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Rituximab resistance in ITP
and beyond

Zhengrui Xiao and Irina Murakhovskaya*

Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert
Einstein College of Medicine, New York City, NY, United States
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses

innate and adaptive immune responses, as well as megakaryocyte dysfunction.

Rituximab is administered in relapsed cases and has the added benefit of inducing

treatment-free remission in over 50% of patients. Nevertheless, the responses to this

therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and

plasma cells play a role in developing resistance. To overcome this resistance, targeting

these pathways through splenectomy and novel therapies that target FcgR pathway,

FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will

summarize the pathogenetic mechanisms implicated in rituximab resistance and

examine the potential therapeutic interventions to overcome it. This review will

explore the efficacy of established therapies, as well as novel therapeutic approaches

and agents currently in development.
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1 Introduction

Immune thrombocytopenia (ITP) is a rare hematologic disorder with an incidence rate of

2.25 per 100,000 and slight female predomince (1). Diagnosis of ITP is based on isolated

thrombocytopenia lower than 100×109/L with the exclusion of other causes (2).

Manifestations of ITP range from asymptomatic thrombocytopenia to severe life-

threatening bleeding depending on the platelet level. In the recent update of the

international consensus on the investigation and management of ITP, the management of

ITP should commence when the platelet count drops below 20-30×109/L to minimize the

likelihood of bleeding. Other factors such as quality of life, existence of other hemostatic

defects, impending surgeries, and susceptibility to trauma from occupation or lifestyle should

also be considered to individualize therapy (2). Corticosteroids are the first-line therapy with

an initial response rate of 75%, however 80% of patients eventually relapse or become

corticosteroid-dependent (3). The second-line treatments are thrombopoietin receptor

agonist (TPO-RA), splenectomy, rituximab and fostamatinib (3). Choosing between

medications and agents should employ shared decision-making with the patient among

the second-line treatment options. If the patient values treatment-free remission and

avoidance of surgery, rituximab is the preferred treatment (4). However, the long-term

response of rituximab is not sustained (5). In this review, we will discuss potential
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mechanisms of rituximab resistance in ITP, treatment strategies with

available agents and new therapies in development which can

potentially overcome the resistance.
2 Mechanism of ITP

While the cause of ITP was initially identified as a humoral factor

by observing that the infusion of citrated whole blood or plasma from

ITP patients into healthy recipients would result in a decrease in

platelet count (6), more recently, the mechanism of ITP has been

better understood. Circulating B cells and autoreactive plasma cells

are responsible for the overproduction of autoantibodies (7, 8).

Autoantibody binding with glycoproteins (GPs) IIb/IIIa, Ib, IV and

Ia/IIa (9, 10) on the platelet surface is the crucial element in the

pathogenesis of ITP. Autoantibody (singular) coated platelets are

destroyed by a number of mechanisms. In the spleen, anti-GP IIb/IIIa

autoantibody interacts with Fcg receptors I and III on the

macrophages to trigger phagocytosis (11) Platelet autoantibodies,

particularly those targeting GP IIb/IIIa and Ib/IX (12), trigger the

activation of the classical complement pathway, leading to the

deposition and fixation of C1q and C4d on the platelet surface.

This process facilitates the generation of the membrane attack

complex (MAC), which leads to increased clearance of platelets

(13, 14). Additionally, phagocytosis is also mediated by C3b

interaction with macrophage complement receptor 1 (CR1) (15).

Moreover, autoantibody is also observed to inhibit megakaryocyte

maturation and production (16).

Desialylation of platelets is a physiologic mechanism responsible

for removal of senescent platelets via hepatic Ashwell–Morell receptor

(AMR), also stimulating TPO production and generation of new

platelets (17). Murine models demonstrate that anti-GPIb/IX

antibodies induce Fc-independent platelet activation and desialylation

of platelets, which leads to platelet clearance via AMR (18). Patients

with GpIb antibodies have been reported to have inferior response to

Fc-dependent therapies such as corticosteroids and IVIG (19, 20), and

multi-refractory patients with ITP have higher incidence of GPIba
antibodies and increased platelet activation and desialylation (21).

Apart from the humoral response, T cell dysregulation also plays

a role in ITP pathogenesis. In ITP patients, it has been demonstrated

that clones of CD4 positive T cells that can recognize GPIIb/IIIa are

present in both the blood and spleen (22). Increase in CD4+ T helper

1 (Th1) cell activation (23, 24) and upregulation of Th17 cells (25) is

associated with deficiency of CD4+CD25+ regulatory T cells (Treg),

which are responsible for maintaining peripheral immune tolerance

(26). CD3+CD8+ T cells are also increased in ITP patients and

mediate cell-mediated cytotoxicity and cell-mediated platelet lysis

(27). In addition, CD8+ T cells induce platelet desialylation leading to

increase the clearance in the liver (28).

Megakaryocyte dysfunction also contributes to thrombocytopenia

in ITP. Autoantibody IgG binding to the surface of megakaryocyte has

been reported (29), associated with suppressed megakaryocyte

production and impaired maturation (16) and decreased release of

platelet from megakaryocyte (30). Autophagy is the process of

eliminating old, damaged, or abnormal cytoplasmic proteins

constituents and believed to be impaired in various of autoimmune
Frontiers in Immunology 02
disorders including ITP. The abnormal of autophagy in ITP can affect

the differentiation of megakaryocytes into platelets (31). Disruption of

megakaryocyte apoptosis by cytotoxic lymphocyte cytotoxicity also

plays a role in megakaryocyte dysfunction leading to impaired platelet

production (32, 33).
3 Rituximab in ITP

Rituximab, the first monoclonal antibody to be approved for

therapeutic use, is a chimeric monoclonal antibody that targets

CD20 (34). Rituximab’s Fab region has a specific binding affinity for

the CD20+ target antigen. On the other hand, its Fc region can bind to

various receptors, including the Fcg receptors on immune effector cells,

the neonatal Fc receptor, and the head of C1q (35). The binding and

interaction leads to antigen-dependent cell-mediated cytotoxicity

(ADCC), phagocytosis and complement-induced cell lysis (36). Due

to the depletion of B cells, rituximab was used in various autoimmune

disorders (37). Rituximab was first implemented in treatment of ITP

around 2000 with responses, including complete, seen in patients

refractory to steroids, splenectomy and other immune suppressants

(38–40). Currently rituximab one of the recommended second-line

therapies after steroid failure (2). Response to therapy is seen as soon as

in the first week withmedian time to achieve response around 1month

(38, 41). Rituximab 375mg/m2 weekly for four doses is considered the

standard dose based on the original clinical trial adopted from

lymphoma therapy (38). In contrast, a low dose of 100mg/m2 weekly

for four doses showed similar efficacy (42). Despite an initial response

rate of nearly 60%, with half of the responses being complete, the long-

term effectiveness of rituximab is not maintained. In fact, only 21% of

adults and 26% of children were able to remain treatment-free based on

a five-year outcome analysis (5). A number of predictive factors of

response to rituximab has been evaluated. Several studies reported

higher responses associated with female gender, younger age (40, 43),

although this was not confirmed by other studies (5, 38, 44). Another

study demonstrated that adolescent females with an ITP duration of

less than 12 months had the longest response duration (45). In both

pediatric and adult patients with ITP, the response to rituximab was

not predicted by immunologic markers, such as antinuclear antibody,

direct antiglobulin testing, immunoglobulin levels, and lymphocyte

subsets, or primary versus secondary ITP (46). Although patients with

anti-GPIIb/IIIa antibodies appear to have a higher response rate of 75%

compared to those without at 46% (47), this finding is not sufficient to

base treatment decisions regarding the clinical use of rituximab.

Resistance to rituximab in ITP patients can be mediated by a

number of mechanisms.
4 Mechanism of rituximab
resistance in ITP

4.1 B cell

As rituximab directly targets CD20+ B cells, the incomplete

depletion of B cells has been linked to nonresponse to rituximab,

and B cell reconstitution can predict relapse (48). During a 5-year
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follow-up study, patients who experienced a relapse had a faster

reconstitution of B cells compared to those who maintained a

response lasting over 2.5 years (5).

In a study evaluating B cell populations in splenectomy

specimens of patients who did not respond to rituximab, two

distinct groups of B cells were responsible for rituximab relapse.

The germinal center B cell population was significantly expanded

compared to the healthy donors along with increase in CD19+ naïve

B cells, suggesting B cell reconstitution in the spleen after the

clearance of rituximab. In addition, a population of preexisting

mutated memory B cells characterized by up-regulation of several

prosurvival genes and down-regulation of B-cell receptor (BCR)

complex surface expression was identified, accounting for the

escape of rituximab depletion (49). These groups of B cells can

reactivate and differentiate into plasma cells once rituximab

is cleared.
4.2 Plasma cell

Autoreactive anti-GpIIbIIIa antibody-secreting plasma cells have

been observed in the patient’s plasma and bone marrow following the

development of resistance to rituximab, suggesting their involvement in

rituximab refractoriness (22). In a study analyzing the spleens of ITP

patients, it was demonstrated that those who experienced rituximab

failure had a greater number of autoreactive anti-GpIIbIIIa antibody-

secreting long-lived plasma cells (LLPCs), despite near-complete B cell

depletion in peripheral blood. Patients who responded to rituximab

were also found to have lower levels of antibody-secreting plasma cells.

Gene expression profiling of these plasma cells revealed a long-lived

pattern characterized by overexpression of antiapoptotic genes while

responders displayed a short-lived program (50). The results suggest

that the long-lived plasma cells in the spleen could explain rituximab

resistance. These pathogenic plasma cells have been demonstrated

throughout the spleen, peripheral blood, and bone marrow, potentially

leading to treatment failure (8). Higher concentration of B-cell-

activating factor (BAFF), a member of the tumor necrosis factor

family which promotes B-cell survival was detected in the

supernatant of spleen cell cultures of rituximab refractory patients

(50). In a subsequent study by the same group, using mouse model

depletion of B cells led to elevated levels of BAFF and the appearance of

splenic LLPCs. A combination of rituximab and BAFF-neutralizing

antibody reduced the amount of LLPCs (51), suggesting that BAFF

targeted therapy can potentially overcome the rituximab resistance by

eliminating long-lived plasma cells.
4.3 T cell

In addition to its direct effect on B cells, rituximab also has an

effect on the T cell population. As Treg cells are generally

suppressed in ITP patients, infusion of rituximab has been shown

to increase number and percentage of polyclonal Treg cells, thereby

aiding in the suppression of Th1 cell function and decreasing

inflammation (52). In rituximab non-responders, there was

oligoclonal expansion of T cells with increased Th1/Th2 and Tc1
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(IFN-g single-positive CD8 cells)/Tc2 (IL-4 single-positive CD8

cells) ratio as well as the expression of Fas ligand on Th1 and Th2

cells (53). One potential reason for the lack of response to rituximab

may be related to the specific role of CTLs in targeting and

damaging platelets or megakaryocytes. This is supported by

evidence indicating that rituximab non-responsive ITP patients

exhibit an increase in splenic effector memory CTLs that produce

large quantities of interferon-g and display clonal restriction (54).

In a mouse model, CD4 positive T cells were also shown to play a

role in extending plasma cell survival after rituximab treatment.

Combination of CD4+ depleting therapy and anti-CD20 antibody led

to a significant reduction in splenic plasma cells (51). Additionally, a

separate study demonstrated that rituximab-resistant patients had

significantly higher levels of CD4+CD45RO+ memory T lymphocytes

in their peripheral blood compared to rituximab-responsive patients

(55). T follicular helper cells (TFH) is a major T cell involving in B cell

differentiation and proliferation in lymphoid organ. In chronic ITP

patients who responded to treatment, the percentage of TFH is decreased

significantly (56). Another study suggested that the follicular helper T

cells can increase the level of BAFF in germinal center (57, 58).
5 Treatment to overcome
rituximab resistance

5.1 Splenectomy

Historically, splenectomy as well as rituximab were utilized in

second line therapy for ITP (2). There is no head to head

comparison of the efficacy studies. The results from retrospective

studies vary from similar efficacy (59) to longer response duration

with splenectomy (60, 61) and a higher response rate with

splenectomy (62). A review of 16 clinical studies suggested that

rituximab carries a lower response rate and response duration than

splenectomy (63) whereas meta-analysis in pediatric population

suggested higher CR rates of 52% with 43% of responses

persisting (64).

As discussed previously, pathogenic lymphocytes and plasma

cells primarily residing in the spleen play a role in rituximab

resistance. In that case, splenectomy could theoretically be the

potential treatment for ITP beyond rituximab by eliminating the

immune effector cells in the spleen. One retrospective study

suggested that in rituximab non-responders who were treated

with splenectomy the response rate was 100%. A retrospective

study from Mayo Clinic found that patients receiving sequential

splenectomy-rituximab or rituximab-splenectomy had similar 2-

year freedom from relapse and were superior to those who received

rituximab treatment alone (61).
5.2 FcgR signal transduction
inhibition

The main mechanism of platelet destruction in ITP is

phagocytosis of antibody coated platelets. FcgR signaling

inhibition interferes with phagocytosis preventing platelet
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destruction. Syk and BTK are key tyrosine kinases that play a role in

both B cell development and function as well as FcgR-mediated

phagocytosis in macrophages (65–67). The neonatal crystallizable

fragment receptor (FcRn) is involved in recycling of endogenous

IgG including pathogenic autoantibodies (68). Agents targeting

FcgR function present an alternative therapeutic approach in

refractory ITP patients.

5.2.1 Syk Inhibition
Fostamatinib, an oral potent and selective small molecule

inhibitor of spleen tyrosine kinase (SyK), inhibits signal

transduction of B-cell receptors and FcR-triggered Syk-dependent

cytoskeletal rearrangement during phagocytosis, degranulation, and

cytokine production. In the ITP model it been shown to decrease

antibody-mediated platelet destruction (67). In two multicenter,

double-blind, placebo-controlled, phase 3 clinical trials in patients

with persistent/chronic ITP treated with fostamatinib 100mg twice a

day with dose escalation to 150mg twice daily after 4 weeks in non-

responders demonstrated overall response rate (ORR) of 43%

compared to 14% on placebo (69), which was maintained in the

long term follow up (70). Based on that, fostamatinib was approved

by Food and Drug Administration (FDA) on April 2018 to treat ITP.

5.2.2 BTK Inhibition
Bruton’s tyrosine kinase (BTK) is crucial for B cell development

as well as cytokine and antibody production. Increased production

of autoantibody associated with BTK expression is thought to be

one of the mechanisms involved in the pathogenesis of systemic

autoimmune diseases (65). In addition, BTK is also involved in

FcgR-mediated phagocytosis in macrophages (71). The inhibition of

BTK provides a potential target for autoimmune diseases including

ITP. Rilzabrutinib, a covalent reversible BTK inhibitor, has

demonstrated potent and durable inhibition of BTK. The

reversible covalent inhibitors can maintain inhibition of a target

proteins even after washout, potentially reducing off-target effects

by minimizing drug exposure (72). BTK is homologous to Tec

(tyrosine kinase expressed in hepatocellular carcinoma), which is

expressed in platelets and plays a role in platelet aggregation

through GPVI activation upon collagen stimulation. Rilzabrutinib

is more selective for BTK than Tec compared to irreversible

covalent BTK inhibitors, which is thought to result in fewer

bleeding-related adverse effects (73). In a preclinical study,

rilzabrutinib inhibited the activation and inflammatory activities

of B cells and innate cells, reducing autoantibody mediated FcgR
signaling (74). In a phase 1b/2 study of 60 heavily pre-treated

including rituximab refractory ITP patients, rilzabrutinib

demonstrated dose dependent improvement in platelet count with

40% of patients achieving the primary endpoint of platelet response

(two consecutive platelet counts separated by ≥5 days of at least

50×103/mm3 and an increase from baseline of at least 20×103/mm3

without the use of rescue medication) at the highest dose of 400mg

twice a day with median time to response of 12.5 days. Toxicity was

low and no treatment-related adverse effect above grade 3 was

observed (75). Currently rilzabrutinib 400mg twice daily is being

evaluated in a phase 3 multicenter, randomized, double-blind

clinical trial (NCT04562766).
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5.3 FcRn inhibition

The neonatal crystallizable fragment receptor (FcRn) functions

as intracellular shield from catabolism for immunoglobulin G

(IgG), binding IgG and albumin in lysosomes under acidic

conditions, protecting them from degradation, and recycling them

to the cell surface (68). Blocking FcRn-IgG binding could facilitate

lysosomal degradation of endogenous IgG, reducing the half-life of

pathogenic IgG as the therapeutic target in antibody-mediated

autoimmune diseases (76).

In a phase 2 clinical trial involving 66 patients with

relapsed persistent or chronic ITP, the monoclonal anti-FcRn

antibody Rozamolixizumab produced rapid and significant

increases in platelet counts, along with substantial reductions in

IgG levels, especially with single higher dose subcutaneous infusion

(77). A phase 3 open-label extension study to investigate the

long-term safety, efficacy and tolerability was recently

completed (NCT04596995).

Efgartigimoid is a a human IgG1 antibody Fc-fragment with a

high affinity for FcRn. In a randomized double blinded placebo

controlled phase 2b trial of ITP patients refractory to previous lines

of therapy four weekly IV infusions of efgartigimod induced a dose

dependent rapid reduction of total IgG levels, which was associated

with clinically relevant increases in platelet counts with almost half

the patients achieving platelet count of ≥50 × 109/L on at least two

occasions, and a reduced proportion of patients with bleeding (78).

In a multicenter, randomized, double-blinded, placebo-controlled

trial in adults with persistent or chronic ITP recently reported (79),

51.2% of participants on efgartigimoid 10 mg IV weekly for 4 weeks

then every 2 weeks achieved IWG response criteria versus 20%

on placebo.
5.4 Sirolimus

Sirolimus is macrocyclic lactone with antifungal, antitumor and

immunosuppressive activity and is a potent inhibitor of antigen-

induced proliferation of T cells, B cells, and antibody production.

Sirolimus complexes with family of intracellular binding proteins

termed FKBPs (FK binding proteins) targeting mTOR and inhibiting

the mTOR-mediated signal-transduction pathways, which results in

cell cycle arrest in G1 phase (80). Activation of the mTOR protein is

thought to play a significant role in the disruption of hematopoiesis in

individuals with autoimmune disease (81). Sirolimus has been used

successfully in children with autoimmune lymphoproliferative

syndrome (ALPS) (82), as well as other primary or secondary

autoimmune cytopenias (83), and has been particularly effective in

managing autoimmune cytopenias in the setting of primary

immunodeficiency and immune dysregulation. In a multicenter

prospective study involving 30 children and young adults with

relapsed/refractory autoimmune cytopenias, including 16 patients

previously treated with rituximab, all 12 children with ALPS achieved

a lasting complete response (CR). Additionally, CRs were observed in

8 out of 12 patients with multilineage cytopenias associated with

common variable immunodeficiency, Evans syndrome, or systemic

lupus erythematosus (84). In a preliminary report of a prospective
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multi-center clinical trial in patients with ITP, 66 patients who failed

the second-line therapy, including 30% who received rituximab, 46/

66 (70%) responded to sirolimus 2mg orally every day at 3 months

with 45% responses being complete (85). In a longer follow-up, the

overall response rate (ORR) was 70% and 65% at 6 months and 12

months, respectively. Responders demonstrated a decrease in the

proportion of Th2 and Th17 cells, along with an increase in the

percentage of M-MDSCs and Tregs, suggesting that sirolimus could

potentially restore peripheral tolerance (86). In a prospective

randomized observation trial of 43 patients with chronic ITP who

relapsed after multiple prior therapies including rituximab,

combination of low dose prednisone with sirolimus was compared

to cyclosporine and sirolimus. Although ORR was similar (58%

versus 62%), treatment with sirolimus and prednisone was

associated with a higher rate of sustained response (68% versus

39%, P < 0.05) and a increase in Treg cell levesl (87).
5.5 Plasma cell inhibition

Given role of plasma cells in ITP relapse, plasma cell inhibition

is a therapeutic target, particularly in rituximab relapsed patients.

5.5.1 Proteasome inhibition
Bortezomib, first proteasome inhibitor approved for treating

multiple myeloma, inhibits the ubiquitin-proteasome proteolytic

pathway responsible for intracellular protein turnover, disrupting

the cell cycle, inducing apoptosis, altering the bone marrow

microenvironment and inhibiting nuclear factor kappa B to cause

plasma cell depletion (88). By inducing apoptosis in antibody-

secreting cells such as plasma cells and memory B cells,

bortezomib leads to a reduction in antibody secretion (89, 90).

Bortezomib also has been shown to have both immunosuppressive

and immunostimulatory effects which is widely used in immune

mediated disorders. It reduces the number of CD4 T cells and

decreases their production of Th1 cytokines while also increasing

the population of regulatory T cells (Tregs) (88). Bortezomib has

been successfully used in several antibody mediated disorders,

including thrombotic cytopenic purpura, warm autoimmune

hemolytic anemia, and cold agglutinin disease (91–94).

Bortezomib use in ITP treatment is limited in case reports.

Therapy was successful in three out of four cases reported in the

literature (95–98). However, use of additional immunosuppressive

therapies could have a confounding effect on response to

bortezomib. Bortezomib is currently being evaluated in refractory

ITP, alone and in combination with rituximab in two clinical trials

(NCT05599880, NCT03443570).

5.5.2 CD38 inhibition
CD38 is a membrane glycoprotein which is present in

hematopoietic cells, including plasma cells which is involved in

cell adhesion, migration, and signal transduction. Daratumumab is

a high-affinity IgG1 monoclonal antibody against a unique CD38

epitope, it clears CD38-positive plasma cells via antibody-

dependent cellular cytotoxicity and complement-dependent
Frontiers in Immunology 05
cytotoxicity (99). Due to the plasma depletion effect,

daratumumab has been used in autoimmune hemolytic anemia

and lupus (100–103). In case reports and case series, daratumumab

has shown efficacy in the context of post-allogeneic bone marrow

transplant associated autoimmune thrombocytopenia (104–106) as

well as other causes of secondary ITP (107, 108) and most recently

in a relapsed multi refractory primary ITP (109, 110). A phase 2

clinical trial is currently evaluating the efficacy and safety of

daratumumab in patients with ITP who did not respond to at

least two prior therapies (NCT04703621). During the safety run-in,

two out of three enrolled patients responded to the treatment at

week 12, with one patient experiencing a relapse by week 24 (111).

Another anti-CD38 monoclonal antibody, mezagitamab (TAK-

079), a fully human IgG1 is currently being studied in chronic

and persistent ITP (NCT04278924).
5.6 B cell inhibition

5.6.1 BAFF inhibition
Given the role of BAFF in failure of B cell depleting therapy with

rituximab in ITP, BAFF inhibition is emerging as an important

therapeutic target to mitigate rituximab resistance. Belimumab is a

human IgG1l monoclonal antibody directed against BAFF which

causes reversibly decrease of B lymphocyte production (112).

Belimumab already shows its efficacy in autoimmune disorders

including lupus (113). Based on the assumption of the synergistic

effect of anti-CD20 and anti-BAFF, belimumab was administered in

conjunction with rituximab in a phase 2b trial in 15 non-

splenectomized patients with chronic and persistent ITP who

failed at least one prior line of therapy. Patients received two

doses of rituximab 1000mg 2 weeks apart combined with 5

infusions of belimumab 10mg/kg at weeks 0, 2, 4, 8 and 12.

Overall response was 80% at 1 year follow up, including 66.7%

complete responses. The combination arm resulted in similar B cell

repopulation compared to patients who received rituximab alone,

but there was a significant decrease in T-follicular helper cells (114).

Addition of subcutaneous belimumab to rituximab is currently

investigated in a randomized placebo-controlled phase 3

trial (NCT05338190).

Ianalumab is an afucosylated humanized IgG1 monoclonal

antibody directed against the BAFF receptor. In addition to BAFF

receptor blockade that interrupts BAFF-mediated important

signaling for B-cell maturation, proliferation, and survival,

ianalumab induces direct lysis of B cells by antibody-dependent

cellular cytotoxicity, resulting in a rapid and profound B cell

depletion of long-lasting duration (115–117). The efficacy and

safety of lanalumab in addition to standard of care for first line

and second line treatment of ITP are currently evaluated by phase 3

trials (NCT05653349, NCT05653219).
5.6.2 CD19 directed therapy
CD19 is expressed on B cells as well as plasma cells.

Inebilizumab is a humanized anti-CD19 monoclonal antibody

that targets and depletes CD19-express ing cel l s v ia
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antibody-dependent cell-mediated cytotoxicity. It is currently

approved for treatment of neuromyelitis optica spectrum

disorder (118) and is being evaluated in other antibody mediated

diseases including IgG4-related Disease (NCT04540497),

myasthenia gravis (NCT04524273), systemic sclerosis

(NCT05198557) and autoimmune encephalitis (NCT04372615).

Hypogammaglobinemia with associated infectious complications

have been reported in 20% of patients along with 12% risk of

infusion reactions (118).

Obexelimab (XmAb5871) is an anti-CD19 non-depleting B cell

monoclonal antibody that co-engages B cell antigen receptor

complex and Fcg receptor IIb inhibitory receptor resulting in

inhibition of B cell proliferation, antibody secretion and plasma

cell differentiation (119, 120) and is currently being investigated in

SLE (NCT02725515) and IgG4-related disease (NCT05662241).

CD19 inhibition can be a potential therapeutic targets in

patients who fail to respond to rituximab due to reconstitution of

CD19+ B cells (49).
5.7 T cell inhibition

5.7.1 Decitabine
Decitabine, a DNA methylation inhibitor with antimetabolite

effect approved in myeloid hematologic disorders which induces

hypomethylation when incorporated into DNA (121). In a

preclinical study, low-dose decitabine increased the Treg cells and

enhanced their immunosuppressive function, decreased the Th1

and Th17 cells and proinflammatory cytokines and inhibited

STAT3 activation (122). Low dose decitabine has also

demonstrated to restore the methylation level and expression of

the programmed cell death protein 1 (PD-1) promoter, activating

PD-1 signaling pathway and resulting in decreased number and

cytotoxicity of CD8+ T cells in ITP patients (123). A multi-center

prospective study evaluated low dose of decitabine 3.5mg/m2 for 3

consecutive days every 4 weeks for 3 cycles in 45 refractory ITP

patients, 23 were previously treated with rituximab. The ORR was

51% (17.8% CR) at the end of therapy and 31% at 12 months with

responses seen on retreatment (124).

5.7.2 Mycophenolate mofetil
Mycophenolate mofetil (MMF) is a prodrug of mycophenolic

acid which is an inhibitor of inosine-5-monophosphate

dehydrogenase, which leads to l depletion of guanosine

nucleotides in T and B lymphocytes, inhibition of proliferation,

suppression of antibody production and cell-mediated immune

response (125). In patients with ITP treatment with MMF was

associated with changed in T cell lymphocytes, decreased

inflammatory markers (126), decreased cytotoxic CD8+ T cells

(127), suggesting that MMF works via T cell regulation. Among the

case reports and case series, MMF is effective either as a single agent

(128–130) or combined with other agents (131) in relapsed/

refractory ITP. MMF was previously widely used as the second-

line therapy in pre-rituximab era in Europe and Asia. Several

clinical studies suggest the efficacy and effectiveness of MMF after
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steroids and splenectomy (127, 129, 132–136), with ORR ranging

38.9%-80%, although platelet response can take 4 to 6 weeks. MMF

also demonstrated efficacy after rituximab therapy. In a

retrospective study of 46 patients with severe ITP, all requiring

second-line therapy, approximately one-third of them having

received rituximab, the ORR was 52% with 33% of patients

achieving complete response. There was no difference in response

rates between patients who had previously received rituximab and

those who had not (135). MMF has been evaluated in the first-line

setting in a multi-center, open-label, randomized trial in United

Kingdom as addition to corticosteroids in the first-line. Compared

to steroids alone, patients who received steroids plus MMF achieved

superior treatment response and experienced less treatment failure,

albeit at the cost of reporting lower quality-of-life outcomes (136).

5.7.3 Cyclosporin
Cyclosporin is an immunosuppressant that inhibits the

phosphatase activity of calcineurin regulating gene expression in

activated T cells and blocking signaling pathways triggered by

antigen recognition (137). Cyclosporin was used sporadically pre-

rituximab era as second-line therapy after failure of steroids and

splenectomy, with evidence level limited to case reports,

retrospective case series and one small prospective study (138–

143). The ORR ranged from 55% to 100% with majority of

responses sustained. A four week course of high-dose

dexamethasone, low-dose rituximab 100mg on days 7, 14, 21 and

28 plus oral cyclosporin 2.5 to 3mg/kg daily was prospectively

evaluated in a single-arm phase 2b study of 20 patients most of

whom received at least three lines of therapy. Although overall

response rate was 60%, relapse-free survival at 12 and 24 months

was 92% and 76% respectively among the responders, suggesting

that dual B and T cell inhibition can provide durable remissions

with a short course of therapy (144). Successful use of cyclosporin

post rituximab has been described in case report and case series

(141, 142). In a recent meta-analysis cyclosporine-based

combinations improved ORR and CR rates while reducing the

rate of relapse (145). Importantly, this improvement was achieved

without increasing the rate of adverse events. These findings suggest

that cyclosporine alone or in combination with other agents can

provide deeper and more durable responses in patients with

refractory ITP.
5.8 Platelet desialylation

Multi-refractory ITP patients have a higher proportion of anti-

GPIb/IX antibodies, which can cause platelet desialylation, leading

to accelerated clearance of platelets via the hepatic AMR (18) and an

elevated number of desialylated platelets (21).

Oseltamivir, is an inhibitor of neuraminidase, the enzyme

involved in the desialylation of platelets. In a prospective case

series of seven patients with persistent, chronic, or refractory ITP

treated with oral oseltamivir 75 mg twice daily for 5 days initial

responses were seen in all patients but were not sustained (146). In

an open-label randomized phase 2 trial in newly diagnosed ITP
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addition of oseltamivir (75 mg twice a day for 10 days) to

dexamethasone (40 mg/day for 4 days) produced significantly

higher 6-month sustained response rate (53 vs. 30%; OR 2.17;

P = 0.032). Interestingly, patients with anti-GPIb/IX did not achieve

better responses with oseltamivir (147).
5.9 Thrombopoietin receptor agonists

Thrombopoietin receptor agonists (TPO-RA) interact with the

thrombopoietin (TPO) receptor, induce a conformational change,

triggering activation of the JAK2/STAT5 pathway, enhancing

proliferation of megakaryocyte progenitors which leads to

increased platelet production (148). TPO-RAs have been

successfully used in ITP since 2006 (149).

Currently there are 3 TPO-RAs including romiplostim,

eltrombopag, avatrombopag approved by FDA based on several

prospective randomized phase 3 clinical trials with response seen in

60–90% of the cases, including rituximab refractory patients.

Due to their favorable safety profile TPO-RAs have increasingly

been used in second line setting. Thrombosis is a complication seen

in 6% cases and while previously a concern, bone marrow fibrosis

reported in 1.4 to 6% of cases, is reversible on discontinuation of the

agent. Eltrombopag has dietary restrictions and risk of

hepatotoxicity, while most recently approved avatrombopag can

be administered in patients with hepatic dysfunction (150–154).

Romiplostim is subcutaneously administered peptibody that

directly binds to the TPO binding site in a competitive manner,

whereas eltrombopag and avatrombopag are oral small molecules

that binds to a trans-membrane site. Eltrombopag also exhibits off-

target effects, acting as a chelator of both extra- and intra-cellular

calcium and iron, and facilitating the transport of iron out of cells.

This iron-chelating property of eltrombopag results in a TPO-

independent stimulation of stem cells and megakaryocyte

precursors (155). Lusutrombopag is currently approved for the

treatment of thrombocytopenia in patients with chronic liver

disease (156). However, a study evaluating its effectiveness in

treating ITP was terminated prematurely due to the inability to

achieve the study objectives (NCT01054443). Hetrombopag is a

TPO-RA approved in China with similar response rate in patients

with relapsed or refractory ITP (157).

Head-to-head comparison between TPO-Ras are lacking.

Options of the agent should take into consideration the way of

administration (158). Switching between TPO-Ras can be

considered based on lack of efficacy, platelet fluctuations, safety,

and tolerability. If switching was due to lack of efficacy, the response

rate to the second TPO-RA could be still as high as 65%. Almost

every patient switched TPO-RA due to reasons other than lack of

efficacy continued to respond after the switch (93%) (159). In a

recent multicenter observational study of 44 patients with chronic

ITP who had not responded or were intolerant to either

romiplostim or eltrombopag, 41 patients (93%) achieved a platelet

response (platelet count of ≥ 50 × 109/L) after switching to

avatrombopag (160).

Due to their role as growth factors and the observation that

most patients experienced relapse soon after discontinuing TPO-
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RA treatment (148, 153). TPO-RAs were traditionally viewed as

chronic supportive therapy with no effect on the immune system.

However, retrospective studies have indicated that 15-20% of

patients may achieve long term remissions off therapy, suggesting

that these agents may also have an immunomodulatory effect in ITP

(161). Restoration of Tregs levels and function in peripheral blood

and spleen has been proposed as a potential mechanism (162). In a

prospective multicenter study of 48 patients with persistent or

chronic ITP and complete response to TPO-RA therapy,

sustained response off-treatment and sustained complete response

off-treatment were achieved in 56% and 31% of patients at week 24

and 52% and 29% at week 52, respectively, suggesting that TPO-RA

discontinuation can be considered in ITP patients in long-term

CR (163).
5.10 Complement inhibition

Complement plays an important role in ITP pathogenesis, with

classical complement pathway activated by antibodies binding to

platelets leading to complement-dependent cytotoxicity (CDC) as

well as phagocytosis by macrophages which recognize C3 via

complement receptor 1 (CR1) (13–15).

In an vitro study increased complement activation was

demonstrated in 47% patients with ITP with increased C1q

deposition in 42% of patients and was inhibited by TNT003, a

murine monoclonal antibody that targets C1s and inhibits classical

complement pathway (164).

Sutimlimab, a humanized C1s IgG4 monoclonal antibody,

was evaluated in a Phase I trial in 12 patients with chronic severe

ITP who failed at least two prior therapies, including 8 patients

with insufficient response to rituximab and administered as an

infusion Days 0 and 7, then every 2 weeks for up to 21 weeks with

an option to enter a long term extension after 9 week washout

(165). Durable overall response (platelet ≥50 G/L in ≥50% of

follow-up visits) was seen in 42% of patients, with 33% of

patients achieving CR (platelet count ≥100 G/L) with the

median time to response of 2 days. The median platelet count

returned to baseline during the washout, suggesting need for

ongoing therapy to maintain response. Complement inhibition

is a promising therapeutic target in a subset of patients with

complement activation which underscores the importance of

identifying biomarkers that can help determine which patients

will respond to treatment. A phase 2 study evaluating BIVV020,

a C1s inhibitor which can be self-administered subcutaneously,

has been recently completed but results are not yet available

(NCT04669600). Inhibition of the alternative complement

pathway with iptacopan, a Factor B inhibitor is currently being

evaluated in a phase 2 basket study in ITP and cold agglutinin

disease (NCT05086744).
6 Conclusion

Most adult patients with ITP relapse after initial therapy and

require subsequent treatment. Rituximab therapy has been utilized
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in relapsed and refractory ITP with high response rates with short

treatment duration. However, remission duration is limited, and

many patients become refractory to therapy. In addition,

immunosuppressive effect and impairment of response to

vaccination has become a concern, particularly in the era of

COVID-19 pandemic. There is an unmet need for novel

therapeutic approaches that are safe, tolerable and can overcome

rituximab resistance. Potential escape mechanisms include

expansion of CD19+ B cells, T cells, plasma cells and

complement. Based on the mechanism, several available

approaches are proposed to overcome rituximab resistance.

Surgical intervention splenectomy after rituximab is more

effective than rituximab alone. Novel agents that interfere with

FcgR dependent phagocytosis including fostamatinib, rilzabrutinib

and inhibition of FcRn mediated pathogenic antibody recycling,

and complement inhibitors are demonstrating their efficacy when

patients relapse after rituximab. Plasma cell directed therapies and

BAFF inhibitors could be used either simultaneously in addition to

rituximab to provide synergy or solely after rituximab. Last but not

least, conventional immune-suppressant agents which target T cells

should also be considered given the potential synergistic effect of B

and T cell depletion. TPO-Ra’s remain an attractive therapy with

potential of treatment free remission after a stable response.
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