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NF-kB’s contribution
to B cell fate decisions
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NF-kB signaling is essential to an effective innate and adaptive immune response.

Many immune-specific functional and developmental outcomes depend in large

on NF-kB. The formidable task of sorting out the mechanisms behind the

regulation and outcome of NF-kB signaling remains an important area of

immunology research. Here we briefly discuss the role of NF-kB in regulating

cell fate decisions at various times in the path of B cell development, activation,

and the generation of long-term humoral immunity.
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Introduction

In B cells, NF-kB activation was first discovered in the search for transcription factors

that regulate immunoglobulin gene recombination (1, 2). Classically, NF-kB is sequestered

in its inactive form in the cytoplasm in a complex with inhibitory IkB proteins. There are

two pathways of NFkB signaling, namely the canonical and non-canonical pathways

(Figure 1). These contain unique members of the NFkB family members whose signals are

initiated by the activation of specific receptor proximal signals that lead to the stimulation

of their target NFkB complex and the translocation to the nucleus to regulate gene

transcription. In B cells, the canonical pathway is activated by B cell antigen receptors

(BCR), TNFa, IL-1, lipopolysaccharide (LPS), and others. It involves the phosphorylation

and degradation of IkB proteins by the IkB kinases a and b (IKKa and IKKb). This releases

and activates NF-kB heterodimers consisting of p50 (NFkB1) associated with REL-A (p65)

or REL-B, which translocate to the nucleus and regulate the expression of target genes (3,

4). The noncanonical pathway is activated when stimuli such as B cell-activating factor

(BAFF), proliferation-inducing ligand (APRIL), or CD40 ligand bind to receptors such as

the BAFF receptor (BAFF-R), B cell maturation antigen (BCMA), transmembrane activator

and calcium-modulating cyclophilin ligand interacting protein (TACI), or CD40, to

activate IKKa. This leads to phosphorylation and proteolytic processing of the C-

terminal ankyrin domain of p100 and results in the release of p52 (NFkB2)-REL-B
heterodimers to activate gene expression (5, 6).

The genes induced and signaling pathways influenced by NF-kB play a fundamental

role in B cells’ development, differentiation, and survival. It is important to understand the

mechanisms that govern target-gene selection by NF-kB, the crosstalk between multiple
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receptors that can activate NF-kB and the crosstalk between the

canonical and non-canonical pathways. NF-kB signaling can also

intersect other signaling pathways to influence immune cell fate.

Additionally, the outcome of NF-kB activation and the receptors

that lead to its activation depends on the developmental or

differentiation state and environment of the given B cell. Much of

what we know about the mechanisms that regulate NF-kB signaling

comes from murine models with engineered deficiencies in the

signaling pathway and from human common variable

immunodeficiency (CVID) patients with genetic defects and

polymorphisms that disrupt NF-kB signaling (Figure 2).

Advancing our understanding of these phenomena will aid in our

ability to improve vaccine design and address health issues initiated

by dysregulation of signaling and mutations in members of the NF-

kB signaling pathway, including immunodeficiencies, B cell

leukemia, and lymphoma, and autoimmunity, as reviewed in (7–

11). This review summarizes how the different NF-kB signaling

pathways and their cooperation with signals from co-receptors, B

cell receptors, cytokines, inflammation, and T cell help contribute to

a healthy and effective B cell compartment.
B cell development

The development and survival of immature B cells rely largely

on NF-kB signals downstream of the BCR, BAFF, and APRIL

receptors. During B cell development, the pre-BCR and BCR
Frontiers in Immunology 02
activate the canonical NF-kB pathway to regulate central

tolerance (positive and negative selection), survival, and

differentiation. BAFF and APRIL are also essential for B cell

development. They differentially bind to three receptors expressed

on the surface of B cells. BAFF binds the B cell activating factor

receptor (BAFF-R) (12), BCMA, and TACI. In contrast, APRIL

binds to only BCMA and TACI. These receptors are part of the TNF

receptor superfamily that can activate the non-canonical NF-kB
pathway. In this section, we will briefly discuss the roles of NF-kB
signaling in immature B cells’ selection, survival, and maturation.

Tonic pre-BCR and BCR signaling (signals that occur

independently of receptor engagement) in developing B cells

support positive selection and developmental progression through

the BCR proximal signaling-based activation of a phosphoinositide

3-kinase (PI3K)/AKT and PKCb/NF-kB. In the pro-B cell, IL-7

receptor signaling induces Rag1/2 dependent recombination of the

Igh loci and expression of the transmembrane form of the m-Heavy

chain (mIg) and the surrogate light chain (L5 and VpreB) that,

together with Iga, Igb, make up the pre-BCR and, in addition to

serving as a developmental biomarker, provides signals necessary

for the transition to the pre-B stage of early B cell development. The

contribution of NF-kB to this process was determined when the loss

of signals through the pre-BCR by deletion of Iga (CD79a -/-) in

pro-B cells or in models deficient in Rel induces the death of pre-B

cells developing in the bone marrow. Overexpression of Bcl-2 in

both models rescued the defect, indicating that the activation of

NF-kB induces Blc-xL and Bcl-2 to promote their survival (13, 14).
FIGURE 1

NF-kB signaling. Surface receptors expressed on B cells that induce the activation of the canonical and non-canonical NF-kB signaling pathways.
Created with BioRender.com.
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Similar blocks in B cell development were observed in human

common variable immune deficiency (CVID) patients unable to

express components of the pre-BCR or components of the BCR

signaling pathway, BLINK or BTK. However, these defects led to

more severe immunodeficiencies in humans than in mice (15–17).

Signaling by the unligated surface expression of the pre-BCR

(and later in development by the BCR) activates receptor proximal

signals, which in turn leads to the activation PI3K and PLCg2/
PKCb, that activate AKT and canonical NF-kB respectively, and aid

in the developmental progression of the B cell precursor (18, 19).

During positive selection, AKT phosphorylation of forkhead box

protein O1 (FOXO1) blocks FOXO1 nuclear localization, stopping

the RAG1/2 expression. This increases MYC expression and

activity, which induces several rounds of proliferation and

cooperation with AKT to support survival, likely through negative

regulation of the expression of the pro-apoptotic molecule Bim.

This, along with the NF-kB-based induction of Bcl-xL and Bcl-2,

supports the survival of developing B cells. As the proliferation of

pre-B cells ends, cessation of AKT activity ends the restriction on

FOXO1 activity (20). As a result, IL-7 signaling is reduced. The

continued NF-kB-based induction of IRF4, along with the

expression of PU.1, leads to the downregulation of the surrogate

light chain and induction of the rearrangement of the IgL (light

chain gene). The expression of IgL that successfully pairs with the

previously generated mIgH results in the surface expression of the

BCR (20–22). Continued induction of tonic signaling through the

newly formed BCR continues to support the completion of positive

selection leading to developmental progression and export from the

bone marrow as newly formed transitional stage immature B cells

(23–25) that continue to be dependent on tonic BCR signaling and

NF-kB for their survival and next stage of development.

On the other hand, to avoid the development of autoreactive B

cells, BCR ligation of self-antigens during the early stages of B cell

development in the bone marrow promotes negative selection
Frontiers in Immunology 03
through NF-kB-induced receptor editing of the self-reactive BCR

or apoptosis (19). Here the developmental stage-specific bi-phasic

or bi-modal signaling of NF-kB becomes evident (22). Interestingly,

increased signaling through BCR ligation activates the NF-kB
signaling pathway and appears to coordinate both IRF4 and IL-7

pathways to enable the synergistic induction of light-chain

recombination. The engaged BCR signals through NF-kB to

increase IRF4 levels, thereby inducing light chain recombination.

IRF4 targets the immunoglobulin 3’Ekappa and E-lambda

enhancers to make the kappa and lambda more accessible to

RAG1/2. In addition, reduced activation of IL-7 signaling

activates the E-kappa promoter through E2A. IRF-4 also induces

the expression of chemokine receptor CXCR4 to promote the

migration of pre-B cells away from IL-7-expressing stromal cells,

ensuring the reduced availability of IL-7 (20). NF-kB signaling

promotes the survival of these cells through the induction of the

PIM2 and increased expression of Bcl-xL and Bcl-2 reviewed in

(19). Allelic exclusion of IgH during this process is critical to

blocking the ability of B cells to express more than one BCR.

Interestingly, B cells deficient in PLCg1,2 (upstream of NF-kB)
cannot execute the process of allelic exclusion (26, 27). However,

whether NF-kB directly regulates this process or not is unclear (28).

Here again, once a B cell that was directed to undergo receptor

editing successfully expresses a new BCR that does not recognize

self, the selection process continues and leads to export from the

bone marrow as newly formed transitional stage B cells.
Peripheral selection and lineage
commitment

Once these immature B cells leave the bone marrow and enter

the secondary lymphatics, even though the rules change slightly,

they continue an NF-kB-dependent maturation and lineage
FIGURE 2

Disruption of NF-kB leads to immunodeficiencies. Points in B cell development and differentiation where mutations, polymorphisms, and deletions
of receptors and intermediates of the NF-kB signaling that lead to a block in the development and differentiation of human B cells.
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commitment to become follicular or marginal zone B cells. These

newly formed, immature B cells can be divided into two subsets.

They enter the spleen and lymph nodes as transitional stage 1 (T1)

B cells and subsequently progress to transitional stage 2 (T2) and

T3. Splenic T1 B cells remain targets of negative selection. Unlike

their bone marrow precursors, BCR engagement of self leads to

apoptosis (29). This ensures that B cells expressing BCRs that

recognize self-antigens, either not present in the bone marrow or

that are only present in the periphery, are deleted before they

become competent to express effector functions. This is supported

by studies in mice (29) and humans (30–34) that demonstrated the

negative selection of high-affinity self-reactive BCR, and a

subsequent narrowing of BCR repertoire diversity in naïve B cell

populations when compared to their transitional B cell

counterparts. T1 B cells require activation of NF-kB to survive

and mature to the T2 stage of development. This was demonstrated

by showing that deletion of Rel and RelA blocks peripheral B cell

development at the T1 stage (35). The Rel deficient T1 B cells are

susceptible to death due to defects in the expression of survival

factors Bcl-2 and A1 (36). Human patients with a homozygous

deletion of CARMA (also known as CARD11) (Figures 1, 2)

abrogated BCR-based activation of the canonical NF-kB pathway

while CD40 signaling remained intact. Additionally, BAFF-R

expression was also inhibited in these cells, and they were blocked

at the transitional stage of development (37). Importantly, BAFF

signaling through BAFF-R is required to induce the maturation

from T1 to T2. The engagement of BAFF-R activates the non-

canonical NF-kB signaling pathway and is essential for this process.

In BAFF-deficient mice, like the Rel-deficient animals, all mature B

cells are also lost after the T1 stage of maturation (38). This was also

seen in BAFF-R signaling mutants and BAFF-R deficient mice and

humans (39–41). The loss of BAFF-dependent NF-kB signaling

resulted in a decrease in the levels of Bcl-2/Bcl-xL (42) and

increased apoptosis of B cells in the periphery. Constitutive

expression of Bcl-2 overcame this phenotype to suggest that the

loss of mature B cells was due to a loss of non-canonical NF-kB
signaling through the BAFF-R (38, 39, 42, 43). These findings were

extended and determined that canonical NF-kB signaling was also

induced by BAFF early. Thus, the upregulation of Bcl-xL promoted

the survival of T1 B cells until BAFF-R-dependent non-canonical

(NF-kB2) signaling could take over to promote their maturation

and survival (40, 44). While the survival signal provided by BAFF

through BAFF-R was thought to be required for all mature B cells,

loss of IKKa activity downstream of NIK surprisingly had no

impact on mature B cell survival if this activity was lost after

maturation had occurred (45). In fact, naïve human follicular and

marginal zone B cells are highly dependent on BAFF for survival as

a genetic deficiency or pharmacologic inhibition of BAFF depletes

these naïve B cell pools. In contrast, memory B cells (MBC) are less

dependent on BAFF for survival as in patients treated with the

therapeutic anti-BAFF monoclonal antibody, belimumab, the MBC

pool appears unaffected (46, 47). This implies that fully mature

resting B cells may not rely heavily on BAFF-R-mediated NF-kB
signals through the NIK-IKKa axis but may still depend on

canonical NF-kB and other signaling pathways downstream of
Frontiers in Immunology 04
the BAFF-R to survive in the periphery. Thus, BCR-dependent

canonical and non-canonical NF-kB activity through BAFF are

both necessary for generating a complete and functional repertoire

of peripheral mature naïve B cells.

The BAFF-R/BCR axis also controls the lineage commitment to

the follicular or marginal zone B cell fate (48). The most abundant

population of mature B cells in mice and humans are follicular B

cells. These are recirculating cells that home mainly to B cell follicles

and thus are well suited to perform their function in T cell-

dependent immune responses (48). Marginal zone B cells (MZB)

are innate-like antibody producers located at the interface between

the white pulp of the spleen and the circulation and rapidly respond

to blood-borne antigens. They have been reported to be able to self-

renew and survive for very long periods of time (49). Determining

the follicular versus marginal zone B cell fate depends on integrating

NF-kB signals generated by the BCR and BAFF-R and crosstalk/

integration of signals from Notch2 (8, 48, 50). MZBs develop in

mice and humans in the presence of weak BCR signals, canonical

NF-kB, and Notch2 (8, 48, 51, 52). As mentioned above, BAFF-R

deficiency leads to a total loss of mature B cells. Interestingly, the

expression of constitutively active IKKb (a component of the

canonical NF-kB pathway) can rescue the MZB development (53,

54). Since this does not occur in BAFF-R/CD19 double knockout

mice, this indicates there is cooperativity between AKT and NF-kB
in the commitment to the MZB lineage (48–52).

Follicular type II B cell lineage fate occurs in the presence of

tonic B cell receptor signaling, mediated by Iga/Igb (55), and BAFF-
R signals, including non-canonical NF-kB. Importantly, tonic BCR

signaling increases the expression of p100 as a crucial signaling

intermediate downstream of BAFF-R, providing a mechanism for

this cell fate (56). On the other hand, the follicular type I B cell

lineage arises from strong BCR signals and canonical NF-kB. Here

PI3K and BTK function downstream of the BCR to facilitate the

activation of canonical NF-kB, necessary for the survival of

developing follicular type I B cells (57–59). Despite the wealth of

data on the BCR/BAFF developmental axis, the lack of clarity in

some experimental models and how the balance between the signals

from BCR, BAFF-R, CD19, BAFF levels, or other receptors leads to

cell fate outcome requires a more detailed examination of

the process.
Naïve B cell activation

In an immune response, follicular B cells, primed by their

cognate antigen and TLR-based inflammatory cues, become

activated and traffic to the T cell zone, where they interact with

CD4 + follicular helper T cells (TFH) (60). Newly activated B cells

receive help from T cells expressing CD40L and cytokines and, in

conjunction with antigen-dependent BCR signals, inflammation,

and TLR (61), some differentiate into short-lived antibody-secreting

cells in the follicles or pre-germinal center (GC)/GC-independent

memory B cells. B cells that do not receive help from TFH die.

Others acquire the gene and protein expression profile that enables

their entry into the germinal center (62–64).
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Germinal center reactions

Within a week of antigen exposure, GCs develop in the center of

B cell follicles in the spleen and lymph node (65). As the GC

matures, it polarizes into a dark zone (DZ), proximal to the T cell

zone, and a light zone (LZ), proximal to the lymph node capsule or

the marginal zone of the spleen, extensively reviewed in (66, 67).

The DZ consists almost entirely of GC B cells and a network of

reticular cells and appears “dark” by light microscopy. By contrast,

the LZ, which also gets its name from its “lighter” appearance,

contains a network of follicular dendritic cells (FDC), CD4+ TFH,

and GC B cells. The DZ functions as the location where selected GC

B cells proliferate and undergo somatic hypermutation (SHM) with

the goal of increasing BCR affinity for their cognate antigen. After

SHM, the GC B cells are directed to traffic to the LZ where their

newly modified BCR are selected on antigen bound to FDC and

interactions with their cognate TFH. The positive selection signals

from this interaction lead to the induction of proliferation and

return to the DZ to start the process over. The selection of GC B

cells, the cycling between the DZ and LZ, and the decision to leave

the GC as memory B cells or long-lived plasma cells require or are

significantly influenced by NF-kB (62, 66–69) and are discussed

briefly below.

Murine and human GC-B cells receive help from TFH in the

form of cytokines (IL-4, IL-21, IL-10), BAFF, APRIL, and CD40L

that, together, enable B cells to activate their class-switching

machinery and undertake the process of somatic hypermutation

required for developing BCR with higher affinity for antigen and

high-affinity memory B cells or long-lived high-affinity antibody-

producing plasma cells (PC) (63, 70–73). CSR and SHM require the

expression of activation-induced cytidine deaminase (AID). DNA

methylation and gene expression data from human tonsillar GC B

cells, identified genes of the NF-kB signaling pathways that were

de-methylated and highly expressed, including those targeted

by AID (74). The CSR machinery that controls specific antibody

classes is induced by transcription factors downstream of specific

inflammatory cytokine receptor signals. For example, on activated B

cells, signaling through the IFNg receptor activates STAT1 to induce
T-bet and promote class switching to IgG2a. Similarly, TGFb
signaling through SMAD and RUNX promotes class switching to

IgA and so on (75–77). BAFF and APRIL contribute to the CSR due

to TACI-induced activation of the canonical NF-kB pathway

through MyD88 to induce AID expression (78, 79). Furthermore,

the transcriptional regulator BATF, downstream of BCR and CD40-

induced NF-kB (80), is also required in B cells to generate germline

switch transcripts and to promote AID expression.

BAFF-R is important for maintaining the GC reaction (18).

However, the BAFF-R-dependent mechanism and signaling

pathways required for this maintenance of the GC have not been

fully resolved. B cell-intrinsic non-canonical NF-kB signaling is

required for GC formation (49), which may be initiated through the

BAFF-R. Still, while BAFF and APRIL are common ligands that

induce non-canonical signaling, the induction of NF-kB2 could

also be coming from other factors/receptors. TACI has been

demonstrated to negatively regulate the germinal center reaction
Frontiers in Immunology 05
in part by activating cIAP to ubiquitinate NIK for degradation

leading to the inhibition of BAFF-R mediated non-canonical NF-kB
survival in the germinal center (81, 82). TACI also induces BLIMP-

1 expression to inhibit the GC reaction and drive the generation of

long-lived plasma cells. Thus, the canonical and non-canonical NF-

kB pathways through BAFF-R and TACI are important for

regulating the B cell antibody response.

BAFF and APRIL also have key roles in memory B cells and

long-lived plasma cell generation and survival. Early studies showed

that BAFF and APRIL were not required for memory B cell survival

(83, 84). In contrast, more recently, it has been shown that memory

B cells need BAFF and BAFF-R to survive in the periphery in mice

and in a subset of human memory B cells (85–87). Additionally,

Muller-Winkler et al. determined that the NF-kB signals

downstream of the BAFF-R are differentially necessary for

memory B cells (87). IgM+ memory B cells required both IKKa
and IKKb for optimal survival, while IgG+ memory B cells only

relied on IKKb. Long-lived plasma cells also need BAFF/APRIL

signaling to survive, and the signals are thought to occur primarily

through BCMA in mice and humans (83, 88, 89). This may be due

to IKKa specific signaling, as loss of the signaling through the NIK-

IKKa axis led to decreased long-lived plasma cells (90). BCMA also

drives memory B cell differentiation toward the plasma cell fate (89,

91, 92). Although, whether this is directly through NF-kB or

through the upregulation of BLIMP-1 remains to be determined.

BAFF-R deficient CVID patients have severely reduced serum IgM

and IgG levels and impaired T cell-independent responses against

pneumococcal polysaccharides. However, like BAFF deficient mice,

IgA levels and gut IgA+ plasma cell numbers in these patients were

normal, reviewed in (16, 89). Deletion of TACI or APRIL in mice

and human patients expressing mutant TACI have significantly

reduced IgA levels (93–96). Low IgA and IgG antibody titers in

TACI-deficient patients suggest its importance for CSR in human B

cells. It has also been suggested that decreased numbers of BAFF-

binding receptors caused by the absence of TACI give rise to more

circulating BAFF binding to BAFF-R, thus supporting B-cell

survival (97). High levels of BAFF in mice and humans increase

the numbers of mature B cells and may be the mechanism that leads

to progressive autoimmune disease in these B cell-deficient patients

(89, 98).
Help from CD40 et al.

CD40 is a costimulatory molecule expressed on B cells and

other antigen-presenting cells and contributes to B cell

proliferation, antibody class-switching, and rescues B cells from

activation-induced apoptosis (99–102). CD40 has been shown to be

capable of activating both the canonical and non-canonical NF-kB
pathways by interacting with TRAFs (103–105). TRAF2, TRAF3,

and TRAF5 have all been shown to associate with CD40 and are

important for activating the CD40-induced non-canonical NF-kB
signaling (105). CD40’s interaction with either TRAF2 or TRAF3 is

also important for inducing canonical NF-kB signaling, while

interacting with both is required to induce non-canonical NF-kB
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(100). Additionally, TRAF6 associates with CD40 to initiate the

canonical NF-kB signaling pathway (105).

Like BAFF-R, CD40 plays an important role in B cell antibody

class switching and is able to induce class switching alone or in

combination with cytokines and the BCR (99). CD40’s ability to

activate NF-kB signaling is essential to this process. Jabara et al.

demonstrated that mice with B cells expressing CD40 proteins

unable to interact with TRAF2 or TRAF3 alone had decreased

serum IgG and IgE and smaller germinal center reactions in

response to T cell-dependent antigens (100). Furthermore, B cells

expressing CD40, unable to bind to both TRAF2 and TRAF3, had

further reduced serum IgG and IgE and undetectable germinal

center reactions. Ultimately, B cells expressing a mutant form of

CD40 that could not signal through TRAF2 and TRAF3 could still

induce the canonical NF-kB pathway but not the non-canonical

NF-kB pathway. In contrast, CD40 double mutant proteins could

not induce either (100). These data demonstrated that CD40’s

ability to interact with both TRAF2 and TRAF3 and induction of

both the canonical and non-canonical NF-kB signaling is important

for CD40-mediated antibody class switching. A second study also

demonstrated the reliance of CD40 on canonical NF-kB to induce

class switching by inducing AID expression (102). This was shown

when B cells deficient in p50 or c-Rel could not induce AID

expression in response to CD40, while by contrast, p52 deficient

cells could, although to a lesser extent than the wild-type B cells.

Thus, both the canonical and non-canonical NF-kB pathways

downstream of CD40 are required for CD40-mediated AID

expression and antibody class switching.

CD40-mediated NF-kB signaling also regulates other aspects of

the B cell response, including the germinal center reaction, B cell

trafficking, and memory B cell differentiation. The NF-kB p50/p65

heterodimer binds to the IRF4 promoter and induces its expression

downstream of CD40 activation. IRF4 expression can negatively

regulate the germinal center reaction by binding to the Bcl-6

promotor and downregulating its expression (106). Thus, CD40

can negatively regulate the germinal center reaction and promote B

cell exit from the germinal center reaction as post-GC memory B

cells. Additionally, CD40-induced non-canonical NF-kB signaling

is important for CXCR5 expression (107), which helps localize

newly activated B cells to the follicles to traffic toward and receive

help from TFH cells (108). CXCR5 and CXCR4, dependent at least

in part on NF-kB signaling, participate in the cycling of GC B cells

between the LZ and DZ reviewed in (62, 64, 67). Interestingly, GC

in patients with genetic defects in CD40 are poorly organized or

nonexistent (109, 110). Finally, CD40 and its induction of NF-kB
signaling regulate the differentiation of CD80+PD-L2+ vs. CD80-

PD-L2- and CD80-PD-L2+ memory B cells. These two subsets have

been shown to be functionally distinct, where CD80+PD-L2+

memory B cells primarily differentiate into plasma cells upon

restimulation, whereas CD80-PD-L2- memory B cells primarily

generate new germinal center reactions (111). Interestingly, strong

CD40 leads to higher expression of CD80 by inducing IRF4 and

BAFT expression through NF-kB signaling, which then forms a

heterodimer able to bind to the CD80 promotor and induce its

expression (80). Thus, CD40-mediated NF-kB signaling is essential
Frontiers in Immunology 06
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cell responses.
GC selection decisions

Multiple mathematical and experimental models that analyze

the LZ to DC cycle indicate that 10%–30% of B cells that traffic into

the LZ are selected to re-enter the DZ. The remainder either die by

apoptosis or exit the GC as memory B cells or PC (67, 68, 112). T

cell help drives cycle reentry and GC selection. In addition, the

nature of the B cell-TFH cell interactions regulates the number of

divisions and the cell cycle speed of selected B cells in a manner

proportional to the strength of that interaction (69, 113, 114). Here

we will discuss the contribution of NF-kB signaling to this process.

Recruitment and retention of B cells in the GC require them to

upregulate the zinc finger transcription factor B cell lymphoma

6 (BCL-6). This is mediated by antigen-dependent BCR signals

and engagement of CD40 by TFH expressing CD40L and cytokine

(115, 116). TFH cell expression of IL-4 and IL-21 acts directly on B

cells to promote the expression of BCL-6 (117, 118). BCL-6 is a

transcriptional repressor that blocks the upregulation of migratory

cell receptors S1PR1 and Gpr183. BCL-6 also upregulates the

expression of S1PR2, which acts as a retention signal to maintain

B cells in the GC (116). BCL-6 regulates the expression of a vast

network of genes controlling cellular processes, including the DNA

damage response, apoptosis, BCR, and CD40 signaling, inhibition

of plasma cell differentiation, and T cell/B cell interactions (62, 64).

NF-kB dependent induction of IRF4 is necessary for the initiation,

but not the maintenance, of the GC response. Interestingly,

transient expression of IRF4 in B cells induces the expression of

BCL-6, AID, and POU2AF1 and promotes GC development (119).

IRF4 expression is rapidly induced by BCR stimulation and CD40

through the activation of NF-kB (36). However, sustained IRF4

expression is sufficient to directly repress BCL-6 expression and

promote plasma cell differentiation, which may reflect the kinetic

and dose-dependent function of IRF4 in GC-B cells (36, 37). In-

depth genetic analyses indicated that IRF4/PU.1 or BATF bound to

Ets or AP-1 motifs to control transcription factors PAX5, BCL-6,

and BACH2, which contribute to retention in the GC through

negative regulation PC differentiation (120). Conversely, higher

concentrations and sustained expression of IRF4 promoted the

generation of plasma cells while antagonizing the GC fate (119).

The sustained expression of IRF4 upregulates BLIMP1 and

downstream target XBP1, transcription factors that direct GC B

cells to become long-lived plasma cells (121). Mechanistically,

higher concentrations of IRF4 shifted binding to genetic

interferon response sequences to induce genes that inhibit the GC

program. Expression of Blimp1 terminates the expression of BCL-6

and BACH2, responsible for the maintenance of the GC phenotype,

to drive cells to become PC (120, 122–125). Conditional deletion of

IRF-4 in GC B cells blocked the generation of post-GC plasma cells,

as IRF-4 deficient memory B cells were unable to upregulate

BLIMP1 and to differentiate into plasma cells (121). The NF-kB

subunits c-Rel and RelA had different roles in this process. Signaling
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through c-Rel was critical for maintaining newly formed GC, while

RelA was dispensable for this process. Importantly, RelA was able to

directly induce BLIMP1 independently of IRF-4 and is, therefore,

essential for PC development (126). Together, these data indicate

that the NF-kB signaling is important for determining the GC and

PC fate through the regulation of the IRF-4/Bcl-6/BLIMP1 axis

(120, 125, 127). Understanding what signals induce the activation of

RelA in vivo may provide valuable clues to the cellular processes

involved in PC differentiation.

To achieve a repertoire of B cells with a higher affinity to

antigen, one would expect there to be a pronounced difference in

how naïve and GC B cells sense or respond to antigens. One

difference maps to the type of synapse GC B cells form when

engaging antigen (128, 129). Naïve B cells form a classical ‘bullseye’

synapse, directing antigen internalization to a central synaptic

structure. By contrast, GC B cells form small foci of synapses and

internalized antigens in peripheral synapses (129). Additionally,

low-affinity antigens triggered continuous engagement and

disengagement of membrane-bound antigens, whereas high-

affinity antigens induced stable synapse formation. The

mechanical forces needed to pull antigens from the surface of

FDC also provide a way to sense antigen affinity. Cytoskeletal

contractility disrupted low-affinity and individual BCR-antigen

interactions and promoted the internalization of high-affinity,

multivalent BCR (130). Here then, these interactions increase the

activation of BCR signals, likely increasing the dose of antigen

processed and presented to TFH, providing an indirect mechanism

by which TFH can sense antigen affinity. These data pose potential

mechanical and biochemical mechanisms for differentiating high-

affinity BCR.

Considering the NF-kB signals are activated by crosstalk

between GC B cells, environmental cues and TFH connects NF-kB
to GC selection decisions. A consequence of the interactions

between GC B cells and T cells important for the selection

decision is the induction of feed-forward or positive feedback

loops in both cells. ICOSL on B cells promotes upregulation of

CD40L on T cells, which in turn further upregulates more ICOSL

expression on the B cell. This interaction promotes the GC B cell

TFH interactions described as ‘‘entanglement’’ to promote the

differentiation into high-affinity plasma cells (131). ICOS-deficient

CVID patients lack isotype-switched B cells and there is a paucity of

GC in spleens and lymph nodes (132). Using intravital microscopy,

the duration of GC B cell interactions with TFH was also greatly

increased by specific high-affinity antigen delivery to GC B cells

(113, 114). ICAM has also been implicated in these increased cell-

cell interactions. This also increased the T cell production of B cell

helper cytokines IL-4 and IL-21. In addition, T cells expressed more

BAFF and increased the survival of B cells that have acquired high-

affinity mutations (133).

Another change between naïve and GC B cells in the response to

an antigen is a qualitative rewiring and quantitative dampening of

BCR signaling in GC B cells (128, 129). Although antigen

stimulation of BCR can trigger proximal signaling in GC B cells,

overall NF-kB signaling is reduced. A critical step of BCR-based

NF-kB activation appears to require additional input from TFH cells

(129). In fact, BCR signals in mice and humans are dampened 100-
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128, 134). Using a combination of genetic ablation, specific

inhibitors, and in vivo delivery, GC stimuli on ex vivo GC B cells

and GC B cells in vivo found that CD40 induced signals via NF-kB

but not PI3K. At the same time, BCR signals do not activate NF-kB,

while BCR-dependent activation of AKT remained intact. In GC B

cells, both CD40 and BCR signals are required to induce c-Myc,

which is essential for their selection, survival, and proliferation

in the GC. This is markedly different from naïve B cells in which

either receptor can signal through both PI3K/AKT/mTOR (135)

and NF-kB and to c-Myc. The phosphatase PTEN has been

implicated as part of the mechanism responsible for the

dampening of BCR signaling in GC B cells (136). More recent

work using inhibitors of AKT indicated that differential activation

of AKT by GC B cell-specific expression of PDK1 and PTEN led to

enhanced negative regulation of BCR signaling through CSK, SHP-

1, and HPK1 (136). Altogether, these highlight the essential role TFH

play in the activation of NF-kB to enhance the successful selection

of high-affinity B cells in the GC reaction (67–69, 113). When

considered together, these results, along with computational

modeling, support a kinetic control model of the PC vs. GC B cell

fate determination (62, 63, 123). However, the precise thresholds,

cross talk, and synergy between inputs such as BCR affinity, antigen

dose, the magnitude and nature of T cell help, and contribution

from FDC remain undefined. Furthermore, quantifying these on a

per B cell basis under physiological conditions in vivo has not yet

been worked out.
B cell memory diversity and tissue
resident B cell memory

The purpose of B cell memory is to provide enhanced antibody

responses and immune protection against repeat exposure to

homologous or heterologous infection. The B cell memory

compartment is comprised of highly diverse subsets of B cells

with unique trafficking patterns, longevity, cell surface phenotype,

and functions (63, 137). The signals that drive B cell memory vs. the

generation of long-lived plasma cells are not worked out and are

highly controversial at best. The ability of B cells to differentiate into

memory B cells versus PCs changes over the course of an immune

response. Memory B cell generation is favored in the pre-GC and

early GC periods, and long-lived PC differentiation becomes more

pronounced later in the immune response in mice and humans

(138–140). Some data from these experiments suggest that lower

affinity BCR favors the generation of memory over PC, especially

early in the immune response. In addition, a single B cell can

differentiate into each of the diverse memory subsets depending on

several factors (139, 140). Considering the role of NF-kB in the

regulation of the IRF-4/Bcl-6/BLIMP1 axis (120, 125, 127), it is

likely to be at least part of the determination of these decisions. TLR

signals provides a significant contribution to NF-kB signaling. Thus,

as inflammation fades over time, the selection of GC B cells into the

PC fate is more likely to be dependent on signals through the BCR,

CD40, TFH, cytokines, and BAFF. Importantly, IL-21 has an

essential role in conjunction with those signals in determining the
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nature of the human B cell immune response and programming of

B cell memory (72, 85). Other inflammatory and environmental

cues also lead to differences in memory subtypes such as the

connection between inflammation and CSR INFg and IgG2 or

TGFb and IgA or IL-21 and INFg, as discussed earlier (75–77).

Another example when human B cells with BCR that bind TLR-7 or

9 ligands, signals from BAFF and concomitant IL-21 or IFNg
promotes T-bet+ B cell development (141–143).

Because the affinity of GC B cells for antigen also increases over

time and BCR signaling is rewired (63, 128, 134), the temporal and

antigen affinity models may encompass developmental and

environmental changes along the course of the immune response

that define new thresholds of signals that promote the long-lived PC

vs memory B cell fate. Precisely defining this moving target in vivo is

a difficult task. Despite this, recent studies provided additional

mechanistic detail concerning the selection of GC B cells into the

plasma cell lineage, showing that plasma cell lineage commitment

was favored by BCL-6lowCD69hi GC B cells that expressed the

transcription factor IRF4. The generation of BCL-6lowCD69hi GC B

cells, which also expressed high levels of ICAM1 and SLAM, was

regulated by T cell-mediated signaling through CD40, suggesting

that TFH cell–GC B cell interactions were key to the generation of

GC B cells that were prone to differentiate into long-lived plasma

cells (144).

Tissue-resident memory B cells in humans and mice have been

found in non-lymphoid tissues that are phenotypically and

functionally distinct from their classical lymphoid-associated

counterparts (145–147). Tissue-resident memory B cells (BRM)

perform protective functions in peripheral tissues dependent on

their ability to engage antigen at the site of infection, secrete

cytokines, and differentiate into plasma cells (147). The tissues

BRM are directed to enter depend in part on the pathogen and site

of infection. Much less is known about the mechanism of their

generation and maintenance (147). A role for NF-kB in regulating

this process is suggested by a recent model of influenza infection.

Here CD40L blockade through the first 2 weeks blocked HA and

NP-specific B cell response in both the LNs and the lung. CD40

blockade between day 10 and day 20 or between day 20 and day 30

allowed BRM to appear in the lung. Importantly, when CD40L was

blocked between days 30 and 40, all GC B cells were lost, while flu-

specific BRM cells in the lung were maintained. Since BRM

generation also depended on the presence of their cognate

antigen in the lung, it suggests that cooperation between CD40

and BCR (NF-kB/AKT axis)? regulates their generation.

Interestingly this parallels our recent work in T cells, where

temporal regulation of NF-kB controls both the generation and

development of tissue-resident T cells (148).

MZ B cells are innate-like B cells specialized to mount rapid T-

independent, but also T-dependent responses against blood-borne

pathogens and are a major source of IgM antibodies in humans

(49). Whilst there are similarities to mouse and human MZB

development (52), their phenotype as memory/PC are different.

Human MZB cells express hypermutated IgM and are circulatory,

while their murine counterparts express unmutated IgM and
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remain in the spleen (149, 150). Interestingly, the MZ B cells in

children less than 2 years of age express low levels of AID, while

AID was not detected in MZ B cells from adults (151–153). In fact,

children show a higher clonal diversity in the MZ subset than in

class-switched B cells (149). Furthermore, MZB with mutated IgM

found in patients with genetic defects in CD40 suggest they can

arise independent of a GC reaction (109, 110). Whether this is due

to the differences in the physiology of mouse and splenic marginal

zones, environmental cues, NF-kB activity, or other factors is

not clear.
Looking ahead

Our reductionist methodology and ability to design well-

controlled experimental approaches have provided us with a solid

picture of the function of NF-kB in humoral immunity. Other

mechanistic information has come from exhaustive studies of CVID

patients with various genetic deletions, mutations, and

polymorphisms in NF-kB. These works have been used to

develop FDA-approved treatments for inflammatory diseases and

multiple cancers (154–158). However, the precise quantification of

the dose of antigen or cytokine a B cell is exposed to, how many and

which cell-cell encounters occur within a given time, or what is the

variability in paths a cell can follow to arrive at a given cell fate in

vivo is not able to be determined by these methods. Thus, some of

the fine details in human and mouse B cell development and

differentiation remain unknown. The progressive development of

new ‘multi-omics’ approaches enables the potential to provide

these data.

Phenotype tracking human and mouse B cells through

development and differentiation has provided a consistent and

high-definition classification of B cell subsets during B cell

development and differentiation into MBC and PC. In addition,

they have corroborated checkpoints in development in mice with

those across a population of healthy human donors. RNA velocity

analyses have begun to precisely map out the quantity, quality and

kinetics of gene expression over the course of early development

and differentiation, defining pathways of development. Lineage

tracing and single-cell analyses across a diverse population have

been used for the discovery of new B cell subsets and their plasticity.

In addition, aligning surface phenotypes with genetic and signaling

profiles provide starting points to extend our understanding of

NF-kB signaling in B cell extensively reviewed in (159–164). These

new methodologies can lead to our ability to fill gaps in our

understanding of NF-kB. For example, how can we improve

vaccine response using our understanding of the interplay

between inflammation and long-term immunity to improve

vaccine design? Is a given B cell memory subset better at

providing immune protection against a pathogen? When is the

best time in an immune response to manipulate NF-kB activity to

direct tissue-resident B cells to (or away from) an organ of interest

such as the lung to increase protection and safety of vaccines against

respiratory infections?
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Oncogenesis

When working in harmony, the pathways regulating NF-kB
described above lead to the generation and maintenance of a

complete repertoire of the diverse subsets of healthy B cells.

However, many of these pathways are susceptible to dysregulation,

leading to aberrant NF-kB signaling and lymphoid tumorigenesis.

Many B cell leukemias and lymphomas, including Hodgkin

lymphoma, activated B-cell-like diffuse large B-cell lymphoma

(ABC-DLBCL), lymphomas of the mucosa-associated lymphoid

tissue (MALT), and chronic lymphocytic leukemia (CLL) are

associated with constitutively active NF-kB signaling which

contributes to these cancer’s proliferation and survival (165–168).

While we will not cover the role of NF-kB in B cell malignancies in

depth (comprehensively reviewed in (169, 170)), we will summarize a

few key points at which NF-kB may be dysregulated to drive B cell

transformation and other tumors.

In healthy B cells, MyD88 can coordinate the activation of B cells

downstream of TLRs and induce AID expression by activating the

NF-kB pathway, as described earlier. However, mutations in MyD88,

most notably the L265P mutation, lead to the constitutive activation

of NF-kB and are commonly found in ABC-DLCBL and can also be

found in MALT lymphomas and CLL (171–174). This mutation

allows poly-ubiquitination by an E3 ubiquitin ligase RNF138 which

leads to activation of MyD88L265P and drives activation of the NF-kB
and B cells transformation (175). Ubiquitination of MyD88L265P is

negatively regulated by the ubiquitin editing protein A20-mediated

downregulation of RNF138 and, as such, knock-down of A20 in this

model enhanced the efficiency of transformation. These suggest two

complementary mechanisms by which the dysregulation of NF-kB
signaling is caused by MyD88 mutations. A20 down-regulates

canonical NF-kB signaling mediated by multiple receptors through

multiple mechanisms (176, 177). Interestingly, inactivation or

deletion of A20 is also commonly linked to B cell malignancies on

its own, including ABC-DLBL.

Signals from both the pre-BCR and BCR can activate NF-kB.
Signals downstream of the pre-BCR and BCR signaling are

commonly dysregulated in B cell malignancies, where enhanced

activation or disrupted negative regulation of components of the

BCR pathway leads to the constitutive activation of NF-kB (178).

The chronic activation of the BCR by either self or non-self-antigens

has been shown to lead to the development of lymphoid cancers

(179, 180). Mutations within the CD79B and CD79A co-receptors

are common and maintain this activation (181). Mutation of

CD79B can increase the surface expression of the BCR and limit

its internalization to maintain chronic signaling (182). As described

above, engagement of the BCR leads to the activation of BTK, which

in turn activates canonical NF-kB signaling. Cancers that are

dependent on mutations in CD79 are sensitive to Bruton tyrosine

kinase (BTK) inhibitors and, thus, downstream inhibition of NF-kB
(183). A20 down-regulates canonical NF-kB signaling mediated by

multiple receptors through multiple mechanisms (176, 177).

Interestingly, the inactivation or deletion of A20 enhances the

transformation of these cells (178, 184, 185).

Finally, the mutation of proteins within the CARMA/

MALT1/BCL10 (CBM) complex also leads to constitutive NF-
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kB signaling and oncogenesis. In healthy B cells, the CBM

complex is activated downstream of the BCR through the

phosphorylation of CARMA. This phosphorylation induces a

conformational change which then allows it to associate with

BCL10 and MALT1. The active CBM complex will then recruit

the IKK and TAK1, which will then be able to phosphorylate

IKKb and induce NF-kB signaling. Gain of function mutations

within any of the three proteins that make up the CBM complex

can result in the constitutive activation of NF-kB and drive B cell

oncogenesis. Again, multiple leukemias and lymphomas depend

on the crosstalk between AKT and NF-kB (178, 184, 186). This

suggests the potential inclusion of other scaffolds, such as POSH

(plenty of SH3 domains), that are implicated in crosstalk between

these and other signaling pathways important to the survival of

other cancers and for lymphocyte survival and differentiation

(187–191).

Stepping briefly outside of the hematopoietic system,

considering the general function and the genes targeted by the

NF-kB signaling pathway, it has the potential to play a role in

multiple tumor types. Mutations in NF-kB genes are rare in solid

tumors. However, activation and nuclear translocation of RelA are

found in many tumors and associated with tumor progression. In

these tumors, aberrant activation of signaling molecules upstream

of NF-kB, such as mutant or oncogene-driven RAS, EGFR, PGF,

and HER2, likely induce increased NF-kB signaling, reviewed in

(192–194). NF-kB then, in turn, upregulates genes that control cell

survival, proliferation, metastasis, angiogenesis, and others. For

example, BCR-ABL signaling in AML, CML, and B-ALL activates

NF-kB, and tumorigenesis driven by BCR-ABL-expressing cells was

blocked upon inhibition of NF-kB (195). In addition, NF-kB’s

ability to induce the expression of AID and APOBEC was

demonstrated as a mechanism for increased mutagenesis in

cervical cancer (196). High levels of c-Rel have been found in

non-small cell lung carcinoma (197), breast cancer (198), and

squamous cell carcinomas of the head and neck (199). Defective

IkBa was found in several solid tumors such as breast, colon,

ovarian, pancreatic, bladder, prostate carcinomas, and melanoma

(193). Taken together, the data from solid tumors and

hematological malignancies provide the information that can be

used to develop was to inhibit NF-kB to enhance current tumor

treatment protocols.
Conclusions

NF-kB signaling plays a major role in the development of a

healthy B cell immune response. It has unique functions depending

on the developmental/differentiation state of the cell and

cooperation with multiple other signaling pathways responsible

for cell fate decisions. In addition, the timing and kinetics of the

induction of NF-kB signaling (transient vs. sustained) greatly

influence the outcome of its activation. The cooperation between

different receptors able to activate canonical and non-canonical NF-

kB aids in the diversity of function for this signaling pathway. Much

is known about this amazing pathway; much more is still to be

known. In knowing this, we can address ways to enhance immune
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protection and vaccination as well as improve treatment protocols

when NF-kB signaling gets out of control.
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