cytokines that recruit immune cells to the injured

tissue. Endothelial cells also produce vasoactive substances such as

Platelet derived growth factor (PDGF), leading to vasoconstriction

(14). Ultimately, tubular cells and vascular endothelium undergo

damage due to this complex pro-inflammatory cascade response. In

addition, elevated endothelin and thromboxane, together with

decreased prostacyclin, can also lead to vasoconstriction and

further aggravate tissue damage (15). IRI is accompanied by

aseptic inflammation in which both the innate and adaptive

immune systems are involved. Activation of the immune system

will occur through damage-associated molecular pattern (DAMP)

binding to toll-like receptor (TLR) and activation of the

complement system, leading to further damage to renal tissue,

increased tissue immunogenicity as well as initiation of fibrosis

and thus conversion to chronic kidney diseae (CKD) (16).

Renal IRI is inevitable during renal transplantation and remains

a key factor affecting the survival of the transplanted kidney, which

may lead to DGF and primary renal graft nonfunction (PNF) (17).

Meanwhile, a large amount of clinical evidence shows that the

severity of IRI is positively correlated with complications such as

rejection and the incidence of transplanted kidney failure (18, 19).
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3 B cell associated immune response
pattern of IRI

Immune cells are involved in the immune response of the body

and protect the health of the body by exerting immune effects under

physiological conditions (20), but can exacerbate tissue injury under

certain pathological conditions (21). In renal IRI, The immune

response is activated to mediate kidney and distant organ damage

(22). In this process, various groups of immune cells interact with

each other to form an interaction network. Among them, B cells not

only directly mediate immune injury and chemotaxis of other

immune cells enriched in inflammation, but also act as antigen-

presenting cells to activate adaptive immunity (23, 24). B cells and

other immune cells can also migrate to distant organs through

circulating blood flow and other pathways, and through the

secretion of cytokines and other active substances to affect distant

organs, further leading to damage to distant organs, thereby

increasing the burden on the body (25).

Potential mechanisms of immune cell activation and

recruitment in the kidney after IRI involve DAMP (Figure 1).

DAMP is an endogenous molecule expressed in cells under

physiological conditions and released to the outside of the cell

after tissue injury, which can effectively activate the immune system

to initiate and maintain inflammatory responses by binding to

pattern recognition receptors (PRR). DAMPmolecules include high

mobility group box 1 (HMGB1), histones, cell free DNA, IL-33,

extracellular cold-inducible RNA-binding protein (eCIRP), and

heat shock protein (HSP) (26). These histones released from

necrotic tubules or DAMP such as HMGB1 activate TLRs on

dendritic cells or macrophages and inflammatory vesicles in the

cytoplasm to trigger the secretion of proinflammatory cytokines

and chemokines in the ischemic kidney. TLR2 and TLR4 are

similarly expressed on normal tubular epithelial cells and their

expression is further increased after IRI (27). As part of intrinsic

immunity, TLR4 plays an important role (28). Bergler et al. found

that TLR4 was highly upregulated after renal IRI in a rat allogeneic

kidney transplantation model and that high TLR4 expression was

strongly associated with graft dysfunction (29). In addition, TLR4-

deficient mice are protected from renal IRI and kidneys from

donors with loss of TLR4 alleles exhibit fewer pro-inflammatory

cytokines in the post-transplant kidney. Meanwhile, the onset of

activation of intrarenal HIFs after IRI is upregulated mainly in renal

tubular, mesenchymal and endothelial cells. Activation of intrarenal

transcription factors such as nuclear factor kB (NF-kB), heat shock
factor protein 1, and HIF-1a similarly stimulates the synthesis of a

range of proinflammatory cytokines, such as IL-1, IL-6, and tumor

necrosis factor (TNF) (30). Cytokines and chemokines are

important mediators that regulate the recruitment of immune

cells to the post-ischemic kidney, and they direct neutrophils and

macrophages to the site of injury (31).

Neutrophils are the first immune cells to be recruited to the site

of injury. Neutrophils may be involved in inducing renal injury by

blocking renal microvessels and secreting oxygen free radicals and

proteases. Neutrophils can produce oxygen radicals, release

degranulating substances, platelet activating factors and other
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substances that damage kidney tissue, and can also release cytokines

to recruit more neutrophils to form positive feedback, further

aggravating tissue damage (32). Although resident macrophages

are rare in normal kidneys, their numbers increase significantly in

postischemic kidneys. IRI promotes endothelial damage and

modification of heparin sulfate proteoglycans in microvascular

basement membranes, facilitates their binding to L-selectin, and

induces monocyte chemotactic protein 1 (MCP-1). These changes

induce an early influx of monocytes and macrophages into the

ischemic kidney. Monocytes adhere to blood vessels, and after IRI

occurs, monocytes enter the tissue to formmacrophages in response

to the chemotaxis of damaged cells, inflammatory factors, and their

neutrophils. Soon after kidney injury, macrophages become

numerically dominant infiltrating cells (33). Macrophages can be

divided into M1 andM2 according to their mode of action (34). M1,

also known as classically activated macrophages, are activated to

exert potent phagocytic activity and release several important

cytokines, such as IL-1, IL-6, IL-8, IL-12, and TNF, as well as

recruit neutrophils and induce apoptosis to promote the

inflammatory cascade, thereby contributing to kidney injury (35).

Therefore, inhibition of macrophage infiltration attenuated renal

injury in a mouse renal IRI model (36). M2 product IL-10 and TGF-

b, which are anti-inflammatory and moderate the immune response

to tissue damage.

Many studies have revealed the important role of different

lymphocyte subsets in IRI. The basic function of dendritic cells is

to present antigens to T cells and act as messengers between the

innate and adaptive immune systems. The binding of dendritic cells

to the endothelium and their migration seems to be facilitated in the

initial inflammatory response after IRI, leading to an increased ratio

of myeloid to plasmacytoid dendritic cells, which can lead to

delayed graft function and acute rejection. It has been found that
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T cells, especially CD4+ T cells, directly or indirectly promote the

establishment of early kidney injury in IRI. T cell-targeting drugs,

such as tacrolimus and mycophenolate mofetil, significantly

attenuated early kidney injury after IRI. CD4, CD8 double-

knockout mice were largely protected from early kidney injury,

and the adhesion of their T cells to the tubular epithelial cells in

vitro after hypoxia and reoxygenation was increased two-fold.

Periplasmic transfer of T cells into these mice restored renal

injury after IRI, suggesting that T cell deficiency enhances the

protective effect of IRI on the kidney. The role of T cells appears

to extend to the late stages of injury or repair of IRI and is not

limited to the early stages of injury. Treg play a role in renal

regeneration or nephroprotection.Treg promote tubular

proliferation, which accelerates the repair process in the late and

early recovery stages of injury after IRI (37, 38).
4 B cells in the IRI process

IRI, as a aseptic inflammatory process, is involved in the

activation of both innate and adaptive immunity. In previous

studies, activated B cells were observed to be enriched in the

kidney after IRI. These activated B cells can be divided into B1

cells and B2 cells according to the intrinsic or adaptive immune

function they perform (39). Among them, B1 cells are intrinsic

immune cells, accounting for about 5% to 10% of the total B cells,

and play an important role in the early stages of the immune

response. B1 cells can be further subdivided into subpopulations

B1a and B1b based on the expression of the surface marker CD5.

B1 cells comprise the majority of neonatal B cells and are derived

primarily from fetal liver and omentum. In adults, B1 cells are

found mainly in the pleural and peritoneal cavities and respond to
FIGURE 1

Immune response pattern of IRI. Injured renal tubular epithelial cells release damage-associated molecular pattern (DAMP) and cytokines, activate
transcription factors. They can interact and recruit various immune cells, including neutrophils, macrophages, dendritic cells, T cells and B cells.
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T cell-dependent antigens by secreting polyreactive IgM

antibodies (40). B2 cells, on the other hand, are the main cells

that secrete antibodies to participate in the humoral immune

response, appear relatively late in individual development, are

localized in the follicular area of peripheral lymphoid organs (41).

After maturation in the bone marrow, B cells migrate to lymphoid

organs. B cells are activated in the spleen or other secondary

lymphoid organs by contact with antigen via BCR. There are very

few B cells in the normal kidney. In renal IRI, due to chemokine

effects, activated B lymphocytes accumulate in the renal tissue

(42). These activated B lymphocytes may be involved in the

inflammatory response and immune response through the

release of cytokines and chemokines (43). Also, B lymphocytes

play a role in the pathological process by producing antibodies to

mediate immune injury (44). These antibodies may activate

adaptive immunity and trigger an inflammatory response by

binding antigens on kidney tissue. At the same time, this

process can exacerbate IRI and post-IRI rejection and chronic

fibrosis (Figure 2).
4.1 Innate immune response

Natural and autoantibodies play a key role in the initiation of

IRI. Ischemic tissues are exposed to certain autoantigens such as

membrane linked protein IV, phospholipids, DNA, and histones,

thus allowing certain pathogenic natural and autoantibodies to bind

to ischemic tissue cells and activate the complement system, causing

tissue injury (43). This also suggests that early plasma replacement

in renal IRI may have a therapeutic role. B cells can express TLR,
Frontiers in Immunology 04
which recognize specific molecular patterns associated with injury

and thus activate the immune response.

In 2003, Burne-Taney et al. found that after experiencing IRI, B

cell-deficient mice had significantly less kidney injury and a much

lower mortality rate compared to wild-type mice. This was the first

confirmation that B cells play an important role in renal IRI. The

authors searched for possible mechanisms of the role of B cells and

showed that B cells may aggravate tissue injury by producing

cytokines (45). However, specific serum factor types were not

elaborated at the time. Subsequently, Renner et al. found an

increase in natural antibody IgM in the mouse kidney tract after

experiencing renal IRI, and depletion of B1 cells by intraperitoneal

injection of distilled water before experiencing IRI successfully

reduced tract IgM levels and could reduce renal injury to some

extent (46). These results demonstrated that B1 cells acted on the

aggravation process of renal IRI injury through the secretion of

IgM. Inaba et al. found in a mouse model of renal IRI that the

number of B cells in the spleen decreased and the number of B cells

in the renal parenchyma increased within a few hours after injury,

suggesting that B cells may be mobilized from the spleen and

immunologically infiltrated into the kidney during renal IRI (47).

They also found that after IRI, the B1 cell subset expressing CD5

molecules accounted for about 20% of the total number of cells in

the kidney and was the most significantly increased B cell subset,

while this B1 cell subset was almost undetectable in normal kidneys

without IRI. At the same time, they hypothesized that high

expression of CD11b on B1 cells is responsible for driving the

enrichment of B cells into the kidneys. This confirms the role of B1

cells in renal IRI. Further studies found that B cells influence the

recruitment of other immune cells to the kidneys by secreting
FIGURE 2

The mechanism of action of B cells. B cells involve in the development of IRI through innate immune responses, adaptive immune responses, and
negative immune regulation.Undergoing renal IRI, injured renal tubular epithelial cells release DAMP, binding to toll-like receptors and activation of
the complement system. B1 cells, as part of innate immunity, are activated to release natural antibodies and cytokines to aggravate the IRI. Damaged
renal tubular epithelial cells could secrete Chemokines such as CXCL13 to recruit B cell. B cells can be activated by complement and T cells. Binding
of C3dg to the B-cell receptor CR2 lowers the threshold for B-cell activation and promotes antibody production. Breg cells are immunosuppressive
cells that support immunological tolerance.
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chemokines CCL7. The transcriptome showed lower levels of CCL7,

a chemokine that recruits neutrophils and monocytes to injured

tissues, in the B cell-deficient mouse group after IRI, and revealed

that B1a cells act on neutrophils and mononuclear macrophages by

secreting CCL7 to cause infiltrative damage to the kidney (48, 49).

And in human kidney biopsy specimens, CCL7 transcript levels

were significantly higher in AKI kidneys than in kidneys with

normal renal function, further demonstrating that B cells and

CCL7 levels correlate with the degree of acute kidney injury (47).

In contrast, in intestinal IRI, natural antibodies produced by B cells

bind to neoantigens expressed in the intestine after I/R and cause

tissue inflammation by activating the classical and lectin pathways

of complement (50, 51). In summary, B cells participate in the

innate immune response process of IRI through the production of

natural immune antibody IgM and cytokine CCL7, which aggravate

kidney injury (Table 1).
4.2 Adaptive immunity

B cells undergo several stages in the bone marrow, including

pro-B cells, pre-B cells, and immature B cells, and then differentiate

into naïve B cells. Naïve B cells express both mIgM and mIgD on

their surface. Naïve B cells leave the bone marrow and settle in the

peripheral immune organs. Naïve B cells express CD19, CD20, etc.

Activation of naïve B cells requires a first signal provided by specific

antigens and a second signal provided by co-stimulatory molecules.

The BCR complex consisting of CD19/CD21/CD81 on the surface

of B cells greatly enhances the first signal of B cell activation.

Activated B cells form primary focus at the junction of the T and B

cell zones of peripheral lymphoid organs. B cells may differentiate

directly into plasmoblasts secreting antibodies in primary focus, or

they may migrate to lymphoid follicles to form germinal centers and

undergo somatic high-frequency mutations, Ig affinity maturation,

and class switching to differentiate into plasma cells or memory

cells. The majority of memory B cells express CD27. Plasma cells do

not express some B-cell surface markers and show some new

plasma cell-specific markers, such as plasma cell antigen-1 (PCA-

1), and highly express CD38 and CD138. B cells are involved in the

immune response to IRI through antibody production,

immunomodulation and intercellular interactions in adaptive

immunity. Their functions play an important role in regulating
Frontiers in Immunology 05
the inflammatory response, promoting tissue repair, and

maintaining immune homeostasis.

4.2.1 B-cell recruitment in the IRI kidney
Kreimann et al. found that leukocyte infiltration increased from

day 1 to day 7 of IRI. On day 7 after IRI, CD22+ B-cell infiltration

was detected in ischemic kidneys, possibly due to CXCL13

recruitment. It was found that experiencing IRI could promote

elevated CXCL13 levels and that elevated CXCL13 levels were

positively correlated with the duration of IRI. Elevated serum

CXCL13 and elevated levels of pro-inflammatory factors MCP1

and IL6 occurred at 24 hours of reperfusion, suggesting that IRI

kidneys may begin recruiting B cells at an early stage. Sequencing

analysis of IRI-injured kidneys revealed a population of CXCR5+

cells of B-cell origin in the kidney after experiencing IRI. Next, they

performed kidney transplantation using 30 and 60 minutes of cold

ischemia time and found that allogeneic kidney transplantation and

longer cold ischemia time resulted in higher levels of CXCL13 and

B-cell infiltration. Although CXCL13 is mainly secreted by follicular

helper T (Tfh), some other cells such as damaged renal tubular

epithelial cells may also be its source (52). In another lung IRI study,

it was found that stromal cells secreting IL23 and CXCL12 were also

able to promote B-cell recruitment after IRI (53).

4.2.2 B cells are involved in IRI chronic injury
B cells are involved not only in the acute response to ischemic

injury through adaptive immunity but are also associated with

repair after IRI. During IRI, the exposure of self-antigen leads to the

activation of some B cells and their differentiation into memory B

cells. When exposed to the same antigen again, memory B cells are

rapidly activated and differentiated into plasma cells, which produce

a large number of antibodies causing chronic kidney injury and

rejection (54). Cippà showed that late B cell activity in renal

allografts is closely associated with repair of dysfunctional

kidneys.They simulated the transition of transplanted kidneys to

CKD after undergoing bilateral renal ischemia-reperfusion through

a mouse model, suggesting that B lymphocyte action is inherent in

the late phase transition from acute kidney injury to CKD. This

process was observed with a B-cell response similar to that of

allograft biopsies from kidney transplant patients, initiating an

antigen-driven immune process in the absence of foreign antigens

(55). At 6 months after a single IRI, lymphocytes were the most

abundant immune cells in the kidney, organized mainly in clusters

of resolved renal tubular injury and into highly vascularized ectopic

lymphoid structures populated by CD19 B and CD3 T cells,

suggesting a greater recruitment of B cells in the later stages of

IRI injury (56). B cell areas with CD19/CD45R germinal centers or

B cell fractions dimly embedded in the CD21/CXCL13 follicular

dendritic cell network were usually observed only in mature

germinal centers separated from the highly proliferating Ki67

lymphocyte clusters. And systematic analysis of transcribed

cytokines verified that this ectopic lymphoid tissue formation

containing B cells was driven from acute to chronic inflammation

by cytokines. Thus, in the absence of foreign antigens, T and B

lymphocytes accumulate in the mouse kidney, transforming from
TABLE 1 phenotype and function of B1a.

Cell
type

Phenotype Function

B1a CD5 B1a surface marker that regulates internal
activation

CD11b mediating B cell migration

IgM exacerbation of early kidney injury by early
humoral immune response

CCL7 recruiting neutrophils and monocytes to injured
tissues
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acute to chronic injury. B lymphocytes are rare in normal kidneys,

and transcriptional analysis showed a massive expansion of B

lymphocytes in the following weeks after IRI, gradually switching

to the plasma cell type. CXCL12, a cytokine highly expressed by the

renal stroma during the transition to chronic injury. RNA

sequencing profiles of IgM, IgG2c and IgA-like immunoglobulin

gene transcripts and a significant increase in Ig kappa light chain

were consistent with a significant increase in renal local production

of antibodies is consistent. Thus, antibody-secreting cells

accumulate in the kidney with the transition from acute to CKD.

Analysis confirmed the presence of polyclonal B-cell populations in

the kidney enriched for a limited number of dominant clones (57).

Both histologic findings and BCR analysis provided evidence for

proliferation, selection and maturation of B lymphocytes in the

nephron’s germinal centers and the transition from acute kidney

injury to CKD. In the absence of foreign antigens, intrarenal B-cell

responses lead to the production of broadly reactive autoantibodies.

Due to the high frequency of foreign major histocompatibility

complex (MHC) molecules in B-cell precursors, donor antigens

may contribute substantially and accelerate progression to this

immune process in the context of transplantation (58). Liu et al.

established a renal bilateral IRI recovery model to explore the

transition from acute to chronic kidney injury in mice and found

tubular atrophy, interstitial fibrosis, and inflammation to be the

primary long-term outcomes of IRI. RNA-seq analysis identified a

series of time-specific gene expression patterns associated with

innate and adaptive immunity (56). Jang et al. found that in the

absence of alloantigenic stimulation, B cells infiltrate the

postischemic kidney and regulate the repair process of tubular

cells after renal IRI. B cells in which can influence tubular

atrophy and regeneration, while blocking CD126 improves repair

after IRI. These data suggest that undergoing renal IRI can lead to B

cell transport to the kidney and alter the tubular repair process.

Furthermore, targeting CD126 represents a novel approach to

improve clinical outcomes in renal IRI (22). In another study,
Frontiers in Immunology 06
Han et al. identified a possible mechanism by which B cells affect

tubular repair: by establishing a model of unilateral ureteral

obstruction (UUO)-induced tubular interstitial fibrosis, it was

found that the kidneys of B cell-deficient mMT mice and anti-

CD20-treated mice showed lower levels of mononuclear

macrophage infiltration and collagen deposition compared to

wild-type mice, and in both mouse models Levels of tumor

necrosis factor alpha (TNF-a), vascular cell adhesion molecule 1

(VCAM-1), and CCL2 were decreased, suggesting that B cells may

influence renal tubular epithelial cell repair after IRI by recruiting

mononuclear macrophages through secretion of these substances

(59). Renal IRI is inevitable during renal transplantation, while

substantial clinical evidence suggests that the severity of IRI is

positively correlated with complications such as rejection and the

incidence of transplanted kidney failure. Einecke evaluated the

significance of B-cell and plasma cell infiltration in renal

allografts and found that B-cell-associated transcripts (BATs) and

immune globulin transcripts (IGTs) scores were associated with

tubular atrophy, interstitial inflammation and fibrosis (60). The

presence of tertiary lymphoid organs (TLO) in grafts suggests that B

cells may contribute to fibrosis (Figure 3). The study found a

reduction in TLO formation by treating mice with aCD20,

revealing that B cells are required for TLO formation in the graft

model and that B cell depletion attenuates fibrosis, TLO formation

and antibody secretion (53).

4.2.3 T-B cell interactions
T cells are involved in renal IRI through adaptive immunity,

and T cells play an important role in the injury process after IRI and

in the transition from AKI to CKD (61, 62). T cells can be classified

into Th1, Th2, Th17 and CD8-positive T cells according to their

phenotype and function, and these different subtypes of T cells can

participate in renal IRI by secreting cytokines, etc (63). T cells can

also interact with B cells to participate in renal IRI. CD4 T cells were

first found to promote antibody production by B cells, and Th1 and
FIGURE 3

B cells involved in AKI to CKD. After AKI, B cells were recruited to the kidney. Activated B cells can differentiate into memory B cells and plasma cells,
which secrete antibodies, and also directly secrete chemokines. Finally, TLO is formed locally in the kidney, which in turn leads to CKD.
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Th2 cells can promote B cell class switching and exert effects. In

contrast, a unique subpopulation of T cells, Tfh, plays a key role in

regulating T cell-dependent B cell responses. Tfh cells upregulate

CXCR5, which allows them to homing to the interface between the

T and B cell regions of the lymph node, where they interact with

newly activated B cells through antigen presentation. B cells signal

to Tfh cells via ICOS and IL-6, while Tfh cells provide CD40L and

IL-21 to B cells. Through continuous interaction with B cells, Tfh

cells promote survival, proliferation, Ig type switching, maturation

and differentiation of B cells to memory B cells and antibody-

producing plasma cells through germinal center responses (64, 65).

4.2.4 Complement promotes B-cell activation
The complement system is an important component of the

immune system, which is responsible for anti-infective, anti-tumor

and immunomodulatory roles in the immunity of the body (66).

Each complement component is relatively stable in the serum, with

complement C3 being the most abundant (67). The biological

effects of complement include enhanced phagocytosis, enhanced

chemotaxis of phagocytes (68), can increase vascular permeability,

has neutralizing viral, cytolytic effect, and modulation of immune

response (69). Complement depletion impairs antibody production,

and B cells express complement receptor 2 (CR2), which binds to

C3dg, a C3 catabolic product that acts as a modulator. Antigen-

specific B-cell receptors plus CR2-recognized C3dg encapsulated by

antigen initiate phagocytosis and lower the threshold for B-cell

activation, promoting antibody production (70). When

complement receptors are absent on B cells, B cell activation is

compromised. Also complement C3 can bind to CR2 on follicular

DCs and promote B cell differentiation into mature plasma cells or

memory B cells. The complement system can well link innate and

adaptive immunity by delivering antigens to the B-cell

compartment to enhance humoral immunity. Therefore, targeting

complement to block B-cell activation and thus suppress humoral

immunity is also a possible therapeutic modality (71, 72).

42.5 B cells protected IRI through inhibiting
immune response

Regulatory B cells are a subpopulation of B cells with

immunosuppressive functions, accounting for about 10% of total

B cells, which can exert regulatory functions by secreting negative

cytokines such as IL-10 and transforming growth factor b (TGF-b)
(73). They can also suppress self-reactive B cells and pathogenic T

cells in a cell contact-dependent manner by expressing suppressor

molecules on the cell surface (74), so Breg may play a negative

regulatory role in IRI. Deng et al. found that some B-cell subsets can

reduce renal IRI in mice by secreting IL-10 (75). Brandon et al.

found that mice completely lacking mature B cells suffered more

severe injury than wild-type mice due to a reduction in the number

of IL-10-producing B cells during reperfusion, thus providing

further evidence that in renal IRI The presence of a

subpopulation of B cells that produce negative regulatory factors

could protect the kidney from mitigating injury. Fang et al. infused

Bregs into mice for one day before experiencing IRI, and after 2 days

compared to the non-infused Breg group could significantly reduce
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blood creatinine, urea nitrogen and the degree of tubular injury. the

level of renal B cell infiltration in the infused Breg group decreased,

while the Breg and Treg renal infiltration levels were significantly

increased. The study then constructed an IRI model for 1 day after

infusion of Bregs,mice were harvested 3 days after IRI, and found

that infusion of Breg could also reduce renal injury in this model.

Thus, Breg can both reduce acute kidney injury after IRI and

promote kidney repair after IRI. Immediately prior to IRI the

authors treated with both anti-CD45RB combined with or

without anti-Tim-1 antibodies and found that both attenuated the

extent of renal tubular injury by promoting IL-10 Bregs production

(76). Royster et al. found that in mouse intestinal IRI, B1a cells not

only produced IgM to provide natural immune aggravation of

injury, but also produced IL10 inflammatory mediators to

regulate immunity and suppress inflammatory responses, and by

injecting B1a cells from the peritoneal cavity could attenuate serum

levels of organ damage markers such as ALT and AST and the

inflammatory factor IL6 (50). while in brain IRI, infarct volume and

injury after middle cerebral artery occlusion (MCAO) could be

attenuated by transferring Breg (77).
5 Mitigating renal IRI from a B-cell
therapy perspective

Given the important role played by B-cell kidney IRI process,

targeting B cells and antibodies or increasing Breg may be effective

in reducing IRI. Current clinical therapeutic approaches that target

B cells include killing B cells directly, modulating B cell function,

and inhibiting molecules that are dependent on B cell survival (78).

According to the different mechanisms of action, drugs acting on B

cells are classified as anti-CD20(CD20 expressed in B cells at all

developmental stages except plasma cells and can affect the

proliferation and differentiation of B cells by regulating the

transmembrane flow of calciumions (79).) class drugs, anti-CD19

(CD19 is a key signaling molecule in the process of antigen

recognition by B-cell surface receptors) class drugs, anti-B cell

activating factor [BAFF, a crucial factor for B cell survival, binds

to the B cell surface receptor to support B cell survival, proliferation

and differentiation (80)] and Bruton’s tyrosine kinase [BTK, a key

kinase in the BCR signaling pathway that is involved in B-cell

proliferation, differentiation and apoptosis (81, 82)] inhibitors (83).

However, these drugs and methods of killing B cells or inhibiting B

cell function carry a significant risk of immunocompromise as well

as pathogen infection, and their use in the prevention and treatment

of renal IRI is generally considered to be more costly than it is

worth. Moreover, nonspecific removal of B cells suppresses the

immunoregulatory function of Breg cells, which is very detrimental

to overall immune homeostasis.

Plasma replacement is the non-selective removal of

macromolecules, such as antibodies, complement, immune

complexes and coagulation factors, from plasma by physical

means. The use of melphalan and plasma exchange to prevent

antibody-mediated rejection in renal transplantation has been

advanced only in pre-sensitized patients, and we do not know
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their role in the prevention of renal IRI (84). Given the negative

effects of B1 cells in the early stages of renal IRI, blocking B1 cell

function is a potential direction worth considering. The mouse data

suggest that CCL7 blockade may be a useful therapeutic strategy to

reduce the infiltration of inflammatory cells into the kidneys,

thereby improving AKI, without affecting the systemic

mobilization of bone marrow cells, which may contribute to the

defense against infection (47). Because B cells are an important

source of CCL7, observations in siglecg -/- mice suggest that

targeting this cell subpopulation, particularly B1a cells, may be

particularly useful. In this regard, siglecg itself may be a direct

target: siglecg is a surface glycoprotein with an immunoreceptor

tyrosine-based inhibition motif (ITIM) in its cytoplasmic structural

domain that allows it to inhibit bcr-mediated activation (85).

Therefore, the use of agonists (e.g., sialic acid) bound to siglecg

may have therapeutic potential. One problem with inhibiting B1a

function is that this subpopulation may also be an important source

of the immunomodulatory cytokine IL-10 (86). Thus, inhibition of

this subpopulation may be undesirable given the potential beneficial

role of regulatory B cells in AKI models. In addition, the relatively

small number of B1 cells in humans and the absence of specific

markers also make translation to the clinic relatively difficult.

CXCL13 serves as a major cytokine for B-cell chemotaxis, and the

current study also established that CXCR5-positive B cells are

enriched at sites of inflammation by CXCL13 released by injured

renal tubular cells (87). Blocking CXCL13-CXCR5 may be effective

in inhibiting B cell enrichment in the damaged kidney. In addition,

CXCL13 release may also be regulated through TLR2 and IL-10

dependent mechanisms (88). Complement activation may also

affect immune cell-mediated secretion of CXCL13 release. Thus,

inhibition of CXCL13 may exert its protective effects against renal

IRI through pathways other than B cells. It is important to note that

CXCR5 expression was not limited to B cells; macrophages and Tfh

cells were also identified as CXCR5-positive. Blocking CXCL13-

CXCR5 may cause a decrease in the chemotaxis of these cells (52).

Inhibition of specific T-cell activation and complement function has

a positive role in renal IRI, but these studies lacked evidence of a B-

cell pathway of action. Therefore, the primary place of direct

blockade of T-B cell action and complement-B cell activation in

protecting against renal IRI remains uncertain. By increasing the

number of Breg and thus inhibiting the function of other immune

cells and reducing the inflammatory response, exogenous infusion

of Bregs may therefore be a new therapeutic route for the treatment

of IRI. However, exogenous induction of B-cell differentiation to

Breg is also a potential therapeutic modality and is simpler since in

vitro isolation and culture of Breg takes longer time and carries

more risk of contamination (89, 90). Fang et al. successfully induced

Breg production using anti-CD45RB and produced the same

therapeutic effect as exogenous direct infusion of Breg, both of

which reduced renal IRI (76).

There are still no immune drugs specific for renal IRI, and there

are only a few clinical trials targeting immune cells (91–93).
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6 Conclusion and future prospects

In this review, we describe the mechanisms of renal IRI, the role

played by immune cells, especially B cells, in IRI through multiple

pathways, and explore potential therapeutic directions to mitigate

IRI by targeting B cells and exogenous infusion of Breg. For renal

IRI, we found that there is no single therapeutic approach that can

fully address the renal effects of IRI, and therefore a combination of

therapeutic approaches may be required. In this paper, we briefly

describe some new therapeutic targets in terms of B cells, such as

cytokine, T cell, plasma replacement and promotion of B cell

differentiation to Breg. Although sufficient basic experimental

and clinical data are needed before clinical practice, reducing

renal IRI by acting on B cells is a promising research and

therapeutic direction.
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