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The potential protective effects
of pre-injury exercise on
neuroimmune responses
following experimentally-
induced traumatic neuropathy:
a systematic review with
meta-analysis
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and Michel W. Coppieters1,4*

1Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement
Sciences, Amsterdam, Netherlands, 2Meta Research Team, Department of Anaesthesiology, Pain and
Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands, 3Department of Clinical
Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc,
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Pre-clinical evidence shows that neuropathy is associated with complex

neuroimmune responses, which in turn are associated with increased intensity

and persistence of neuropathic pain. Routine exercise has the potential to

mitigate complications of future nerve damage and persistence of pain

through neuroimmune regulation. This systematic review aimed to explore the

effect of pre-injury exercise on neuroimmune responses, and other physiological

and behavioural reactions following peripheral neuropathy in animals. Three

electronic databases were searched from inception to July 2022. All controlled

animal studies assessing the influence of an active exercise program prior to

experimentally-induced traumatic peripheral neuropathy compared to a non-

exercise control group on neuroimmune, physiological and behavioural

outcomes were selected. The search identified 17,431 records. After screening,

11 articles were included. Meta-analyses showed that pre-injury exercise

significantly reduced levels of IL-1b (SMD: -1.06, 95% CI: -1.99 to -0.13, n=40),

but not iNOS (SMD: -0.71 95% CI: -1.66 to 0.25, n=82). From 72 comparisons of

different neuroimmune outcomes at different anatomical locations, vote

counting revealed reductions in 23 pro-inflammatory and increases in 6 anti-

inflammatory neuroimmune outcomes. For physiological outcomes, meta-

analyses revealed that pre-injury exercise improved one out of six nerve

morphometric related outcomes (G-ratio; SMD: 1.95, 95%CI: 0.77 to 3.12,

n=20) and one out of two muscle morphometric outcomes (muscle fibre
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cross-sectional area; SMD: 0.91, 95%CI: 0.27 to 1.54, n=48). For behavioural

outcomes, mechanical allodynia was significantly less in the pre-injury exercise

group (SMD -1.24, 95%CI: -1.87 to -0.61) whereas no overall effect was seen for

sciatic function index. Post hoc subgroup analysis suggests that timing of

outcome measurement may influence the effect of pre-injury exercise on

mechanical allodynia. Risk of bias was unclear in most studies, as the design

and conduct of the included experiments were poorly reported. Preventative

exercise may have potential neuroprotective and immunoregulatory effects

limiting the sequalae of nerve injury, but more research in this field is

urgently needed.
KEYWORDS

running, prevention, peripheral nerve injury, inflammation, animal model
1 Introduction

Regular exercise is associated with less chronic pain (1) and

reduces the risk of several chronic conditions, such as cardiovascular

disease, diabetes, metabolic syndrome, and even neurodegenerative

diseases (2–5). However, for peripheral neuropathic pain conditions,

the preventative effects of exercise are less clear. Exercise is

recommended for patients with neuropathic pain (6), but research

on the effect of exercise on neuropathic pain has mostly focused on

exercise prescribed as a treatment after sustaining the injury (7, 8). A

recent review and meta-analysis about the effect of exercise on

experimentally-induced neuropathic pain in animals included

exercise programs that started both before and after peripheral

neuropathy induction (9). Interestingly, this review found that the

beneficial effect of exercise on mechanical allodynia was related to the

timing of the exercise program, alluding to a benefit of exercise prior

to sustaining a neuropathy. Unfortunately, underlying working

mechanisms of exercise were not synthesised along with the

mechanical allodynia results (9).

Animal experimental studies show that nerve injuries result in a

cascade of complex neuroimmune responses involving multiple

mediators, such as neuropeptides, cytokines, gene expression and

hormones (10–13). However, the balance of pro- and anti-

inflammatory responses are integral for the recovery/healing

process (14, 15). For example, initial pro-inflammatory responses

to nerve damage, such as transient neutrophil activation, are

normal, and might even be protective against the development of

chronic pain (15, 16). On the other hand, pro-inflammatory

responses (such as dorsal root ganglion (DRG) macrophage

activation (17), dorsal horn microglia activation (18), and

pronociceptive cytokines and chemokines (19)) are responsible

for predisposing the development of neuropathic pain

(hyperalgesia/allodynia) and persistence of the pain. Furthermore,

pain resolution after peripheral nerve injury requires regulatory T

cells and M2 macrophages [18]. Altogether, a maladaptive

inflammatory response to peripheral nerve injury contributes to

the generation of persistence of pain (16). Thus, it seems ideal to
02
prevent an excessive inflammatory response and/or promote the

anti-inflammatory resolution phase.

Sedentary behaviour, in addition to injury, promotes and

prolongs this pro-inflammatory response via alterations in

macrophage phenotype (M1) at the site of injury (20). In addition

to immune alterations, sedentary behaviour changes the reactivity

of the central nervous system promoting greater excitability and less

inhibition (21). Exercise, on the other hand, promotes anti-

inflammatory responses (22, 23) increased central nociceptive

inhibition and decreased central excitability aiding in healing and

analgesia (21, 24). The immunoregulatory effects of exercise may be

mediated by multiple mechanisms. Muscular contraction induces

cytosolic changes (increased calcium ions, activation of p38 MAPK

etc.) which leads to activation of transcription factors (e.g.,

activation protein (AP)-1) leading to the production of myokines

(e.g., IL-6). Together with increased sympathoadrenal activity these

responses induce an anti-inflammatory environment with each

bout of exercise (22, 25, 26). Routine exercise has the potential to

mitigate pain through neuroimmune regulation, as pre-injury

exercise in animals prevented hyperalgesia resulting from

repeated acidic saline injections by promoting anti-inflammatory

mechanisms (27, 28). This suggests that exercise primes the

neuroimmune system to an anti-inflammatory state and in turn

can reduce the complications of future nerve damage and

persistence of pain.

The literature on the potential role pre-injury exercise may play

in reducing the consequences of peripheral neuropathy through

neuroimmune responses has not yet been summarised. More

insight is needed in what exercise type, program length,

frequency, duration, intensity, and timing are necessary for

improvements in pain-related and neuroimmune outcomes. For

ethical reasons, invasive experimental research in this domain (e.g.,

immunohistochemistry of the nervous system) is not possible in

humans. Research in animals may provide insight into processes

that may be similar in humans. Therefore, the aim of this systematic

review was to summarise the evidence on the effect of pre-injury

exercise on neuroimmune, physiological and behavioural outcomes
frontiersin.org
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following experimentally-induced traumatic peripheral neuropathy

in animals.
2 Methods

The review was reported according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis (PRISMA)

guidelines (29) and registered at the International Prospective

Register of Systematic Review (PROSPERO), CRD42021245899.
2.1 Literature search

MEDLINE (via PubMed), Web of Science and EMBASE

databases were searched from inception until July 5, 2022. The

search strategy was developed together with a research librarian

(Alice Tillema) and consisted of three components (1) animals, (2)

neuropathy and (3) exercise (Appendix A). Reference list of

included studies and of relevant reviews were searched to identify

other potentially eligible studies.
2.2 Study selection

Two independent researchers (MK, MS) performed the study

selection by first screening title and abstracts and then full texts

using the Rayyan screening tool (30). Disagreements were first

discussed between the two independent researchers. A third

reviewer (ILS or GSP) was consulted if a disagreement could not

be resolved. Percentage agreement on study inclusion between the

two reviewers was calculated. There were no restrictions on

language nor publication date.

Studies that met the following criteria were considered for

inclusion: (1) Design: (randomised) controlled trials of animal

studies; (2) Population: animals with experimentally-induced

traumatic peripheral neuropathy; (3) Intervention: active exercise

program performed prior to nerve injury; (4) Control: no active

exercise. Studies which investigated hereditary neuropathies or

neuropathies acquired by disease or toxins (e.g., animal models

for diabetes, rheumatoid arthritis, Guillain-Barré syndrome,

systemic lupus erythematosus, or chemotherapy-induced

peripheral neuropathy), or diseases or injuries to the central

nervous system (e.g., Parkinson’s disease, spinal cord injury) were

excluded. Studies were also excluded if the exercise intervention was

passive (such as neural mobilisations or stretching (31)), consisted

of electrical stimulation, or if the exercise was part of a multimodal

intervention. Vehicle injections or sham graft injections near the

injury site were considered co-interventions and these studies were

therefore excluded. The outcome measures included were neuro-

immune responses (i.e., neuroimmune responses are defined as

processes or substances (such as neuropeptides, cytokines, gene

expression and hormones) involved in interactions between the

immune system and nervous system.), other physiological reactions

(e.g., muscle or nerve morphometrics or behavioural outcomes (e.g.,

mechanical allodynia).
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2.3 Data extraction

Data were collected by two reviewers independently (MK, PT).

Details regarding bibliographic information (author and year),

study design, animal model (species, strain, sex, age and weight),

neuropathy model, exercise as an intervention (type, program

length, frequency, duration, intensity, and mode) and all types

outcomes were extracted from each paper. Outcomes were

categorised into primary, i.e., measures related to neuroimmune

responses, or secondary outcomes, i.e., other physiological or

behavioural outcomes.

For all neuro-immune responses and other outcome measures,

continuous data and/or percentages were extracted as mean,

standard deviation, and number of animals. If the standardised

error of the mean (SEM) was provided, then these values were

recalculated to standard deviations. Authors of selected articles were

contacted if data could not be extracted directly from the article or if

the outcome data was incomplete (e.g., unclear number of animals

used). If authors did not respond after two attempts, a digital screen

ruler (Universal Digitizer 3.8, AVPSoft.com) was used by two

independent review authors (MK, PT) to extract data from

the graphs.
2.4 Assessment of risk of bias

The methodological quality of all included studies was evaluated

by two independent reviewers (MK, PT) using the Systematic

Review Center for Laboratory Animal Experimentation’s

(SYRCLE) risk of bias tool for animal studies (32). The tool

contains ten items related to selection bias, performance bias,

detection bias, attrition bias, reporting bias and other bias. Each

item is answered with ‘yes’ (i.e., low risk), ‘no’ (i.e., high risk), and

‘unclear’ (i.e., not enough information to determine the risk of bias).

Discrepancies were first discussed between the two reviewers. If

agreement could not be reached, a third reviewer (GSP) was

consulted. Percentage agreement between the two reviewers

was calculated.
2.5 Synthesis of results

The effects of pre-injury exercise on the primary outcome of

neuroimmune responses and secondary outcomes of other

physiological or behavioural outcomes were analysed using

Comprehensive Meta-Analysis (CMA version 3). Standard mean

differences (SMD) and 95% confidence intervals (95%CI) for each

individual comparison were calculated with Hedges g correction

(33). When group size was reported as a range (e.g., 8-10), the

median value was used for meta-analysis. When a study contained

multiple experimental groups, the control group size was corrected

for the number of comparisons made (n/number of comparisons)

(34, 35).

Meta-analyses in animal studies are more exploratory

compared to those in human research, as direction of the effects

is more meaningful than the size (35). In this review, meta-analyses
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were performed using a random effects model when a specific

outcome was measured in at least two independent studies in the

same anatomical location. Results from the meta-analyses were

presented in forest plots and a pooled estimate was calculated.

Neuroimmune outcomes measured in only one study, were also

presented on a forest plot but without a pooled estimate. Vote

counting was conducted for the neuroimmune outcomes by

reporting the number of significant comparisons; results were

cautiously interpreted. For repeated measurements at different

time points within a study, the overall effect of pre-injury exercise

was first presented using the largest recorded effect size, regardless

of time, from each study. Statistical heterogeneity between studies

was estimated by visual inspection and I2.

Pre-specified subgroup analyses included the comparison of

species (e.g., rats versus mice), neuropathic pain model, exercise

type (aerobic versus anaerobic). A post-hoc subgroup analysis was

performed to explore the effect of timing of measurement post

injury (week post injury). Subgroup analyses results were only

interpreted if there were at least 10 comparisons per subgroup.

To take into account the between study variation in the subgroup

analyses, Comprehensive Meta-Analysis (CMA version 3) was used

as it estimates the variation across all studies. To assess the

publication bias, funnel plots and Trim and Fill analyses were

planned for each outcome containing at least 10 studies (36).

Lastly, to assess the robustness of the results, sensitivity analyses

were planned to examine the effect of including only the low risk of

bias compared to the complete analyses.
3 Results

3.1 Study selection

The flow of study selection is shown in Figure 1. The

original search identified 17,431 records. After title and abstract

screening, 128 full texts were assessed for eligibility, of which 11

articles originating from 10 experiments were included in the review

(37–47). Reference lists of included studies and of relevant reviews

(9, 48) did not reveal additional studies. Overall, agreement on

study inclusion between the two reviewers before deliberation

was 96.1%.
3.2 Study characteristics

The eleven articles, including a total of 103 independent

comparisons and 167 animals, were published between 1998 and

2022 (37–47). All but one study (42) used adult, male rodents; with

Wistar rats being the most common species used (6/11 studies) (37,

39, 44–47), followed by Sprague-Dawley rats (3/11 studies) (40, 42,

43) and mice (2/11 studies) (38, 41) All neuropathic pain models

were performed by injuring the sciatic nerve, seven included studies

used a chronic constriction injury (CCI) model (37, 39–43, 46),

while four studies used a nerve crush model (38, 44, 45, 47). The
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exercise programs administered before the lesion mostly consisted

of aerobic exercise (9/11 studies), such as running (38, 40–43, 46) or

swimming (37, 39, 47), but also included aquatic resistance training

programs (44, 45). The primary outcome, neuroimmune responses,

such as cytokines, neurotrophic factors, microglia, and antioxidants,

were measured in six studies (38, 40–43, 46). However, one study

(41) did not analyse neuroimmune responses in the non-exercise

control group, thus was excluded in the analyses for neuroimmune

responses. In regards to the secondary outcomes, five studies (37,

38, 40, 44, 45) assessed other physiological outcomes, such as

muscle or nerve morphometric. Behavioural outcomes, such as

mechanical allodynia measured with von Frey filaments or sciatic

function index (SFI), were measured in nine studies (38, 39, 41–47).

A summary of the basic characteristics of the eleven included

studies is presented in Table 1. All measured outcomes are listed

in Appendix B.
3.3 Risk of bias within studies

Figure 2 summarises the results of the risk of bias assessment for

each study. Regarding five of the risk of bias items: random

sequence generation, allocation sequence, random housing,

random outcome assessment, and selective outcome reporting, all

included studies showed an unclear risk of bias, because

essential details regarding the methodology was not available. For

the rest of the risk of bias items, the percentage marked as ‘unclear

risk’ are as follows: baseline characteristics (64%), performance

blinding (82%), blinding of outcome assessment (45%), and

incomplete outcome data (73%). Low risk of bias was scored for

all but one included study for the question, “Was the study

apparently free of other problems that could result in high risk of

bias? The high risk scored for this item pertained to excluding mice

that refused to run. The percentage of agreement between the

reviewers was 82%; differences between raters were mainly due to

interpretation differences.
3.4 Effect of pre-injury exercise on
neuroimmune responses following
experimentally-induced traumatic
peripheral neuropathy

Five studies (92 rodents) evaluated 72 different neuroimmune

responses measured at six different locations (spinal cord,

cerebrospinal fluid, dorsal root ganglion, sciatic nerve, muscle and

blood/serum) (38, 40, 42, 43, 46). Neuroimmune responses were

measured on various days post-injury: 3,7,14, 15 or 26. When a

neuroimmune response was measured in the same location in

multiple comparisons, a meta-analysis was conducted. Meta-

analysis on levels of IL-1b in the spinal cord ranging from 3-15

days post-injury showed that pre-injury exercise compared to non-

exercise control significantly reduced levels of IL-1b (pooled data, 2

studies, 3 comparisons, n=40 rodents, SMD: -1.06, 95%CI: -1.99 to
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FIGURE 1

Flow chart of study selection procedure.
TABLE 1 Characteristics of included studies.

Reference Species Sex Age
(weeks)

Weight
(g)

Injury
model

Exercise
type

Exercise
Program

Exercise inten-
sity

Control
intervention

Outcomes

Artifon
et al. 2013

(37)

Wistar
rats
n=6/
group

Male 14 ± 2 413 ± 49 CCI Swimming 10 min/
day
5 days/
week for 6
weeks

1. “Low”
2.
Progressive:10min
increase per week

Water
exposure for
30 seconds

Soleus muscle fibre CSA,
muscle fibre diameter,
and muscle weight†

Bertolini
et al., 2011

(39)

Wistar
rats
n=6/
group

Not
reported

Not
reported

413 ± 49 CCI Swimming 10 min/
day
3 days/
week for 6
weeks

1. “Low”
2.
Progressive:10min
increase per week

Water
exposure less
than 1
minute

Functional disability test
(time holding hind paw)
†

Bobinski
et al.

2011 (38)

Swiss
Mice
n=8/
group

Male 8-9 25-35 Sciatic
nerve
crush

Treadmill
running

30 min/
day
5 days/
week for 2
weeks

Low intensity:
10m/min

Motionless
treadmill
exposure

IL-1b, TNF-a, IL-6R,
IL-10, total # of nerve
fibres, nerve fibre
density, nerve fibre
diameter, axon diameter,
myelin sheath thickness,
G-ratio, SFI mechanical
allodynia (von Frey),
SSI†, grip force†, and
cold hypersensitivity†

Campos
et al. 2018

(40)

Sprague-
Dawley
rats
n=8-12/
group

Male Not
reported

250-300 CCI Treadmill
running

60 min/
day
5 days/
week for 4
weeks

Moderate
intensity:
60% maximum
speed

Sedentary ab crystallin*, HSP27*,
HSP90*, plantaris
muscle fibre CSA*, LC3-
I*†, LC3-II*†, p62*†,
PolyUb*†, Carbonyl*†,
caspase-3*†, BCL2*†,
and muscle force ratio*†

Cobianchi
et al., 2010

(41)

CD1
Mice
n=11/
group

Male Not
reported

40-45 CCI Treadmill
running

TTE
5 days/
week for 2
weeks

High intensity:
20 cm/s increased
with 2 cm/s every

Sedentary Mechanical allodynia
(von Frey), CD11b†,
GFAP†, and SSI†

(Continued)
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-0.13) (38, 43) (Figure 3A). Two other studies (42, 43) showed that

pre-injury exercise did not significantly reduce levels of iNOS at the

sciatic nerve compared to non-exercise control (pooled data, 2

studies, 4 comparisons, n=82 rodents, SMD: -0.71, 95%CI: -1.66 to

0.25) (Figure 3B). iNOS is an enzyme that produces nitric oxide

under stress conditions and is a common marker for M1

macrophage activation (49–51). Due to the low power of these

meta-analyses, no strong conclusions can be drawn.

Figures 4, 5 provide an overview of all reported neuroimmune

responses, for pro-inflammatory (Figure 4) and anti-inflammatory

(Figure 5) responses. This forest plot shows the direction of the

effect of pre-injury exercise on neuroimmune responses per

anatomical location following experimentally-induced traumatic

peripheral neuropathy. Vote counting revealed that for the pro-
Frontiers in Immunology 06
inflammatory neuroimmune responses (Figure 4), pre-injury

exercise significantly improved 24 of the 50 comparisons across

the six different locations. Of the 22 comparisons evaluating anti-

inflammatory neuroimmune responses, pre-injury exercise

significantly improved 6 responses across the different

locations (Figure 5).
3.5 Effect of pre-injury exercise on nerve
morphometrics following experimentally-
induced traumatic peripheral neuropathy

Meta-analyses could be performed on two studies (20 rodents)

which measured six nerve-related morphometrics (38, 44). Exercise
TABLE 1 Continued

Reference Species Sex Age
(weeks)

Weight
(g)

Injury
model

Exercise
type

Exercise
Program

Exercise inten-
sity

Control
intervention

Outcomes

5 minutes until
exhaustion

Grace
et al.

2016 (43)

Sprague-
Dawley
rats
n=6/
group

Male 10-12 Not
reported

CCI Wheel
running

Voluntary
for 6
weeks

Voluntary Locked wheel IL-10, IL-1b, Nitrite,
NLRP3, p65, GLT-1,
P2X4R, p38, BDNF, Iba-
1, CCL2, CD11b, ATF3,
Arg-1, iNOS, CCL3,
CXCL1, and mechanical
allodynia (von Frey)

Green-
Fulgham

et al., 2022
(42)

Sprague-
Dawley
rats
n=12-
16/
group

Male &
Female

10 Not
reported

CCI Wheel
running

1.
Voluntary
for 6
weeks
2.
Voluntary
for 3
weeks

Voluntary Sedentary
(single-
housed,
standard
cage)

Nitrotyrosine, iNOS
NOX2, superoxide
dismutase 1, superoxide
dismutase 2, heme
oxygenase 1, heme
oxygenase 2, Nrf2, and
mechanical allodynia
(von Frey)

Kakihata
et al.

2016‡ (44)

Wistar
rats
n=5/
group

Male 8 314 ± 23 Sciatic
nerve
crush

Resistance
aquatic
jumping
exercise

3 days/
week for 3
weeks

Low progressed to
moderate
intensity:
- 2 sets of 10
jumps progressed
to 4 sets
- Load of 50% of
animal’s weight

Sedentary Nerve fibre diameter,
axon diameter, myelin
sheath thickness, G
ratio, nerve fibre density,
total # of nerve fibres,
SFI, blood vessel
density†, nerve
connective tissue† and
cell nuclei density†

Malanotte
et al.

2017‡ (45)

Wistar
rats
n=5/
group

Male 8 314 ± 23 Sciatic
nerve
crush

Resistance
aquatic
jumping
exercise

3 days/
week for 3
weeks

Low progressed to
moderate
intensity:
- 2 sets of 10
jumps progressed
to 4 sets
- Load of 50% of
animal’s weight

Sedentary Soleus muscle fibre CSA,
muscle fibre diameter,
mechanical allodynia
(von Frey) and muscle
connective tissue†

Safakhah
et al., 2017

(46)

Wistar
rats
n=6-9/
group

Male Adult 200 ± 20 CCI Treadmill
running

30 min
5 days/
week for 3
weeks

High intensity:
16m/min

Sedentary TNF-a*, MDA*, FRAP*,
mechanical allodynia*
(von Frey), and heat
hypersensitivity†

van
Meeteren

et al.
1998 (47)

Wistar
rats
n=10/
group

Male Not
reported

140-160 Sciatic
nerve
crush

Swimming 3x3-min/
day
7 days for
1 week

High intensity:
20m/min

Swam 6
meters (~18
seconds) for
3 days

SFI and foot reflex
withdrawal test†
*Data extracted using a digital ruler. †Outcome measured only in one study thus, not analysed in the meta-analyses. ‡Studies used same experimental sample of animals but reported different
outcomes. SFI, sciatic function index; SSI, sciatic static index; CCI, chronic constriction injury; CSA, cross-sectional area; MDA, malondialdehyde; FRAP, ferric reducing ability of plasma.
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before experimentally-induced traumatic peripheral neuropathy

had a favourable effect on the sciatic nerve’s G-ratio (i.e., a

measure of the functional and structural index of optimal axonal

myelination (52), determined by the inner axon radius relative to

the outer, myelinated, axon radius) compared to non-exercise

control (pooled data, 2 studies, n=20 rodents, SMD: 1.95, 95%CI:

0.77 to 3.12) (Figure 6.1) (38, 44). Pre-injury exercise was not

different than non-exercise control on other nerve-related

morphometrics, such as myelin sheath thickness (pooled data, 2

studies, n=20, SMD: 1.94, 95%CI: –2.15 to 6.03), nerve fibre

diameter (pooled data, 2 studies, n=20, SMD: 0.81, 95%CI: -0.83

to 2.45), axon diameter (pooled data, 2 studies, n=20, SMD: 0.74,

95%CI: -0.92 to 2.40), nerve fibre density (pooled data, 2 studies,

n=20, SMD: 0.65, 95%CI: -0.81 to 2.12), or total number of nerve

fibres (pooled data, 2 studies, n=20, SMD: 0.28, 95%CI: -0.87 to

1.43) (Figure 6.2-6) (38, 44).
3.6 Effect of pre-injury exercise on muscle
morphometrics following experimentally-
induced traumatic peripheral neuropathy

There were twomuscle morphometric measures that were assessed

by two studies (48 rodents). Muscle fibre cross-sectional area of the

soleus (37, 45) and plantaris (40) muscle following peripheral

neuropathy induction was significantly larger with pre-injury

exercise (pooled data, 3 studies, 4 comparisons, n=48 rodents, SMD:

0.91, 95%CI: 0.27 to 1.54) compared to non-exercise control

(Figure 7.1). Pre-injury exercise was not different than the non-

exercise control in muscle fibre diameter (pooled data, 2 studies,

n=28, SMD: 0.76, 95%CI: -0.07 to 1.60) (Figure 7.2) (37, 45).
FIGURE 2

Risk of bias summary. Review authors’ judgement for each risk of
bias item. The green ‘+’ means low risk, red ‘-’ means high risk, and
yellow ‘?’ means unclear.
B

A

FIGURE 3

The general effect of pre-injury exercise on various pro-inflammatory and anti-inflammatory neuroimmune outcomes in animal models of
experimentally-induced traumatic peripheral neuropathy. (A) Meta-analysis of the effect of pre-injury exercise on IL-1b. (B) Meta-analysis of the
effect of prior exercise on iNOS. For neuroimmune outcomes measured in the same study and location, but different timepoints, the day post injury
is listed behind study identification in superscript.
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3.7 Effect of pre-injury exercise on
behavioural/functional outcomes at the
hind paw following experimentally-
induced traumatic peripheral neuropathy

Nine studies (124 rodents) evaluated behavioural outcomes

after peripheral neuropathy induction (38, 39, 41–47). Meta-
Frontiers in Immunology 08
analyses could be performed on two outcomes: mechanical

allodynia and SFI measured at the hind paw. Mechanical

allodynia scores, measured with von Frey filaments, were

significantly better in the pre-injury exercise group compared to

and non-exercise control (pooled data, 6 studies, 7 interventions,

n=114, SMD -1.24, 95%CI: -1.87 to -0.61) (Figure 8A) (38, 41–43,

45, 46)[38]. There was no difference however, between pre-injury
FIGURE 4

Overview of all reported pro-inflammatory neuroimmune responses. Favours pre-injury exercise implies a reduction in pro-inflammatory neuroimmune
markers. Outcomes are categorised by anatomical location. For neuroimmune outcomes measured in the same study and location, but different
timepoints, the day post injury is listed behind study identification in superscript. p65, nuclear factor NF-kappa-B p65 subunit; IL-1b, interleukin 1 beta;
p38 mitogen-activated protein kinase; P2X4R, P2X4 receptor; BDNF, brain-derived neurotrophic factor; TNF-a, tumor necrosis factor alpha; NLRP3
inflammasome; IL-6R, interleukin-6 receptor; NT, nitro tyrosine; ATF3, activating transcription factor 3; CCL2, chemokine (C-C motif) ligand 2, CD11b
(macrophage marker); Iba1, ionized calcium binding adaptor molecule 1 (microglia activation marker); iNOS, inducible nitric oxide synthase; NOX2,
NAPDH oxidase 2; HSP, heat shock protein; PBMC, peripheral blood mononuclear cells; CXCL1, chemokine (C-X-C motif) ligand 1.
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exercise compared to non-exercise control in SFI scores (pooled

data, 3 studies, n=36, SMD: 1.05, 95%CI: -1.06 to 3.17) (Figure 8B)

(38, 44, 47).
3.8 Subgroup analysis

Due to the limited number of studies, none of the planned

subgroup analysis could be performed. A post-hoc subgroup

analysis for mechanical allodynia was performed comparing

mechanical allodynia measurements recorded per week post-

injury. Comparing the subgroups of mechanical allodynia per

week post-injury, pre-injury exercise reduced mechanical

allodynia at week 2 but not significantly at week 1 post injury

(Figure 9). Sub-groups of mechanical allodynia measured during

week 3 and 4 had less than 10 comparisons but results can be found

in Appendix C. These results suggests that the timing of outcome

measurement may influence the effect of pre-injury exercise on

mechanical allodynia. However, due to the low number of studies in

each subgroup we have to interpret these findings carefully.
3.9 Publication bias and sensitivity analysis

Due to the low number of studies measuring the same outcome,

publication bias could not be investigated. Furthermore, proposed

sensitivity analyses could not be performed as the risk of bias was
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unclear for the majority of the included studies in all risk of

bias domains.
4 Discussion

This systematic review summarises the results of 11 studies that

examined the influence of pre-injury exercise on neuroimmune

outcomes, physiological responses, and behavioural outcomes

following experimentally-induced peripheral neuropathy in animal

models. Most studies evaluated aerobic exercise interventions and

used a sciatic nerve, chronic constriction injury (CCI) model.

Seventy-two different neuroimmune outcomes (mostly pro-

inflammatory) were measured in five included papers in different

anatomical locations. Meta-analyses could only be conducted for IL-

1b (spinal cord) and iNOS (sciatic nerve) and showed exercise prior to

experimentally-induced traumatic neuropathy significantly reduced IL-

1b levels but not iNOS. All the other neuroimmune outcomes were

only measured once. Vote counting revealed a reduction in 23 pro-

inflammatory neuroimmune outcomes (such as cytokines, chemokines,

and macrophage/microglial markers) and an increase in 6 anti-

inflammatory neuroimmune outcomes (such as transcriptional

antioxidant response regulator, Nrf2, and glutamate transporter-1).

Physiological responses, such as the G-ratio of the nerve and the muscle

fibre cross-sectional area of the distally innervated muscle, were

improved in the pre-injury exercise group compared to non-exercise

control. Behavioural outcomes, such as mechanical allodynia improved
FIGURE 5

Overview of all reported anti-inflammatory neuroimmune responses Favours pre-injury exercise implies an increase in anti-inflammatory
neuroimmune markers. Outcomes are categorised by anatomical location. For neuroimmune outcomes measured in the same study and location,
but different timepoints, the day post injury is listed behind study identification in superscript. GLT-1, glutamate transporter 1; IL-10, interleukin 10;
Nrf2, nuclear factor E2-related factor 2 nuclear translocation; Nrf2nuc, nuclear factor E2-related factor 2 nuclear fractions; Arg-1, arginase 1; SOD,
superoxide dismutase; HO, heme oxygenase; FRAP, ferric reducing antioxidant power; MDA, malondialdehyde.
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in the pre-injury exercise group compared to non-exercise control. The

post-hoc subgroup analysis for mechanical allodynia suggests that the

timing of outcome measurement may influence the effect of pre-injury

exercise onmechanical allodynia, but results from small subgroups. The

results of this review suggest a potential neuroprotective and

immunoregulatory effect of an exercise regime before sustaining a

peripheral neuropathy.
4.1 Effects of pre-injury exercise

Experimentally-induced traumatic peripheral neuropathy

provokes an immune response that requires an intricate balance of

pro-inflammatory and anti-inflammatory mechanisms (14, 53).

Current evidence suggests that persistent neuropathic pain is the

result of the balance being tipped in favour of pro-inflammatory

mechanisms (14, 16). Regular exercise is known to induce a transient
Frontiers in Immunology 10
anti-inflammatory environment, locally within the tissues and

systemically (22, 23, 54). In this review, most included studies

focused on the reduction of pro-inflammatory responses, such as

IL-1b or BDNF related transcription factors (e.g., p65, p38, and

P2X4R) other cytokines and chemokines, macrophage/microglia

markers (CD11b and Iba1), and neuronal damage factor ATF3.

Meta-analyses could only be performed on 2 neuroimmune markers

(spinal cord IL-1b and sciatic nerve iNOS). Meta-analysis on levels of

IL-1b from two studies (n=40 rodents) showed that pre-injury aerobic

exercise significantly reduced levels of IL-1b compared to non-exercise

control. A potential explanation for the lack of significant results in the

meta-analysis for iNOS could be a result of too few studies (n=2, n=41

rodents) leading to type II error. Pre-injury exercise promoted anti-

inflammatory responses including elevated levels of GLT-1 and

transcriptional antioxidant response regulator, Nrf2. Activation of

Nfr2 seems to be a promising mechanism as it attenuated CCI-

induced neuropathic pain via induction of PGC-1a-mediated
FIGURE 6

The effect of pre-injury exercise on six different nerve morphometric outcomes following experimentally-induced traumatic peripheral neuropathy.
Favours pre-injury exercise implies an increase in outcome values, except for G-ratio where a reduction in outcome is valued.
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mitochondrial biogenesis in the spinal cord (55). Additionally, Nrf2

activation reduces oxidative stress and neuroinflammation leading to a

reduction in pain and delays the onset of pain in various animal

models (56). Thus, pre-injury exercise may influence different

neuroimmune signals on both sides of the inflammatory balance to
Frontiers in Immunology 11
prevent the sustained hyperinflammation as seen in non-

exercise animals.

This review also demonstrates that exercise exerts its effects not

only locally near the injury site (sciatic nerve), but also in the dorsal

root ganglia and spinal cord. Unfortunately, the effect of pre-injury

exercise on the brain was not evaluated in the included studies, despite

evidence supporting benefits of exercise on the brain, astrocyte

function, and specific regions important in pain modulation (24, 57,

58). Then again, the activation of microglia in the dorsal horn of the

spinal cord is a critical contributor to the initiation and maintenance of

neuropathic pain (11, 17, 59–62). Therefore, it is encouraging that in

this review, pre-injury exercise influences several mechanisms in the

peripheral and central nervous system involved in the development

and repercussions of neuropathic pain.

Unexpectedly, no overall effect was seen for the functional

behavioural outcome, SFI. While for the behavioural outcome of

mechanical allodynia, the pre-injury exercise group had

significantly less sensitivity to touch compared to the non-exercise

control. Typically, mechanical allodynia in rodents occurs 3-7 days

after CCI and lasts to about 35 days (63–65). In a post hoc subgroup

analysis, mechanical allodynia results were grouped by week post

injury. The results provide some insight on the sequela of peripheral

nerve injury and shows that there might be a time effect but coming

from very small groups. By grouping the repeated measures at

different time points by time after injury in the post-hoc analyses,

the pre-injury exercise group had significantly less mechanical
FIGURE 7

The effect of pre-injury exercise on two outcomes related to muscle
morphometrics following experimentally-induced traumatic
peripheral neuropathy. Favours pre-injury exercise implies an
increase in outcome values. Artifon et al., 2013 had two
experimental groups: the progressive swimming program is labelled
“prog” and the regular aerobic swimming is labelled “reg”.
B

A

FIGURE 8

The effect of pre-injury exercise on behavioural outcomes following experimentally-induced traumatic peripheral neuropathy. As both outcomes,
mechanical allodynia and sciatic function index (SFI) were repeated measurements taken at multiple time points, only the largest effect per study are
presented. Days post injury listed behind study identification in superscript. (A) The effect of prior exercise on mechanical allodynia. Favours pre-
injury exercise implies an improvement in mechanical allodynia. Green et al., 2022 had two experimental groups: a short duration program of 3
weeks labelled “short” and a long duration program of 6 weeks labelled “long”. (B) The effect prior exercise on SFI. Favours pre-injury exercise
implies an improvement in SFI scores.
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allodynia at week 2, but not week 1. Interestingly, this is the same

time period when most neuroimmune outcomes reported in this

review were measured. This shared timing is most likely not a

coincidence, as the severity of mechanical allodynia was recently

correlated with the level of dorsal root ganglion inflammation (65).

More research needs to be undertaken to understand the lasting

effects of pre-injury exercise, whether its effect also lies in this time

window of 1-2 weeks post neuropathic pain induction.
4.2 Limitations and steps forward

When interpreting the findings of this systematic review and

meta-analyses, several limitations should be considered. The first

and foremost is that the number of studies that could be analysed

per outcome was very low. Thus, increasing the likelihood of

imprecise effect estimates which influences the robustness and

reliability of the conclusions that can be drawn from this

systematic review. Much more research on the neuroimmune

responses and neuroprotective effects of pre-injury exercise before

the occurrence of traumatic peripheral neuropathy is urgently

needed. In addition, the heterogeneity between the studies was

large. Studies differed for example, in species used, exercise program

duration, and exercise intensity. To account for anticipated

heterogeneity, we used a random effects model and explored the

suggested causes for between study heterogeneity by means of

subgroup analysis.

Thirdly, risk of bias analysis revealed poor reporting of essential

details related to the design and conduct of the included

experiments. Consequently, in a majority of the studies, risk of

bias could not be estimated. The lack of reporting important

methodological details raises concerns about bias in the data and

skewed results thus, hampering the ability to draw reliable

conclusions from the included animal studies. Future preclinical
Frontiers in Immunology 12
studies should follow ARRIVE guidelines to ensure better

transparency in their methodology and reporting (66, 67). The

Enhancing Quality in Preclinical Data (EQIPD) framework may

also be a tool to help pre-clinical researchers to decide which

guidelines to follow (67).

Fourthly, in preclinical pain research the indirectness of the

results should be considered (68) – in particular the indirectness of

the animal models of neuropathic pain and the outcome measures

of pain. The traumatic peripheral neuropathy models (sciatic CCI

and nerve crush) used by included studies in this review have the

ability to represent some certain neuropathic conditions in humans

(e.g., sciatic, radiculopathy, chronic low back pain, and complex

regional pain syndrome type II) (69). In terms of the development

of pain-related hypersensitivity and underlying pathogenesis, these

two models share many features (70). However, some dissimilarities

may exist (e.g., different inflammatory reaction severity (70)).

Outcomes measured in these neuropathic models such as,

biological markers and behavioural tests, are indirect measures of

human pain (71). Therefore, translation of the results to the clinical

setting is not appropriate. Additionally, the results of this review

cannot be extrapolated to female animals as all included studies

used male rodents, except one (42). Sex differences are becoming

more apparent in neuroimmune responses (72), biological

mechanisms of pain maintenance after nerve injury (73), and

even in the effectiveness of exercise dependent on the type (74–

76). Thus, despite the fact that sex differences in pain sensitivity

have been well established for decades (77, 78), the translatability of

the results within the preclinical field are limited.

The aforementioned limitations make it difficult to draw

conclusions on the mechanisms underlying the effect of pre-injury

exercise on recovery following experimentally-induced traumatic

peripheral neuropathy. However, this review does provide an

overview of the neuroimmune outcomes/mechanisms that have

been measured to date. Future research may use this as a guide in

selecting neuroimmune targets. Researchers should also keep in mind

other factors that could influence neuroimmune responses, for

instance forced treadmill and swimming may increase stress

biomarkers compared to voluntary exercise (24, 79). The subgroup

analyses provide some insight for preclinical researchers analysing

mechanical allodynia to bemindful of (or further investigate) the type

of animal model used, the intensity of the exercise, the exercise

program duration, and the timing of outcome assessment during the

recovery process. Similar factors were also suggested in a brief

narrative review on the overall effects of exercise on chronic pain

(80). More specifically, voluntary exercise paradigms, exercise

program duration, and the chronic pain animal model possibly

contributed to the effectiveness of pre-injury exercise in rodent

models of chronic pain (80).

This is the first review to focus on the effect of pre-injury

exercise on recovery in terms of neuroimmune outcomes,

physiological response, and behavioural outcomes following

experimentally-induced traumatic peripheral neuropathy in

animals. The findings in this systematic review suggest a potential

neuroprotective and immunoregulatory effect of pre-injury exercise
frontiersin.or
FIGURE 9

Post hoc subgroup analysis: The effect of pre-injury exercise on
mechanical allodynia grouped by week post injury following
experimentally-induced traumatic peripheral neuropathy. Negative
values favour pre-injury exercise. The error bars represent the 95%
confidence intervals. The results from subgroup analysis were only
presented when subgroups contained data from at least 10
independent comparisons.
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for the recovery after peripheral induced neuropathic pain.

However, as most findings were based on single studies, more

research is needed to increase the certainty of evidence. Future

research could focus on a pro-inflammatory state resulting in a

prolonged, exaggerated pain state and susceptibility to chronic pain

being the consequence of non-exercise behaviour. On top of the

many benefits, regular exercise seems to promote a normal

healing process following experimentally-induced traumatic

peripheral neuropathy.
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