
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hai Fang,
Shanghai Jiao Tong University, China

REVIEWED BY

Luo Yuhao,
Southwest Medical University, China
Xudong Yao,
Tongji University, China

*CORRESPONDENCE

Hailong Hu

huhailong@tmu.edu.cn

Zhenqian Fan

fanzhenqian2003@163.com

†These authors have contributed equally to
this work

RECEIVED 28 April 2023

ACCEPTED 13 October 2023
PUBLISHED 27 October 2023

CITATION

Shen C, Chai W, Han J, Zhang Z, Liu X,
Yang S, Wang Y, Wang D, Wan F, Fan Z and
Hu H (2023) Identification and validation
of a dysregulated TME-related gene
signature for predicting prognosis,
and immunological properties
in bladder cancer.
Front. Immunol. 14:1213947.
doi: 10.3389/fimmu.2023.1213947

COPYRIGHT

© 2023 Shen, Chai, Han, Zhang, Liu, Yang,
Wang, Wang, Wan, Fan and Hu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 October 2023

DOI 10.3389/fimmu.2023.1213947
Identification and validation of a
dysregulated TME-related gene
signature for predicting
prognosis, and immunological
properties in bladder cancer
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Background: During tumor growth, tumor cells interact with their tumor

microenvironment (TME) resulting in the development of heterogeneous

tumors that promote tumor occurrence and progression. Recently, there has

been extensive attention on TME as a possible therapeutic target for cancers.

However, an accurate TME-related prediction model is urgently needed to aid in

the assessment of patients’ prognoses and therapeutic value, and to assist in

clinical decision-making. As such, this study aimed to develop and validate a new

prognostic model based on TME-associated genes for BC patients.

Methods: Transcriptome data and clinical information for BC patients were

extracted from The Cancer Genome Atlas (TCGA) database. Gene Expression

Omnibus (GEO) and IMvigor210 databases, along with the MSigDB, were utilized

to identify genes associated with TMEs (TMRGs). A consensus clustering

approach was used to identify molecular clusters associated with TMEs. LASSO

Cox regression analysis was conducted to establish a prognostic TMRG-related

signature, with verifications being successfully conducted internally and

externally. Gene ontology (GO), KEGG, and single-sample gene set enrichment

analyses (ssGSEA) were performed to investigate the underlying mechanisms.

The potential response to ICB therapy was estimated using the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm and Immunophenoscore (IPS).

Additionally, it was found that the expression level of certain genes in the

model was significantly correlated with objective responses to anti-PD-1 or

anti-PD-L1 treatment in the IMvigor210, GSE111636, GSE176307, or Truce01

(registration number NCT04730219) cohorts. Finally, real-time PCR validation

was performed on 10 paired tissue samples, and in vitro cytological experiments

were also conducted on BC cell lines.

Results: In BC patients, 133 genes differentially expressed that were associated

with prognosis in TME. Consensus clustering analysis revealed three distinct

clinicopathological characteristics and survival outcomes. A novel prognostic
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model based on nine TMRGs (including C3orf62, DPYSL2, GZMA, SERPINB3,

RHCG, PTPRR, STMN3, TMPRSS4, COMP) was identified, and a TMEscore for OS

prediction was constructed, with its reliable predictive performance in BC

patients being validated. MultiCox analysis showed that the risk score was an

independent prognostic factor. A nomogram was developed to facilitate the

clinical viability of TMEscore. Based on GO and KEGG enrichment analyses,

biological processes related to ECM and collagen binding were significantly

enriched among high-risk individuals. In addition, the low-risk group,

characterized by a higher number of infiltrating CD8+ T cells and a lower

burden of tumor mutations, demonstrated a longer survival time. Our study

also found that TMEscore correlated with drug susceptibility, immune cell

infiltration, and the prediction of immunotherapy efficacy. Lastly, we identified

SERPINB3 as significantly promoting BC cells migration and invasion through

differential expression validation and in vitro phenotypic experiments.

Conclusion:Our study developed a prognostic model based on nine TMRGs that

accurately and stably predicted survival, guiding individual treatment for patients

with BC, and providing new therapeutic strategies for the disease.
KEYWORDS

bladder cancer, tumor microenvironment (TME), prognosis model, immunotherapy,

drug sensitivity
1 Introduction

Globally, bladder cancer (BC) ranks as the 10th most common

tumor, with an increasing incidence and mortality rate, resulting in

a heavy social burden (1). According to GLOBOCAN estimates, the

number of new cases and deaths worldwide in 2020 came to 573,278

and 212,536 respectively (2). According to newly diagnosed BC,

70% of all bladder cancers are non-muscle invasive (NMIBC). The

best option for bladder tumors is transurethral resection (TURBT).

Tumor recurrence or progression can occur in up to 45% and 6% to

17% of patients after TURBT, respectively (3). Likewise, while

radica l cys tectomy and neoadjuvant plat inum-based

chemotherapy have been used clinically in patients with muscle-

invasive bladder cancer (MIBC), poor quality of life and intolerance

and insensitivity to chemotherapy in some patients are the greatest
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challenges in this field (4). In recent years, BC can be targeted with

targeted therapy in the future, but only specific types of patients

benefit (5). Moreover, immunotherapy has been a significant

clinical advance, and immune checkpoint inhibitors (ICIs)

therapeutics are displacing previous treatment regimens as first-

and second-line therapies for BC patients (6). It is unfortunate that

immunotherapy doesn’t show a high rate of response, and these

drugs are relatively expensive. Therefore, researching specific

prognostic biomarkers that can be used to categorize patients

with different characteristics, and identifying new therapeutic

strategies, has important clinical application value.

The tumor microenvironment (TME), as the “soil” of tumor

cells, consists of various factors, including immune cells, endothelial

cells, fibroblasts, extracellular matrix (ECM), and secreted growth

factors (7). Growing evidence suggests a crucial role for TME in

tumorigenesis, progression, metastasis, and response to therapies

(8). The acquisition and maintenance of cancer differentially

depend on contributions from TME components. Recently, TME

has attracted broad clinical interest as a therapeutic target in cancer

(9). Thus, intensively investigate complexity of TME is essential for

understanding the mechanisms of cancer progression and boosting

the predictive power of immunotherapy. However, to date, whether

TME-related gene signatures are a novel prognostic model in BC

remains unclear.

From public databases, we retrieved mRNA expression profiles

and corresponding clinical data for BC patients to assess their

prognosis. Next, an extensive molecular clustering analysis was

performed, and a novel TME-related gene signature was

constructed to provide a prognostic model. Next, we confirmed
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the mRNA expression of interested model-associated genes from 10

paired BC tissues collected by us. Besides, we further investigated

their impact on infiltrating immune cells, functional enrichment

pathways, and therapeutic response with BC patients. Meanwhile,

the modeled genes were also tested in different immunotherapy

cohorts for potential biomarkers for immunotherapy efficacy (i.e.,

IMvigor210, GSE111636, GSE176307, or our Truce01). Of note, we

carried out a series of cellular function experiments following

SERPINB3 knockdown. Our results demonstrated that TMEscore

is a robust potential prognostic biomarker and therapeutic target.

This study would contribute to providing new insights for

developing viable treatment strategies for BC.
2 Materials and methods

2.1 Study design

The workflow of our study is depicted in Figure 1.
2.2 Data collection and preprocessing

Transcriptome profiling data and corresponding clinical data

for BC were retrieved from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov), Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/gds), and the

IMvigor210 database. Patients lacking survival information were
Frontiers in Immunology 03
excluded. Totally, TCGA-BC and 2 eligible GEO cohorts

(GSE13507, GSE31684) were gathered for this study. In the Affy

software package, raw microarray data from Affymetrix was

processed using the RMA algorithm for background adjustment

and quantile normalization. We directly downloaded the

normalized matrix files from Illumina with the raw data. For the

TCGA dataset, the transcriptome data (FPKM values) were

downloaded from the Genomic Data Commons (GDC, https://

portal.gdc.cancer.gov/) using the TCGA biolinks bioconductor

package (10). Then FPKM values were converted to transcripts

per kilobase million (TPM) using the “limma” R package for

analysis. This dataset includes 414 tumor and 19 tumor-adjacent

samples and is used to compare the expression levels of TME-

related genes in tumors and normal tissues. For GEO datasets,

probe-level annotations from the AffyMetrix platform are

converted to gene symbols (11). Batch effects between TCGA and

GEO datasets were corrected using the “Combat” algorithm of the

SVA dataset. Somatic mutations and copy number variations

(CNVs) from UCSC Xena (https://gdc.xenahubs.net/). Data were

analyzed with R Bioconductor packages.
2.3 Identification of prognostic
differentially expressed TME-related genes

A total of 4061 TMRGs were identified from the MSigDB

database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/
FIGURE 1

Flow chart of our study.
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search.jsp). To screen differentially expressed TMRGs (DETMRGs)

with the threshold of false discovery rate (FDR)< 0.05 and |log2

fold-change (FC)| > 1 between tumor and adjacent tissue from the

TCGA dataset, the “limma” R package and Wilcoxon test were

utilized. Meanwhile, univariate Cox regression (uniCox) analysis

was conducted to screen TME-related prognostic genes with the

threshold of p-value< 0.01. After screening, view Venn diagrams

and heatmaps with the Venn diagram analysis website and heatmap

R package. Furthermore, gene mutation frequencies were obtained

using the “maftools” R package. CNVs for each gene were analyzed

and visualized using the Rcircos package (12).

The protein-protein interaction (PPI) network predicted using

DETMRG (13) was constructed using the STRING database

(https://string-db.org/) between proteins with a confidence limit

of 0.8 for interactions. Networks were analyzed and visualized using

Cytoscape software version 3.9.1.
2.4 Identifying TME-related molecular
clusters with consensus clustering analysis

Transcriptome profile data and corresponding clinical data

from TCGA-BC, GSE13507 and GSE31684 datasets were merged

for analysis. To identify molecular clusters associated with the TME,

1000 iterations of consensus clustering analysis were performed

using the CancerSubtypes R package to ensure the robustness of the

classification (14). The relationship of TME-related molecular

clusters with clinicopathologic characteristics and survival

outcomes was explored with the R packages “survival”, “limma”,

“ggplot2”, and “pheatmap”.
2.5 Identification of differentially expressed
genes and functional enrichment analysis

To identify differentially expressed genes (DEGs) in distinct TME

clusters, the “limma” package was used with criteria of |log2 FC| >

0.585 and FDR< 0.05. (which implements an empirical Bayesian

approach to estimate gene-expression changes using moderated t-

tests). Expression data of DEGs from different TME clusters were

normalized in BC samples and crossover genes were extracted. To

explore potential mechanisms among these DEGs, Gene Oncology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

functional enrichment analysis was carried out with the

“clusterProfiler” package (15). In addition, single-sample gene set

enrichment analysis (ssGSEA) was used to quantify the enriched

fractions of 23 tumor-infiltrating immune cells (16). Differences in

biological processes between molecular patterns were investigated

using the Gene Set Variation Analysis (GSVA) R package.
2.6 Establishment and verification of a
novel prognostic model for BC

UniCox analysis was applied to investigate prognosis-related

DEGs. A total of 224 survival-related genes were extracted for
Frontiers in Immunology 04
further analysis. The consensus clustering algorithm was used for

defining the number of gene clusters and their stability. In our

study, the combined data from TCGA-BC, GSE13507 and

GSE31684 datasets (664 BC cases) were randomly separated into

a training cohort (468 BC cases) and testing cohort (196 BC cases)

in a 7:3 ratio. Meanwhile, 348 BC samples from the Vigor210

database were used as an external validating cohort. Subsequently,

we performed LASSO regression with 10-fold cross-validation to

narrow the prognosis-related DEGs applying the R package

“glmnet”, and multivariate Cox regression analysis in the training

cohort to establish a novel prognostic model for BC. Finally, the

TMEscore of each patient was calculated based on the following

model formula:

risk score =

Sicorrespomding Coefficient(mRNAi) � Expression(mRNAi)

Kaplan–Meier (K-M) survival analysis, time-dependent receiver

operating characteristic (ROC) curve analysis and principal

component analysis (PCA) were performed to validate the

performance of this prognostic model in the training cohort,

testing cohort, entire and external validating cohort, respectively.

The distribution of risks across all cohorts was visualized using the

R package “pheatmap”. The association of TME gene signature with

clinical variables was discussed, and categorical analyses were also

performed to investigate whether TMEscore still had predictive

reliability for multiple clinicopathological features based on

different subgroups. MultiCox analysis was applied to determine

whether the risk score was an independent prognostic predictor.

Interestingly, subgroup survival analyses were performed for older

and younger patients, males and females, T-stage I-II and III-IV,

low-grade and high-grade patients. In addition, the model of 18

glycolysis-related genes was validated in three independent research

groups. (i.e., IMvigor210, GSE48075, and GSE32894). Afterward, a

nomogram through the “rms” R package was constructed for BC

patients with TMEscore and clinical characteristics, particularly

about 1-, 3-, and 5-year overall survival (OS). The clinical reliability

and predictive value of the established nomogram were assessed by

calibration plots and ROC, respectively.
2.7 Correlation analyses of the TME-related
model with immune subtypes, immune
checkpoint, immune infiltrating cells,
tumor mutation burden, tumor immune
dysfunction and exclusion algorithm
and immunophenoscore

We first compared the risk score between the four different

immunophenotyping with sample size greater than 3, including C1

(wound healing), C2 (INF-r dominance), C3 (inflammation), and

C4 (lymphocyte depletion), from the previous study of David et al.

(17). To explore the efficacy of treatment response, immune

checkpoint genes were compared between high- and low-risk

groups. Following, to evaluate the immune infiltration of BC, we

used seven immune infiltration algorithms (TIMER, CIBERSORT,

CIBERSORT-abs, QUANTISEQ, MCPCOUNTER, XCELL, and
frontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb/search.jsp
https://string-db.org/
https://doi.org/10.3389/fimmu.2023.1213947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2023.1213947
EPIC) to calculate the proportion of different immune cells and

reveal the immune infiltration function under different strategies.

Using differences in risk scores between the two groups were

analyzed by Wilcox rank sum test; the results were then

visualized as heatmaps using the “Pheatmap” R package. The

correlation between risk score and immune infiltrating cells was

analyzed by Spearman rank correlation analysis. In addition, 29-

point immune function/infiltration score values were evaluated for

high-risk and low-risk groups using the single-sample gene set

enrichment analysis (ssGSEA) algorithm. TMB was assessed as

previously described (18). Furthermore, in order to distinguish the

mutation spectrum of BC patients between the two risk groups, we

used the “maftools” package (19) to obtain the mutation annotation

format (MAF) files of the TCGA database. TMB, TIDE, and IPS

scores are all immune checkpoint blockade responses (ICB; anti-

PD1 or anti-CTLA4, etc.) that help quantify tumor immunogenicity

and characterize the intertumoral immune landscape.

Consequently, this model can be used to predict the response of

BC patients to immunotherapy.
2.8 Drug sensitivity analysis

The immunophenotype score (IPS) was calculated to predict BC

patients’ immune responses between the different risk groups. Next,

the CellMiner database (https://discover.nci.nih.gov/cellminer/

home.do) was applied to reveal whether the nine TMRGs could

predict the sensitivity of anticancer drugs. Spearman’s correlation

analysis was used to determine the correlation between risk gene

expression levels and drug sensitivity.
2.9 The correlation between TME-
associated model and the efficacy
of BC immunotherapy

Gene expression profiles and clinical information were obtained

from three independent cohorts (GSE111636, GSE176307, and

IMvigor210) and one of our sequence data sets (term_id,

TRUCE-01; registration number, NCT04730219; registration

time: July 11 2020) and predicted values of gene expression

models in response to immunotherapy. In our TRUCE01 study,

we also performed comparisons of differences between two groups

before and after treatment using a paired Wilcoxon-test for these

genes. The results were divided into respond and non-respond, and

the statistical difference was set at p<0.05.
2.10 RNA extraction, quantitative real-time
PCR, cell counting Kit−8 (CCK−8) and
transwell assays in vitro.

Total RNA was evoked from 10 matched BC tumors and adjacent

tissues using the eznam tmHp Total RNA (OMEGA) kit. Converted to

cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo

Fisher Scientific, Rockford, IL, USA). The relative expression of COMP
Frontiers in Immunology 05
and SERPINB3mRNAwas detected by QRT-PCR. The COMP primer

sequences were: forward, 5’-CGAGTCCGCTGTATCAACACC-3’;

reverse, 5’-TCCGTGCAAACCTGCTTGT-3’. SERPINB3 primer:

forward, 5’-CGCGGTCTCGTGCTATCTG-3’; reverse, 5’-ATCC

GAATCCTACTACAGCGG-3’. The final results were analyzed using

the 2-DDCT method.

Cell proliferation was assessed using a CCK-8 experiment. In

the CCK-8 assay, 2x103 T24 or 253J-BV cells were seeded into 96-

well plates at a density of cells per well. At specified time points (0,

24, 48, 72, and 96 hours), 10 μl of CCK-8 solution (Beyotime

Institute of Biotechnology) was added to each well, followed by

incubation at 37˚C for an additional 3 hours in the absence of light.

The absorbance at a wavelength of 450 nm was then measured using

a microplate reader.

5 × 104 BC cells were cultured for cell migration and invasion

assays using 200 μl serum-free medium in the upper chamber (0.8

μm; Corning) and 700 μl complete medium in the lower chamber

(for invasion assay) or without (for migration assay) Matrigel

(Corning), following incubation for 48 h, fixed and treated with

4% Paraformaldehyde (Sigma) and 0.1% crystal violet (Solarbio)

were stained, and cell migration and invasion were quantified using

an Olympus microscope (Olympus).
2.11 Statistical analysis

All analyses were completed by using R programming language

(version 4.1.2) and its relevant packages. Wilcox’s test was

employed to compare the variables of the two groups. Chi-square

tests were utilized to investigate the relationship between risk

groups and clinicopathological features. Spearman’s correlation

test was used to assess the correlation between groups. The

Kaplan-Meier curve was employed to assess the survival data. The

R package time was utilized to conduct the ROC analysis.

Additionally, both univariate and multivariate Cox regression

analyses were conducted to evaluate independent prognostic

factors. A two-sided P< 0.05 was considered statistically

significant. Furthermore, p-value summaries were as follows: ****,

P < 0.0001; ***, 0.0001 < P < 0.001; **, 0.001 < P < 0.01; *,

0.01 < P ≤ 0.05; ns, P > 0.05.
3 Results

3.1 Screening and Genetic Mutation
Landscape of Prognostic DETMRGs

We first identified the expression levels of the 4061 TMRGs in

normal and tumor samples based on the TCGA-BC cohort.

Subsequently, 1239 DE-TMRGs (Supplementary Table S1) and

362 prognostic TMRGs (Supplementary Table S2) were found.

133 intersect prognostic DE-TMRGs were extracted and

visualized with heatmap (Supplementary Figures S1A–C,

Supplementary Table S3). A PPI network was established to

discover de-TMRG interactions affecting prognosis, which

indicated that VEGFA, SPP1, and TIMP1 were the three main
frontiersin.org
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core genes (Supplementary Figure S1D). As depicted in

Supplementary Figure S1E, 255 of 412 (61.89%) samples in the

TCGA-BC cohort presented genetic mutations. The results

suggested that AHNAK, FBN2, FBN1, NAV3, and HSPG2 were

the top 5 most common mutated genes, and missense mutations

were the most frequent types. Then, we explored CNV mutational

incidence, and Supplementary Figure S1F lists the top 20 genes in

the gain and loss-CNV groups, respectively. The Circus plot shows

the chromosomal distribution of the prognostic de-tmrg, suggesting

that CNVs may play a regulatory role in tmrg expression. Taken

together, these results suggest a potential prognostic role of DE-

TMRG in BC tumor development and progression.
3.2 Identification of three TME-related
molecular clusters

An integrative datasets from TCGA-BC, GSE13507 and

GSE31684, including 664 BC patients, were further analyzed to

investigate the relationship between TME-related genes expression

and tumorigenesis, or BC patient outcomes. Complete clinical

characteristics of these patients are listed in Supplementary Table

S4. A sum of 115 prognostic DE-TMRGs were extracted. To classify

BC patients according to the expression levels of these genes, we
Frontiers in Immunology 06
performed an unsupervised analysis. Our results showed that with

an optimal clustering variable of 3, BC samples were divided into

three clusters – viz, cluster 1 (C1, n = 250), cluster 2 (C2, n = 181)

and cluster 3 (C3, n = 233) (Figures 2A–C). PCA analysis also

confirmed a good distribution between groups (Figure 2D). The

KM curves showed significant differences in OS (Figure 2E),

disease-specific survival (DSS, Figure 2F), progression-free

survival (PFS, Figure 2G) among the three subtypes. Patients in

C3 had the worst outcome. Despite this, DFS did not differ

significantly among the three subgroups (Figure 2H).

Furthermore, the expression levels of genes in C3 are significantly

upregulated and correlated with T-stage, N-stage, grade, and

survival status compared with C1 and C2 (Figure 3A).

Results from ssGSEA revealed striking differences in the

accumulation of most immune cells between the three clusters,

including activated B cells, activated CD4 T cells, immature B cells,

myeloid suppressor cells (MDSCs), macrophages, hypertrophic

cells, natural killer cells, regulatory T cells (Tregs), follicular T

helper cells, and type 2 T helper cells were significantly enriched in

C3 (Figure 3B). The differential results of GSVA accumulation

analysis of KEGG pathways based on C3 and C1 dimensions

indicated that C3 was mainly enriched in metastasis-related

pathways, e.g., C1 was enriched in metabolic pathways

(peroxisome, fatty acid metabolism, glycerophospholipid
B

C

D E

F

G

H

A

FIGURE 2

Identification of TME-related molecular clusters using consensus clustering. (A–C) Consensus matrix heatmap, and Silhouette plot defining that 3
was the appropriate value of k clusters. (D) PCA showing obvious difference in transcriptomes between the three subgroups. (E–H) K-M curve for
the OS, DSS, PFS, and DFS in patients with different clusters.
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metabolism, linoleic acid metabolism) that were significantly

enriched (Figure 3C, Supplementary Table S5). Additionally,

further analysis by the R software package ‘GSVA’ identified that

68, and 74 significantly different KEGG pathways were present in

C2 vs. C1, and C3 vs. C2, respectively (Supplementary Table S5). C2

is enriched in cell cycle and DNA repair processes such as

homologous recombination, DNA replication, spliceosome,

nucleotide excision repair, mismatch repair, etc. (Supplementary

Figures S2A, B). The 24 terms were the intersection of significantly

enriched pathways in C2 vs. C1, C3 vs. C2, and C3 vs. C1

(Supplementary Figure S2C, Supplementary Table S5).
3.3 Identification of Gene Subtypes Based
on DEGs from molecular typing

To further investigate the biological behavior of each TME

cluster, we identified 432 TME-associated DEGs (Figure 4A). We

then performed GO and KEGG signaling pathway enrichment

analysis on these DEGs (Supplementary Table S6), and the results

showed that these genes were associated with ECM organization

and extracellular structure organization (Figure 4B). KEGG analysis

also revealed enrichment of PI3K-AKT signaling pathway and ECM

receptor interaction (Figure 4C), confirming that ECM may play a

key role in regulating BC development. In addition, we performed
Frontiers in Immunology 07
uniCox analysis and identified 224 prognostic-related grades

(Supplementary Table S7).

To further investigate the underlying mechanism, patients were

divided into two gene clusters (clusters A and B) based on the

difference in prognosis using consensus clustering analysis

(Figures 4D, E). We found that the two gene clusters were

significantly related to distinct clinicopathological features

(Figure 4F). Interestingly, K-M curves suggested a remarkable

difference of OS, PFS, and DSS between the different subtypes,

and BC patients in cluster B had the shortest survival time

(Figures 4G–J).
3.4 Construction and verification of a novel
TME gene signature based on DEGs,
clinical correlation analysis.

In order to establish a novel prognostic model for BC, based on the

abovementioned results of uniCox analysis, we next performed

LASSO and multiCox analysis in the training cohort (Figures 5A,

B). Ultimately, 9 model genes were screened out, and the

calculation results of TMEscore were as follows: Risk score =

(-0.099662222260127) * C3orf62 + (0.106039015724471) * DPYSL2

+ (-0.25538986534307) * GZMA + (0.085706581025753) * SERPINB3
+ (0.0782409611222662) * RHCG+ (-0.081618821104433) * PTPRR +
B C

A

FIGURE 3

The correlation between molecular clusters and clinicopathological characteristic, immune infiltration levels, or pathway enrichment. (A) The
heatmap of these differentially prognostic TMGs with correlation of the molecular typing with clinical features at the top by chi-square test.
(B) Abundance differences of 23 immune infiltrating cell types between different molecular typing. (C) Top30 significantly enriched KEGG pathways
between C3 vs C1 by GSVA algorithm. *p< 0.05, ***p< 0.001.
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(0.102457210158663) * STMN3+ (-0.1019226467793) * TMPRSS4+

(0.0712031406107373) * COMP. According to the median risk score of

the training group, patients were divided into high-risk and low-risk

groups, and divided into training group and verification group. KM

survival analysis showed that the OS of high-risk patients was

significantly lower than that of low-risk patients in the training

cohort (p< 0.001), testing cohort (p = 0.023), whole cohort (p<

0.001) (Figures 5C); the AUC values of 1-, 3-, and 5-year prognosis

in the training cohort were 0.754, 0.724, and 0.726, severally, similar to

the results for the test cohort and the entire cohort (Figure 5D). In

addition, calibration curves predicting 1-, 3-, and 5-year OS in training,

testing, and full cohorts are shown in Figure 5E. Analogously, the risk

map assessed showed that as the risk assessment increased, survival

time decreased and mortality increased (Figure 5F). "Moreover,

univariate Cox regression analysis confirmed the prognostic
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significance of these nine model genes, and then the findings were

presented in a." forest plot (Figure 5G). To further investigate the link

between modelled gene expression and the aforementioned molecular

classifications, we plotted the distribution of modelled gene expression

among different molecular typing using a boxplot (Figures 5H–I). Next,

to examine the relationship between the model and clinical

characteristics, we used chi-square tests or Wilcox nonparametric

tests on pooled datasets to compare risk scores for different clinical

characteristics. As determined in Supplementary Figure S3, patients

with >65 age, high grade, stage_T3-4, positive lymphatic invasion and

survival status dead, compared to ≤65 age, low grade, stage_T1-2,

negative lymphatic invasion, and survival status alive had higher risk

scores or risk ratios, respectively.

To confirm the reliability of existing prognostic prediction

models, we evaluated the predictive ability of the models on several
frontiersin.o
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FIGURE 4

Identification of gene subtypes based on DEGs from comparison of the above molecular classification. (A) 432 TME phenotype-related intersect
differential genes from C3 vs C1, C3 vs C2, and C2 vs C1, was shown in Venn diagram. (B, C) GO and KEGG enrichment analyses for these 432
intersection differential genes. (D, E) Genotyping was performed using these 432 genes. (F) Correlation analysis of gene signature with
clinicopathological characteristics using Chi-square test. (G–J) KM curve analysis for OS, PFS, DSS, and DFS of the gene clusters. *p< 0.05, **p<
0.01, ***p< 0.001.
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external validation datasets. KM, ROC and calibration curve analyses

were also performed for the model based on IMvigor210, GSE32894,

and GSE48075 datasets, and showed good performance of the

predictive models, see Figures 6A–C, Supplementary Figures 4A–C,

4H–J. Of note, we also observed significant correlations between

THUMPD1 expression and immunotherapy efficacy, status of distant

metastasis, immunophenotyping, TCGA_subtype, and previous

polecular typing through Chi-square or Wilcox nonparametric tests

(Figures 6D–G, Supplementary Figures 4D–G). Altogether, these

results manifest the superior performance of this new prognostic

model in predicting the prognosis of BC patients.
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3.5 Independent prognosis analysis,
nomogram construction, and functional
enrichment analysis

Furthermore, we performed uniCox and multiCox analyses to

evaluate the independent prognostic value of TMEscore in BC

patients. The results showed that age, T stage, N stage and risk

score were independent adverse prognostic factors for BC patients.

(Figures 7A, B). Additionally, subgroup survival analysis showed

that high-risk patients have lower survival rates than low-risk

patients. (Supplementary Figure S5).
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FIGURE 5

Construction and internal validation of TME-related prognostic signature in BC. (A, B) LASSO regression analysis with minimal lambda value. (C) The
KM survival analysis showing the difference in OS between the high- and low-risk groups in the integrated, training, testing cohorts. (D, E) Time-
dependent ROC, and calibration curves at 1, 3 and 5 years. (F) The distribution of risk score, survival status, and the modeled genes expression
heatmap of BC patients with different risk scores in the whole cohort. (G) Forest plot of TME‐associated prognostic modeled genes based on
univariate Cox regression analysis. (H, I) The difference in the expression of TME model genes in the molecular clusters or genotyping depicted
above. *p< 0.05, ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1213947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2023.1213947
To further advance the usage of our prognostic model, a risk

score was used to construct a nomogram (Figure 7C), incorporating

multiple pathological features clinically. Calibration curves verified

the high agreement of actual and predicted OS rates in BC patients

between 1, 3, and 5 years (Figure 7D). In addition, as shown in

Figure 7E, ROC demonstrated that the predictive ability of the road

map for BC prognosis is excellent. Functional enrichment analysis

of GO, KEGG and Hallmarker pathways showed that biological

processes and pathways related to ECM, hypoxia, and collagen

binding were significantly enriched in the high-risk group

(Figures 7F–H).
3.6 Association of the prognostic model
with immune infiltration cells and
immune checkpoints

Sankey diagram displayed the connection among the

TMEclusters, gene clusters, riskscore groups, and survival status

(Figure 8A). We observed significant differences in the risk scores of

the TME clusters and gene clusters, C3 and gene cluster B had the

highest risk score, and C1 and gene cluster A had the lowest

(Figures 8B, C).

The present study investigated the association between the

signature in BC tissue and four immune subtypes with sample size

greater than 3, including C1 (wound healing, n=173), C2 (INF-r
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dominance, n=164), C3 (inflammation, n=21), as well as C4

(lymphocyte depletion, n=36) (Figure 8D). In BC tissues, the

riskscore of the model was highest in C1 and lowest in C4.

Meanwhile, we also analyzed the correlation between

immunological and stromal scores calculated using this model and

those assessed by the R package (Figures 8E, F). The results illustrated

the significantly positive correlation between riskscore and stromal

scores; whereas, no remarkable correlation for riskscore with immune

scores. Furthermore, the results of ssGSEA showed that the high-risk

score group had a higher infiltrating proportion of CD4+ T cells,

MDSCs, mast cells, Tregs and a lower infiltrating proportion of CD8+

T cells (Figures 8G, H). Additionally, we investigated the correlation

between risk populations and immune checkpoint (ICP) expression.

Figures 8I showed that expression of ICP molecules including CD86,

VTCN1, NRP1, CD276, and PDCD1LG2 was significantly increased

in high-risk patients, suggesting that high-risk patients may benefit

more from treatment with these PCI inhibitors.
3.7 Assessment of tumor mutation burden
and genetic mutation landscape in distinct
risk groups

Our results showed that the low-risk group had a higher tumor

mutational burden (TMB) than the high-risk group. Spearman’s

correlation analysis showed a negative correlation between risk
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FIGURE 6

External verification of TME-related prognostic signature was made on IMvigor210 datasets. (A–C) KM curves and their 1-, 3-, 5-year ROC and
calibration curves were displayed. (D–G) The correlations between the model and clinicopathological parameters, including immunotherapy
efficacy, metastasis status, immunophenotyping, and TCGA_subtype, using Chi-square test and Wilcox nonparametric test.
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score and TMB (Figures 9A, B). The KM curve showed that patients

with high TMB had a better prognosis than those with low TMB

(Figure 9C). Next, we integrated TMB and risk scores to examine

their potential impact on BC patient outcomes. Figure 9D shows

that both high-TMB and low-risk patients may benefit more from

immunotherapy. Furthermore, we examined differences in the

distribution of detected somatic mutation signatures between

high-risk and low-risk groups in the TCGA-BC dataset. The

mutation rates of TP53, TTN, KMT2D, MUC16, ARID1A and

KDM6A genes in both groups of BC patients were higher than 20%

(Figures 9E, F).
3.8 The role of the model in the
modulation of the tumor immune
microenvironment and immunotherapy

The extent of immune cell infiltration into the TME affects tumor

development, disease course, and therapeutic efficacy, especially with

immunotherapy. According to the 7 analysis of the immune

infiltration algorithm (TIMER, CIBERSORT, CIBERSORT-ABS,

QUANTISEQ, MCPCOUNTER, XCELL and EPIC), the heat map

(Wilcoxon test, P<0.05) of 54 immune cells (sigDIC) was significantly
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different between the high-risk group and the low-risk group, as

shown in Figure 10A. To forecast response to immunotherapy in two

risk groups, TIDE algorithm analysis and partial immune checkpoint

gene expression were used to predict immune checkpoint therapy

response from group risk scores recorded by TCGA predictions.

Compared with the low-risk group, the high-risk group showed

higher rejection and expression levels of immune checkpoint

molecules (Figure 10B). These diverse immune cells include CD8+

T cells, cancer-associated fibroblasts, M2 macrophages, neutrophils,

and myeloid dendritic cells and T cell regulatory (Tregs), etc.

Meantime, we performed Spearman correlation analysis (P< 0.01)

on risk assessment and immune infiltrating cells (Figures 10C, D). In

addition, to further evaluate the immune response in BC patients, we

also calculated IPS. Our results showed that the low-risk group had a

higher IPS score, suggesting that low-risk patients may be more

sensitive to immunotherapy (Figure 11A).

To confirm our suspicions, we analyzed the relationship between

the model and immunotherapy response in four immunotherapy

datasets, namely IMvigor210, GSE111636, GSE176307 and Truce01.

We discovered that GZMA expression levels were positively correlated

with objective response to anti-PD-1/PD-L1 therapy in the Imvigor210

and Truce01 cohorts (Figure 11B). On the contrary, we noted the

expression level of STMN3 was positively associated with resistance to
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FIGURE 7

The independent prognosis analysis, nomogram construction and validation, and KEGG pathway enrichment analysis by GSVA method.
(A, B) Univariate and multivariate Cox regression analysis of the risk score and other clinical features in the integrated cohort. (C) Nomogram for
predicting the 1-, 3-, and 5-year OS of BC patients in the whole cohort. (D) Calibration curve for the OS nomogram model in BC. A dashed diagonal
line represents the ideal nomogram. (E) ROC curve of the nomogram model combined with common clinic traits. (F–H) GO, KEGG, and Hallmarker
pathway analysis using GSVA algorithm in the high- vs. low-risk groups. *p<0.05, **p<0.01, ***p< 0.001.
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FIGURE 8

Association of the TME-based signature with molecular clusters, genotyping or other immunological features. (A) Sankey diagram showing the
relationship between the TME clusters, gene clusters, risk score, and survival status. (B) Differences in risk score among the TME-related molecular
clusters. (C) Differences in risk score between the two gene subtypes. (D) Comparison of riskscores between different immune subtypes.
(E, F) Spearman correlation analysis between the risk score and immune or stromal score. (G, H) Association between risk score and immune
infiltrating cells by spearman correlation test and Wilcox nonparametric test, respectively. (I) The differentially expressed immune checkpoint-related
genes between the two risk groups. p< 0.05 *; p< 0.01 **; p< 0.001 ***.
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FIGURE 9

Evaluation of tumor mutation burden (TMB) and Genetic Mutation Landscape between the high- and low-risk groups. (A) The TMB difference
analysis between the two groups. (B) Spearman correlation analysis with distinguishing clusters among risk score and TMB was performed.
(C) Survival analysis of the OS between the low- and high-TMB groups. (D) K–M analysis among four patient groups stratified by both TMB and risk
score. (E, F) The waterfall plot of somatic mutation features was distinguished with high and low risk scores.
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cancer immunotherapy (anti-PD-1/PD-L1) in the Imvigor210 and

GSE176307 (Figure 11B). Overall, these results indicated that the

partial modeled genes expression can help predict the anti-PD-1/PD-

L1 immunotherapy response. Apart from this, we also investigated the

potential mechanism behind the expression of these model genes and

immunotherapy response. Our own sequencing data found that the

expression level of COMP/DPYSL2 in bladder cancer cases with

response to tislelizumab combined with nab-paclitaxel therapy

significantly decreased after treatment; however the expression level

of TMPRSS4 increased after treatment in non-responsive cases

(Figures 11C–H). Therefore, these results indicated that the

molecular mechanism underlying these responses correlated

significantly with model gene expression. In future work, we further

investigated the molecular mechanism.
3.9 Drug sensitivity analysis of the model

Subsequently, to determine the performance of a prognostic model

as a biomarker in the management of BC patients, we conducted a

spearman correlation analysis between 142 drugs and 9 model genes
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based on the CellMiner database (Supplementary Table S8).

Supplementary Figure 6A showed that GZMA could predict the

sensitivity of Nelarabine, Dexamethasone Decadron, Fluphenazine,

Arsenic trioxide, Fludarabine, and Cyclophosphamide; SERPINB3

could predict the sensitivity of Procarbazine, Olaparib,

TESTOLACTONE, Calusterone, Simvastatin, VINORELBINE, and

Dromostanolone Propionate; C3orf62 can forecast susceptibility to

nelarabine, fludarabine, fluphenazine, and dasatinib. COMP forecast

susceptibility to thiotepa, idarubicin, and triethyleneamine. In addition,

we also analyzed the correlativity between susceptibility to commonly

used chemotherapeutic drugs for bladder cancer and the expression of

template genes (Supplementary Figure 6B, p< 0.05). We observed that

the expression of TMPRSS4, and STMN3 is negatively correlated with

the drug IC50 of Gemcitabine, Cisplatin, Paclitaxel, or Carboplatin.

However, C3orf62, and COMPwere positively correlated with the IC50

of Oxalitaxel, Cisplatin, or Vinblastine.

In addition, the IC50 values of four commonly used

chemotherapeutic drugs (cisplatin, docetaxel, paclitaxel, and

vinblastine) in the treatment of BC were analyzed using a

pRRophetic algorithm. Sensitivity to paclitaxel, vinblastine,

docetaxel, and doxorubicin was relatively higher in the high-risk
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FIGURE 10

Associations between TME-associated gene signature and immune-cell infiltration, immune checkpoint immunotherapies. (A) There were distinct
differences in 54 immune cells infiltration in the high- vs. low-risk groups. (B) The TIDE algorithm analysis and the expression of partial immune
checkpoint genes was employed to predict the immune response to immune checkpoint therapy in BC patients based on riskscore.
(C, D) Correlation analysis between infiltrating immune cells abundance from 7 immune-infiltration algorithm and the riskscore. *P< 0.05, **P< 0.01
and ***P< 0.001.
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group compared with sensitivity to these drugs in the low-risk

group. The opposite was true for group C using mitomycin (P<0.01,

Wilcox test; Supplementary Figure 6C). furthermore, we advance

conducted a SPEARMAN correlation analysis between the risk

score and the IC50 of the aforementioned chemotherapeutic

drugs. As can be seen in Supplementary Figure 6D, the results of

the correlation analysis (P<0.05, spearman correlation test) and the

results of the Wilcox analysis of the above risk score group are

unanimous. These results generally indicate that our prognostic

model shows a strong correlation with drug sensitivity relevance.
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3.10 Validation of partial modeled genes
expression in bladder cancer; the
biological function of SERPINB3 in vitro

First, we selected 10 pairs of BC tumor and cancer-adjacent

normal tissues to verify COMP and SERPINB3 gene expression by

real-time PCR (Figure 12A). Compared with expression in adjacent

tissues, the expression of COMP and SERPINB3 is all upregulated

in cancer tissues. Additionally, in light of the above observations, we

explored the effects of SERPINB3 on the biological behavior of BC
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FIGURE 11

The model is an critical indicator of immunotherapeutic effect. (A) We evaluated the immunotherapy response by the immunophenoscore (IPS).
(B) Differential expression analysis of partial model genes was conducted based on IMvigor210, GSE111636, GSE176307 and our own mRNA
sequencing. (C–H) The differences in the partial model genes expression before and after immunotherapy were compared by paired Wilcox test in
our TRUCE-01 data.
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cells. We transiently transfected T24 and 253J-BV cells for 48 hours

with siRNAs against SERPINB3 or control siRNAs. Transfection

efficiency was verified by qRT-PCR (Figure 12B). The CCK-8

experiment results illustrated that the knockdown treatment of

SERPINB3 suppressed significantly the proliferation ability of T24

and 253J-BV cell lines compared with NC (Figure 12C). Transwell

experiments with or without Matrigel also showed that SERPINB3

knockdown greatly attenuated the migration and invasiveness of

T24 and 253J-BV cell lines (Figure 12D). Taken together, these

results suggest that SERPINB3 is essential for BC cell proliferation,

migration and invasion.
4 Discussion

In this study, we systematically investigated molecular

characteristics, clinical significance, and cancer immune

interactions, and then constructed a novel prognostic model based
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on TME-related gene signatures in BC. Our findings indicate that this

TME prognostic model could accurately predict prognosis and guide

individualized treatment of BC patients.

At present, although treatment advances, the prognosis remains

poor for both MIBC and advanced NMIBC, because of the molecular

complexity and heterogeneity of BC (20). A large number of studies

have shown that TME plays an important role in the occurrence,

development and treatment of tumors. First, we used the TCGA-BC

dataset to identify transcriptional changes and tmrg expression. The

high mutational intensity of TMRGs in BC indicated that CNV gains

and losses may contribute to cancer development or progression,

which agrees with the findings of the previous study (21). Next,

according to the expression similarity of prognostic DETMRGs, the

merged BC samples were divided into three molecular clusters. High-

level expression of C3 is associated with multiple clinicopathological

parameters and poor prognosis. Concomitantly, there were

significant differences in the accumulation of immune cell levels

and functions among the three groups. We hypothesized that
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FIGURE 12

SERPINB3 gene played a tumor-promoting role in BC cells. (A) COMP and SERPINB3 genes were chosen to verify the differential expression results
in 10 pairs of samples by qRT-PCR. (B) SERPINB3 small-interfering RNA (siRNA) transfection efficiency was assessed by qRT-PCR in T24 and 253J-
BV cells. (C) CCK-8 assays were utilized to detect cell proliferation ability in T24 and 253J-BV cells transfected with NC-siRNA, and SERPINB3-
siRNA1. (D) Migration and invasion were evaluated using a transwell assay without and with Matrigel, respectively. **P< 0.01, ***P< 0.001 and ****P<
0.0001.
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prognostic differences in TME clusters might be due to complex

genetic heterogeneity of BC patients.

Afterwards, to advance survey the biological conduct behind

each TME cluster, we then constructed two gene clusters based on

224 DEGs associated with the predictions. By LASSO and multiCox

analysis, we constructed a novel prognostic model with nine genes

consisting of C3orf62, DPYSL2, GZMA, SERPINB3, RHCG,

PTPRR, STMN3, TMPRSS4, and COMP. Among these selected

genes, increasing evidence has indicated that some of them may

play different and crucial biological functions in the progression and

prognosis of cancer. As shown in Figure 5G, patients in the high-

risk group coinciding with high expression of DPYSL2, SERPINB3,

RHCG, STMN3 and COMP have a worse prognosis. As discovered

by Zou et al. (22), DPYSL2 upregulation correlated with tumor

high-staging and poor prognosis in patients with BC, and promoted

the malignant behavior of BC through enhancing aerobic glycolysis

and EMT in vitro and in vivo experiments. Lauko et al. (23)

suggested that SerpinB3 is necessary for cancer stem cells (CSCs)

maintenance, tumor growth, and CSC pathway activation in

glioblastoma, as well as inhibition of cathepsin L released from

lysosomes leading to radiation resistance. Several previous studies

have shown that SERPINB3 up-regulation caused by SDF-1/

CXCR4/NF-kappaB pathway and HIF-2a-generated under

hypoxic conditions separately facilitates the migration and

invasion of gastric cancer (24) and hepatocellular carcinoma cells

(25), exhibits superior spherogenic ability and invasion capacity of

cholangiocarcinoma (26). Some studies have documented an

important role of SERPINB3 in the modulation of programmed

cell death by different mechanisms, both in inflammatory processes

and in cancer (27). Chen et al. (28) found that RhCG is

overexpressed in gastric cancer tissues versus normal tissues at

mRNA and protein levels; and, its upregulation predicts poor

survival and promotes migration and proliferation of gastric

cancer via keeping intracellular alkaline. Similarly, STMN3, a

microtubule destabilizing protein, is induced by both nicotine and

EGF in an ID1 dependent fashion, as well as can facilitate the

proliferation, invasion and migration of non-small cell lung cancer

(29). As is well known, nicotine is the major ingredient of cigarette

smoke, and smoking is the primary risk factor for bladder cancer

(30), this might be the reason why STMN3 is highly expressed in the

high-risk group of the model constructed by us. A pancancer

multiomics analysis revealed that COMP may be a potential

biomarker for pan-cancer diagnosis and prognosis, as well as its

overexpression is linked with tumor immune evasion (31).

Futhermore, COMP was a crucial CAFs-driven gene associated

with the infiltration of M2 macrophages and acted as a promising

predictive capabilities for prognosis and immunotherapy response

in patients with colon cancer (32).

On the one hand, as shown in Figure 5G, C3orf62, GZMA,

PTPRR and TMPRSS4 showed the higher expression level in the

low-risk group, and predicted favorable clinical prognosis for

patients with BC. The expression of the GZMA, secreted by

natural killer (NK) cells and effector cytotoxic T cells, was
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recently treated as an indicator of the intratumoral immune

cytolytic activity (33). Zhou et al. (34) have shown that GZMA

from natural killer cells and cytotoxic T lymphocytes (CTL) can kill

GSDMB-positive cells through inducing pyroptosis, thus promotes

CTL-mediated tumor clearance in mice. Epigenetic silencing of

PTPRR resulting from DNMT3B-mediated methylation activates

MAPK signaling, promotes metastasis and serves as a biomarker of

invasive cervical cancer. And, PTPRR functions as a tumor

suppressor in ovarian cancer by dephosphorylating and

inactivating b-catenin (35), and in colorectal cancer via inhibiting

the Ras/ERK/c-Fos signaling pathway (36). In contrast to previously

reported results for multiple other types of cancer, our study finds

that high expression of TMPRSS4 predicts a better clinical outcome

in bladder cancer, and this finding has been proven in previous

studies (37). Based on existing reports, the functional mechanism of

some genes in this model in BC is still unclear and requires follow-

up research for further exploration.

Furthermore, it is worth mentioning that among molecular

clusters and gene clusters, cluster 3 and gene cluster B, which had

the worst clinical outcomes, had the largest TMEscores. KM

analysis showed that patients with high TMEScore had poorer

OS; time-dependent ROC verified its predictive robustness to 1-,

3-, and 5-year OS. Besides, the high-risk group was remarkedly

relevant to worse clinicopathological features, such as higher age,

advanced T-stage, and N-stage. The analysis by MultiCox showed

that TMEscore was an independent factor predicting the survival

outcome of BC patients. Next, to better predict the survival of BC

patients, we further constructed an individualized prognostic

prediction model with nomograms using risk scores combined

with clinical characteristics. Together, these findings showed the

prognostic robustness of the novel prognostic model based on TME

gene signature in BC patients.

To explore the underlying mechanisms of the predictive model,

we conducted GO and KEGG enrichment analyses between the

high- and low-risk groups. The results showed that ECM and

collagen binding-related biological processes and pathways may

contribute to BC progression by TME-related gene signatures. It is

well known that ECM is a critical and active component of the

TME. Collagen is predominant component of ECM, which

stimulate invasion and metastasis by promoting cancer cell

epithelia-mesenchymal transition (EMT) or collective invasion of

cancer cells (38).

Moreover, immune interactions between tumors and the TME

play a key role in tumorigenesis and could serve as therapeutic targets

for BC (39). The composing and frequency of immune cells in the

TME influence tumor progression and the efficacy of

immunotherapy (40). To further investigate the relationship

between this TME-based signature and immune status, we

quantified the accumulated level of immune cell infiltration

between the two ssGSEA risk groups. Interestingly, CD8+ T cells

were significantly higher in the low-risk group. It is now recognized

that CD8+ T cells are the main effector cells in cell-mediated

antitumor immunity, which kills tumor cells by releasing perforin
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(41). Instead, studies have demonstrated that immunosuppressive

factors such as MDSCs, mast cells, Tregs evade surveillance and

clearance of the immune system by different mechanisms (42). This is

consistent with our results of abundant MDSCs, mast cells (MCs),

and Tregs in high-risk group BC patients. At the same time, the

enrichment of CD4+ T cells in high-risk group seems to contradict

what is commonly believed that high immune infiltration of CD4+ T

cells have better immune response. One review (43) concluded that

CD4+ T cells in the TME have dual anti-tumor and pro-tumor

effects. Besides, they may interact in combination with other types of

immune cells, such as MDSCs, Tregs and tumor-associated

Macrophages (TAMs), in shaping the cancer immune

microenvironment. Oliveira et al. (44) suggested that CD4+ T cells

can kill tumor cells by assisting CD8+ T function as helper cells or

acting as CD4 cytotoxic T lymphocytes to kill tumors directly.

Enrichment of CD4+ T cells associated with these two pathways in

the tumor microenvironment generally leads to a better immune

response and a better prognosis. However, some additional CD4+ T

cells are immunosuppressive cells, which are involved in immune

escape of tumor cells; thus, when the infiltration levels of these cells

increased in the TME, in turn promoting tumor progression and

contributing to poor prognosis. Myeloid cells, such as MDSCs TAMs,

etc, have a dominantly immunosuppressive role (45); as well as

targeting these cells might be an alternative and promising target for

immunotherapy, and enhancing the efficacy of tumor

immunotherapy (46, 47). A previous study showed that tumor-

infiltrating mast cells colocalize with regulatory T cells, coincide

with local reduction of MHC-I and CD8 T cells, and is associated

with anti-PD-1 resistance, which can be reversed by c-kit inhibitor

treatment. At present, some studies suggested that MCs possess

enormous capabilities to shape the immune microenvironment (48,

49) and are becoming a new player in the field of cancer

immunotherapy, depletion of these cells or downregulation of their

functions in the TME can help break tumor resistance to anti-PD-1

therapy (50). Accordingly, we speculate that the TME prognostic

model may affect BC survival outcomes by reshaping the tumor

immune microenvironment, such as altering ECM, CD8+ T cell and

these above-mentioned immunosuppressive cells, etc.

In addition, the findings from seven immune-infiltration

algorithm analyses revealed a noteworthy positive correlation

between the risk score and the presence of cancer-associated

fibroblasts (CAFs), T cell regulatory (Tregs), macrophage M2,

myeloid dendritic cell, and neutrophils. Conversely, the risk score

demonstrated a significant negative association with the infiltration

level of CD8+ T and NK-T cells from multiple algorithms

(including CIBERSORT, CIBERSORT-ABS, EPIC, and XCELL).

However, the risk score was positively correlated with CD8+ T cells

based on TIMER algorithm. In a prior investigation, it was found

that cancer-associated fibroblasts (CAFs), which represent the

activated form of fibroblasts and are the predominant and diverse

stromal cells in the tumor microenvironment (TME), play a critical

role in the development, progression, chemoresistance, ECM

remodeling, and response to anti-PD1/PD-L1 immunotherapy in
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multiple cancer types (51–53). One study demonstrated that one the

one hand, the impact of CAFs on immune cell function is mediated

through the secretion of diverse cytokines and products. On the

other hand, as an integral constituent of the tumor stroma, CAFs

contribute to the formation of a permeability barrier through

stromal remodeling, consequently diminishing the efficacy of

drug-based therapeutic interventions (54). A recent review

suggested that the presence of CAFs high heterogeneity and their

complex interaction with TME, influences responsiveness of anti-

PD-1/PD-L1 immunotherapy (53). For instance, It can promote

Treg, neutrophils recruitment, migration and differentiation,

remodel ECM, and exclude CD8 T cells; as well as it can

contribute to monocyte recruitment, induce TAMs to M2

phenotypic differentiation, up-regulate the expression level of PD-

L1 on the surface of the TAMs, and impair its phagocytosis and

effector T cell function (55, 56).

One systematic review indicated also that Tregs have the

immune suppressor function and affect the immune response of

monoclonal antibody-based immune checkpoint inhibitors through

a variety of pathways, such as down-regulating of CD80 and CD86

co-stimulatory molecules, enhancing interaction of PD-L1/PD-1

and CTLA4/CD80, as well as promoting secretion of cytokines,

including IL-10, TGF-b, and IL-35, and production of adenosine to

regulate APC activity (57). MDSCs are a population of immature

myeloid cells that suppress adaptive immune function, utilizing a

variety of pathways, such as arginase, IL-10, IL-4, iNOS, reactive

oxygen species, induction of other regulatory cell populations such

as regulatory T cells, and their potent suppressive activities against

effector lymphocytes (47, 58, 59) Additionally, previous evidence

has shown that a high infiltration of M2 macrophages and a low

presence of CD8 T cells in the high-risk group of BC are associated

with a poor response to immunotherapy (60). Through single-cell

RNA sequencing, Chen et al. also demonstrated that monocyte/

macrophages polarization toward M2 phenotype, LAMP3 + DC

subgroup recruiting regulatory T cells, and inflammatory cancer-

associated fibroblasts (iCAFs) in the tumor region, are all

potentially implicated in the formation of an immune-suppressive

TME and tumor progression, which are strongly correlated with

poor prognosis of BC patients (61).

Recently, immune checkpoint inhibitor therapy has emerged as

a promising treatment option for BC (62). Our research showed

that several ICP molecules as potential targets for immunotherapy

exhibit higher expression in the high-risk group, such as CD86,

VTCN1, NRP1, CD276, and PDCD1LG2. Besides, The TIDE

model, developed by Jiang et al. (63), aims to predict the

probability of immunotherapy responsiveness by modeling the

mechanisms of tumor immune evasion. Notably, our study

revealed that distinct immune characteristics, differential

expression of immune checkpoint genes (including PD-1, PD-L2,

VISTA, IDO1, and ADORA2A), and varying immunotherapeutic

responses between high- and low-risk groups. Consequently, the

integrative analysis suggests that the subgroup of BC patients

classified as high-risk may experience enhanced immunotherapy
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efficacy. Of them, VISTA, a transmembrane protein of type I,

belongs to the B7 family and plays a crucial role in maintaining

the quiescence of T cells and myeloid cells, and is a promising target

for combination cancer immunotherapy (64). In addition to its role

as a ligand expressed on antigen-presenting cells, VISTA also

functions as a receptor on T cells. Previous research has

predominantly focused on elucidating the suppressive impact of

VISTA on the immune system and investigating the potential of

VISTA-deficiency or anti-VISTA treatment in enhancing immune

response (65, 66). IDO1 is a rate-limiting metabolic enzyme that

converts the essential amino acid tryptophan (Trp) into

downstream catabolites known as kynurenines, creates an

immunosuppressive environment, and is suggested as having an

important role in contributing to resistance to immunotherapy (67,

68). In addition, increasing evidence confirms that TMB is a

predictive biomarker for tumor progression-free survival and

immune response (69). Higher BMR has been shown to have a

better prognosis in BC patients, which is consistent with our

findings (70). The high-risk and low-risk BMR groups had

significantly better survival than the other groups, suggesting that

TMB combined with TMEscore may be a prognostic biomarker for

BC. Taken together, our data indicate that poor prognosis of high-

risk patients might be correlated with immunosuppressive TME

of BC.

There is evidence to suggest that BC patients treated with

neoadjuvant chemotherapy, immunotherapy and targeted therapy

can reduce tumor progression and improve outcomes in BC

patients (71). Predicting responses to immunotherapy requires

specific biomarkers. Thus, we evaluated ICIs response by creating

IPS signatures, and discovered that BC patients with lower

TMEscore showed positive responses to anti-PD1 and anti-

CTLA-4 treatments. TIDE was developed by Jiang et al. (63)

based on the modeling of tumor immune evasion mechanism to

predict the response to immunotherapy. Moreover, to overcome

drug resistance and improve clinical outcomes with BC patients, we

identified the potential drugs targeting TME prognostic model or

model-related genes. Nevertheless, there are some limitations to the

drug sensitivity findings of this model that were merely analyzed

using two public databases, that is Cellminer and Cancer Genome

Project (CGP). These theoretical predictions need to be taken with

caution and additional pre-clinical validation should be conducted.

Of note, we also found that SERPINB3 gene can be used as a tumor

regulator through qRT-PCR validation, which can provide

diagnosis and prognosis prediction for future biomarkers in

BC patients.

Several constraints are to be considered in our study. First, our

study builds on a retrospective study of public datasets, and

inherent selection bias may affect their robustness. Further

prospective studies are required to validate the clinical value of

this TME-based molecular signature. In addition, in order to reveal

the underlying molecular mechanism of BC tumorigenesis,

complementary experimental studies in vivo and in vitro are

needed, confirming our findings.
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In summary, we summarized the regulatory genes associated

with the clinical significance and prognostic role of TME, and then

established a new prognostic model based on nine TMRGs in BC.

This prognostic model can accurately and steadily predict the

survival of BC patients and guide the individualized treatment of

patients. We further observed that changes in immune cell

infiltration in the ECM and TME may be underlying mechanisms

for BC development. The results of this study provide a worthful

fundament for further research on the prognosis and individualized

treatment of BC patients.
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SUPPLEMENTARY FIGURE 1

Screening and genetic mutation landscape of prognostic DE-TMGs. (A) Venn
diagram of the intersection with DE-TMGs and prognostic TMGs. (B, C)
Expression heatmap and forest plot for prognostic DE-TMGs between BC
and normal tissues. (D) The PPI network among prognostic DETMGs. (E)
Genetic mutation frequency and types of prognostic DE-TMGs. (F, G)
Frequencies of the copy number variation (CNV) gain and loss among the

top 20 genes in gain and loss-CNV groups. (H) The location of CNV alteration
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of prognostic DETMGs on 23 chromosomes. (p< 0.05 *; p< 0.01 **; p<
0.001 ***).

SUPPLEMENTARY FIGURE 2

(A) Top30 differential KEGG pathways between C1 and C2 by GSVA method.

(B) Top30 differential KEGG pathways in C3 vs. C2 by GSVA. (C) Intersection of
differential KEGG pathways in comparison between C1 and C2, C1 and C3, C2

and C3.

SUPPLEMENTARY FIGURE 3

The correlation analysis of risk score and clinicopathological characteristics in
BC, including Age, Sex, Grade, T-stage, N-stage, and Survival status, by Chi-

square test and Wilcox nonparametric test (A-F).

SUPPLEMENTARY FIGURE 4

External verification based on GSE32894 and GSE48075 cohorts. (A-C) KM,

ROC and calibration curves were plotted from GSE32894 cohort. (D-G) The
associations between the model and clinicopathological features, including
stage_T, molecular subtype, grade, and stage N, according to GSE32894

dataset. (H-J) KM, ROC and calibration curves were presented using the
GSE48075 cohort.

SUPPLEMENTARY FIGURE 5

Based on different clinical traits, the subgroup survival analysis was performed

between high and low risk group in BC patients. (A, B) Age (age ≤ 65 and age >
60 years old). (C, D) Gender (male and female). (E, F) T-stage (T1-2 and T3-4).

(G, H) Grade (Low and High).

SUPPLEMENTARY FIGURE 6

Relationship between the modeled genes expression levels and small

molecular chemotherapy drug sensitivity. (A) Top 25 drugs significantly

associated with partial model genes (P<0.01) were obtained. (B) The
significant correlation between commonly used chemotherapeutic drugs

for BC and the expression of model genes (P<0.05). (C) Wilcox group
analysis and (D) spearman correlation analysis indicated that the TME-

associated gene model is robust to drug sensitivity of Docetaxel,
Doxorubicin, Mitomycin C, Paclitaxel and Vinblastine.
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