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Dendritic cells (DCs), a class of professional antigen-presenting cells, are

considered key factors in the initiation and maintenance of anti-tumor

immunity due to their powerful ability to present antigen and stimulate T-cell

responses. The important role of DCs in controlling tumor growth and mediating

potent anti-tumor immunity has been demonstrated in various cancer models.

Accordingly, the infiltration of stimulatory DCs positively correlates with the

prognosis and response to immunotherapy in a variety of solid tumors. However,

accumulating evidence indicates that DCs exhibit a significantly dysfunctional

state, ultimately leading to an impaired anti-tumor immune response due to the

effects of the immunosuppressive tumor microenvironment (TME). Currently,

numerous preclinical and clinical studies are exploring immunotherapeutic

strategies to better control tumors by restoring or enhancing the activity of

DCs in tumors, such as the popular DC-based vaccines. In this review, an

overview of the role of DCs in controlling tumor progression is provided,

followed by a summary of the current advances in understanding the

mechanisms by which the TME affects the normal function of DCs, and

concluding with a brief discussion of current strategies for DC-based

tumor immunotherapy.

KEYWORDS
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1 Introduction

Dendritic cells (DCs), first discovered by Steinman and Cohn in 1973 (1), serve as a

bridge between innate and adaptive immunity in the host immune response. Based on

differences in the expression of cell surface markers, DCs can be divided into two main

subgroups: conventional DCs (cDCs) and plasmacytoid DCs (pDCs), each with a unique

function in immune activity (2). cDCs have powerful antigen capture and presentation

capacities and are one of the mainstays of T-cell activation in the body. In contrast, pDCs
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can present antigens to T-cells, although not as efficiently as cDCs.

The main characteristic of pDCs is that they can direct the immune

response by secreting high levels of type I interferons (IFN-I) (3, 4).

Furthermore, DCs have been extensively studied, and their central

role in initiating and maintaining anti-tumor immune responses to

hinder tumor progression has been well established. However, the

tumor microenvironment (TME) shows characteristics that are

different from those of normal tissues, including the infiltration of

a large population of immunosuppressive cells and a unique

environment of hypoxia and lactate accumulation (5–7),

rendering DCs incompetent by impairing their maturation,

limiting their antigen capture, and downregulating the expression

of costimulatory molecules in a variety of ways (8, 9). In this review,

the essential role of DCs in tumor immunosurveillance is discussed,

and the mechanisms by which the TME affects the function of DCs

in tumors are summarized. Finally, we evaluated the improvement

in DC-based tumor immunotherapy strategies, particularly DC-

based vaccines.
2 The role of dendritic cells in tumor
immunosurveillance

Effective anti-tumor immune responses involve a series of

stepwise events. Chen et al. summarized the complex anti-tumor

immune process as the “Cancer-Immunity Cycle” (reviewed in

(10)), which provides an important framework for understanding
Frontiers in Immunology 02
the overall picture of the anti-tumor immune process. Furthermore,

DCs are pivotal in the overall anti-tumor immune response due to

their key role in T cell activation and immune response initiation

(Figure 1). Briefly, immature DCs that infiltrate the tumor tissue

recognize and phagocytose apoptotic or necrotic tumor cells and

thus tumor cell antigens. They subsequently enter an activation/

maturation process triggered by an intrinsic program and migrate

from the tumor tissue via the lymphatic vessels or blood circulation

to tumor-draining lymph nodes (TDLNs). During migration, DCs

mature and acquire new characteristics, including the upregulation

of CC-chemokine receptor 7 (CCR7) for improved motility, the

upregulation of major histocompatibility complex (MHC) class I

and class II molecules for antigen presentation, upregulation of

costimulatory molecules such as CD80, CD86, and CD40, and

increased cytokine secretion for enhanced T-cell stimulation.

Mature DCs load endo-processed antigenic peptides onto MHC

class I or MHC class II molecules for presentation to naïve T-cells,

and at the same time, the costimulatory molecules interact with the

ligands on T cells, which synergistically stimulate the activation and

differentiation of T-cells in TDLNs (3, 11–17). Tertiary lymphoid

structures (TLS), which are crucial in the anti-tumor immune

response, may also be the destination for the migration of mature

DCs (18, 19). The TLS may represent a privileged site for the local

presentation of neighboring tumor antigens to T-cells by DCs and

the activation, proliferation, and differentiation of T-cells (19, 20).

This is also supported by a single-cell analysis of human non-small

cell lung cancer lesions, which showed that mature DCs enriched in
FIGURE 1

Dendritic cells initiate anti-tumor immunity. Tumor-infiltrating dendritic cells recognize and capture tumor-associated antigens, then become
mature and homing to tumor-draining lymph nodes (TDLNs) or tertiary lymphoid structures (TLS) to activate T-cells and initiate anti-tumor immunity
in response to the presence of tumors.
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immunoregulatory molecules (mregDCs) accumulated in the TLS

in close proximity to T-cells (21). MregDCs are a new cluster of DCs

identified by Maier et al. in human and mouse non-small cell

cancers and are characterized by the expression of both maturation

markers and regulatory molecules (22). MregDCs have also been

described in various human cancers, including hepatocellular

carcinoma (23), breast cancer (24), colon cancer (25), and gastric

cancer (26). Li et al. summarized the basic characteristics of

mregDCs and suggested that lysosomal-associated membrane

protein 3 (LAMP3) may be a fundamental recognition marker for

them (27). Ginhoux et al. proposed that mregDCs can refer to a

distinct molecular state induced in cDC1s, cDC2s, and potentially

inflammatory DC3s upon sensing or capturing cell-associated

materials that have a distinct ability to interact with antigen-

specific T-cells (28). Analysis of tumors and metastatic lymph

nodes from patients with head and neck lymphoma revealed that

mregDCs may contribute to the prognosis by balancing regulatory

and effector T-cells (29).

It is well established that DCs play a key role in stimulating

cytotoxic T-cells and driving immune responses against cancer and

that the levels of intratumoral stimulatory DCs in human tumors are

associated with increased overall survival (30–32). Hegde et al.

suggested that different scales of infiltration of cDCs would induce

different levels of T-cell responses and that increased infiltration and

activation of cDCs enhanced the activity of CD8+ T and TH1 cells in a

pancreatic cancer mouse model (33). In addition, further evidence for

the role of DCs in controlling tumor development is derived from the

fact that the absence and dysfunction of DCs in tumor-bearingmouse

models lead to poorer outcomes and insensitivity to anti-tumor

treatment. Batf3-deficient mice (Batf3-/-) lack cross-presenting DCs

and fail to trigger cytotoxic T lymphocyte-mediated immune

responses to tumor-associated antigens (34–36), and Mittal et al.

observed increased tumor metastasis and poorer survival in Batf3-/-

mouse models of breast cancer and melanoma than in wild-type mice

(37). Furthermore, it has been observed in several Batf3-/- mouse

models that activated DCs are required to promote the anti-tumor

efficacy of immunostimulatory antibodies, such as anti-PD-1, anti-

PD-L1, and anti-CD137, and deficiencies in DCs limit the efficacy

(35, 38). This suggests that the functional status of DCs is closely

related to the efficacy of tumor immunotherapy. pDCs have a weak

antigen-presenting capacity but can participate in the tumor immune

response in other ways, such as by secreting IFN-I (39) and cross-

priming naïve CD8+ T-cells by transferring antigens to cDCs via

exosomes (40). However, the function of pDCs in TME remains

controversial. In patients with colon cancer, an increased density of

infiltrating pDCs was significantly correlated with increased

progression-free and overall survival (41). In addition, a naturally

occurring pDCs subset expressing high levels of OX40 with a unique

immunostimulatory phenotype was identified in the TME of patients

with head and neck squamous cell carcinoma, which, when

synergized with cDCs, generated potent tumor antigen-specific

CD8+ T-cell responses (42). However, as reported by Sisirak and

partners, tumor-infiltrating pDCs in patients with breast and ovarian

cancer are associated with poor outcomes (43, 44), and this may be

linked to tumor cell-derived cytokines such as TGF-b and TNF-a,
which limit the ability of pDCs to produce IFN-I and induce them to
Frontiers in Immunology 03
be tolerogenic (45, 46). The specific microenvironmental context and

functional status of pDCs appear to determine their effects on cancer

immunity and patient outcomes.

Overall, the evidence indicates that DCs, although representing

a relatively rare subset of immune cells, are an essential part of anti-

tumor immunogenesis. Moreover, when functionally activated, they

are associated with stalled tumor progression and improved

therapeutic responsiveness. However, the prognostic role of DCs

in patients with cancer cannot be generalized and is largely

dependent on the density, maturation, and activity of DCs. In

general, tumor infiltration by activated, well-functioning DCs tends

to predict a better prognosis, whereas DCs with impaired functional

status in the TME may have the opposite effect on tumor

progression (47–50). The TME causes the loss of antigen

presentation and T-cell stimulatory capacity by inhibiting the

maturation and migration of DCs, altering their ability to secrete

cytokines. This can even induce tolerogenic or immunosuppressive

DCs, allowing the tumor to escape surveillance and extermination

by the immune system.
3 Immunosuppressive effects of the
TME on dendritic cells

The conditions for tumor development, metastasis, and invasion

are provided by the TME, a complex and dynamically evolving

system composed of numerous components, including tumor cells,

immune cells, the extracellular matrix, and soluble cytokines.

Accumulating evidence indicates that immunosuppressive

populations and stromal cells, as well as the unique metabolic

environment of the TME, negatively regulate the maturation,

migration, and effector functions of DCs (Figure 2).
3.1 Inhibition of dendritic cells by
immunosuppressive populations

One of the most prominent features of the TME is the progressive

accumulation of tumor-associated immunosuppressive cell

populations, such as regulatory T-cells (Tregs), myeloid-derived

suppressor cells (MDSCs), and tumor-associated macrophages

(TAMs) (51, 52).

Aberrant chemokine alterations in the TME are important in

the tumor recruitment of immunosuppressive cells (53). Tumor

cells can induce the migration of Tregs to the TME by upregulating

the expression of several chemokines, including the C-C motif

chemokine ligand (CCL) 17/22 (54), CCL20 (55), and CCL28 (56,

57). Moreover, the ability of Tregs to use free fatty acids and lactate

allows them to survive and maintain their suppressive identity,

particularly in a harsh nutrient TME (58, 59). Tregs are a major

suppressor group that induce DCs dysfunction and limit tumor

immunogenesis (60). One important mechanism by which Tregs

cause DCs dysfunction is through cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4). Tregs expressing CTLA-4

compete with CD28 on conventional T-cells for the co-

stimulatory molecules CD80 and CD86 on the surface of DCs,
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with CTLA-4 having a greater affinity and avidity than CD28 (61).

In addition, Tregs are able to downregulate CD80/CD86 molecules

expressed by DCs in a CTLA-4-dependent manner (62–65), and

depletion of CD80/86 in mice was also found to cause upregulation

of PD-L1 in DCs (66), resulting in multiple inhibitory effects on

DC-mediated T-cell immune responses. Furthermore, the

interaction of CTLA-4 with CD80/CD86 induces the production

of indoleamine-2,3-dioxygenase (IDO) in DCs, which can induce

tryptophan catabolism to pro-apoptotic metabolites, leading to the

suppression of effector T-cell activation (67–69). In addition to

CTLA-4, lymphocyte activation gene-3 (LAG-3), an immune

checkpoint molecule that has recently received considerable

attention, is constitutively expressed on Tregs and can limit the T

cell stimulatory capacity of DCs by interacting with MHC class II

molecules (70, 71). A number of other interactions, including the

secretion of inhibitory cytokines such as IL-10 and TGF-b (72),

delivery of miRNAs to DCs by secreted extracellular vesicles,

thereby inducing a tolerogenic phenotype in DCs (73), expression

of CD27 molecules that interfere with CD70/CD27 stimulatory

signaling between DCs and effector T-cells (74), and direct
Frontiers in Immunology 04
induction of death through mutual contact with DCs (75), are

also important means for Tregs to impede the onset of DCs-

mediated tumor immunity. Consistently, enhanced anti-tumor

immune responses induced by DCs have been observed after

reducing the infiltration of tumor-associated Tregs and the

secretion of their immunosuppressive molecules in various

tumor-bearing mouse models (67, 76–78). Thus, Tregs appear to

be an important cell subpopulation in the TME that acts directly on

DCs and mediates their dysfunction, so the depletion of Tregs may

be beneficial for DCs to mediate anti-tumor immunity.

MDSCs are a heterogeneous population of immature myeloid

cells with immunosuppressive properties. Under the stimulation of

the pathological conditions of cancer, the maturation and

differentiation of bone marrow-derived progenitor cells are blocked,

resulting in the accumulation of immunosuppressive MDSCs.

MDSCs are recruited to the TME via multiple chemokine signals

such as CCL2, CCL5, CCL26, C-X-C motif chemokine ligand

(CXCL) 8, CXCL12, and other mediators such as granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-6, or

prostaglandin E2 (PGE2) that participate in expanding MDSCs
FIGURE 2

Tumor microenvironment acts on dendritic cells and downregulates their function. In the tumor microenvironment, various factors interact directly
or indirectly with dendritic cells to dysfunction them. These include the large number of immunosuppressive populations such as regulatory T-cells
(Tregs), tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) infiltrating the tumor microenvironment. In addition,
the effects of stromal cells such as cancer-associated fibroblasts (CAFs) and the particular hypoxic and acidic microenvironment of the tumor
microenvironment cannot be ignored.
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(79). Previous studies have shown that activatedMDSCs impede anti-

tumor immunity and promote tumor progression through a series of

actions, and that DCs are negatively affected (80). Hu et al. observed

that upregulated MDSCs were associated with higher IL-10

expression, lower IL-12 production by DCs, and lower T-cell

stimulatory activity in mice with hepatocellular carcinoma (81).

Furthermore, it has been reported that tumor-associated DCs

accumulate large amounts of lipid bodies (LB) containing oxidized

lipids, impeding cross-presentation in DCs by covalently binding to

heat shock protein 70 and preventing the translocation of peptide-

MHC I complexes (pMHC) to the cell surface (82–84). Ugolini et al.

found that in tumor-bearing mice, polymorphonuclear (PMN)-

MDSCs are able to transfer lipid bodies to DCs, causing them to

exhibit impaired antigen cross-presentation. Consistently, in MDSCs

depleted or myeloperoxidase (MPO, a key enzyme for the production

of oxidized lipids in MDSCs) deficient mice, DCs showed improved

activity for tumor antigens cross-presentation (85). Thus, it appears

that the abnormally large accumulation of lipids and impaired

antigen cross-presentation in DCs are at least partially related to

MDSCs and that selective depletion of MDSCs may be a potential

option for restoring the function of DCs in tumor conditions.

In many solid tumor types, TAMs are among the most abundant

populations of tumor-infiltrating immune cells in the TME (86).

TAMs may localize to the TME either by traveling via chemotactic

gradients regulated by factors such as CCL2, IL-1b, and macrophage

colony-stimulating factor 1 (CSF1), differentiating frommonocytes in

the TME or by repolarization of tissue-resident macrophages (87). In

addition, TAMs in the TME are more inclined to polarize into an

anti-inflammatory phenotype due to the influence of cytokines such

as PGE2 (88–90). TAMs are involved in multiple aspects of

immunosuppression, and a high infiltration of TAMs into solid

tumors is usually associated with a poor prognosis (86, 91–93).

Unlike Tregs, which interact directly with DCs, TAMs mediate the

recruitment of other immunosuppressive cells and secrete inhibitory

cytokines that influence the maturation and function of DCs (94).

Ruffell et al. described that in the TME of breast cancer mice, TAMs

inhibit the production of IL-12 by DCs through the secretion of IL-

10, attenuating the cytotoxic CD8+ T-cell response (95). Several

preclinical studies have also suggested that TAM depletion in the

TME can reshape the link between DCs and T-cells. For example, in a

study based on a murine model of lung cancer, after targeting

macrophages with a CSF1R inhibitor (CSF1Ri), the authors

observed increased crosstalk between immunostimulatory

populations, including DCs, NK cells, and T-cells, and increased

levels of IL-12 expressed by DCs and T-cells, respectively (96). TAMs

were consistently targeted by CSF1Ri (PLX3397) in a mouse model of

mesothelioma. When combined with a DC-based vaccine, a robust

and durable anti-tumor immune response was observed (97).
3.2 The function of dendritic cells is limited
by stromal cells

Tumor progression and immune tolerance cannot be achieved

without the involvement of tumor stromal components (98). Cancer-

associated fibroblasts (CAFs), a complex and heterogeneous cell
Frontiers in Immunology 05
population, are the most abundant components of a tumor stroma.

Tissue-resident fibroblasts are the major sources of CAFs (99), which

can be activated by stimulation of various factors of TME such as

TGF-b, TNF, fibroblast growth factor, and platelet-derived growth

factor (100, 101). Additionally, mesenchymal stem cells, epithelial

cells, and endothelial cells adjacent to cancer cells and fibroblasts

recruited from the bone marrow are potential sources of CAFs (102,

103). The interaction of CAFs with immune cells has been identified

as a key contributor to tumor progression. Several recent studies have

revealed that CAFs can drive the immune escape of tumor cells by

impeding the maturation, migration, and antigen presentation of

DCs. Berzaghi et al. reported that the co-incubation of CAFs obtained

from surgically resected fresh tumor tissue from lung cancer patients

with mature DCs results in impaired migration and antigen uptake

(104). In another study, it was proposed that human lung cancer cell-

stimulated CAFs impair the differentiation and function of DCs by

upregulating tryptophan-2,3-dioxygenase (TDO2) (105). Cheng et al.

found that in vitro hepatocellular carcinoma patient-derived CAFs

can recruit normal DCs and mediate STAT3 pathway activation by

expressing IL-6, inducing their transformation into regulatory DCs

(106). Furthermore, CAFs secrete abundant active factors such as

vascular endothelial growth factor (VEGF), which promote

angiogenesis while mediating damage to the migratory and T-cell

stimulatory capacities of DCs (107, 108). Excellent work was reported

by Huang et al., who found that CAF-secretedWNT2was involved in

the differentiation and immunostimulatory activity of DCs in vitro,

and accordingly, anti-WNT2 was observed to increase the level of

intratumoral activated DCs and significantly improve the anti-tumor

responses of DC-mediated antigen-specific CD8+ T cells in murine

tumor models (109). This suggests that in the TME, both stromal cells

and immunosuppressive cells influence anti-tumor immunity.

Therefore, for effective tumor therapy, it is essential to consider

targeting stromal cells.
3.3 Environmental factors that regulate
dendritic cell function in the TME

Compared with normal tissues, the TME exhibits a significantly

hypoxic and acidic environment and is an important mediator of

tumor progression.

Hypoxia is a central player in shaping the immune context of the

TME, which results from an imbalance between increased oxygen

consumption and inadequate oxygen supply owing to the rapid

proliferation of tumor cells (110). Many physiological functions of

DCs, including migration and maturation, are regulated by hypoxia.

Hypoxic immature DCs exhibit upregulated motility/migration ability

(111), while their antigen uptake ability is seemingly downregulated

(112, 113). Consistently, Suthen et al. observed significant enrichment

of Tregs and cDC2 in hypoxic regions of tumor samples from patients

with HCC, as well as lower CD8+ T-cells, and found a significant

downregulation of HLA-DR expression by cDC2 under hypoxic

conditions, which may be related to the increased intercontact

between Tregs and cDC2 during hypoxia (114). Besides, it is well

known that hypoxia-inducible factor-1alpha (HIF-1a) plays a key role
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in the cellular response to hypoxia (115, 116), yet the effects of HIF-1a
on DCs appear to be controversial. On the one hand, several scholars

have demonstrated that the increase in HIF-1a in DCs under hypoxia

is accompanied by an increase in the expression of HIF-1a target

genes, including those involved in glycolysis, and that the increase in

glycolysis will promote the maturation and migration of DCs (117–

119). On the other hand, however, it has been proposed that

constitutive expression of HIF-1a impairs the immunostimulatory

capacity of DCs in vivo by inducing DCs to upregulate the expression

of immunosuppressive mediators such as IL-10, iNOS, and VEGF

(120, 121). Additionally, prolonged exposure to hypoxia induces cell

death in DCs, which can be prevented by HIF-1a inhibition,

suggesting that HIF-1a may be involved in this process (122). It

was observed in human glioma cells that hypoxia induces PD-L1

upregulation in an HIF-1a-dependent manner, and it was further

found in a murine glioma model that the combination of HIF-1a
inhibitor and anti-PD-L1 antibody can improve the activation of DCs

and CD8+ T-cells (123). Notably, hypoxic conditions recruit more

immunosuppressive Tregs (56, 114) and TAMs (124), thereby

indirectly curbing the function of DCs. Overall, hypoxia appears to

facilitate the migration and maturation of DCs and compromise their

normal functions. The exact changes in the behavior of DCs under

hypoxic conditions need to be further elucidated.

Tumor cells exhibit altered metabolism, preferentially converting

glucose to lactate through glycolysis even under oxygen-rich

conditions. This results in a large accumulation of lactate and

increases the acidity of the TME (125–127). Numerous studies have

shown that lactate accumulation in the TME adversely affects the DC

function. For example, tumor-derived lactate restricts the presentation

of tumor-specific antigens by DCs to other immune cells (128). Lactate

is also involved in regulating the phenotype of DCs, resulting in

increased production of anti-inflammatory cytokines and decreased

production of pro-inflammatory cytokines (129, 130). In patients with

melanoma, the function of pDCs is impaired by lactic acidosis (131),

with the same phenomenon observed in patients with breast cancer

and murine models (132). Some researchers have suggested that in

mice, the migratory capacity of DCs is significantly diminished in

acidic environments and does not recover after removal of the acidic

microenvironment, suggesting that extracellular acidosis may cause

irreversible DCs dysfunction (133). In addition, exposure of

mesothelioma cells to acidosis promotes the secretion of TGF-b2,
which in turn leads to the accumulation of lipid droplets in DCs,

resulting in a reduction in DC migratory capacity (134). These

findings support the view that an acidic environment is not

conducive to the proper functioning of DCs. However, Geffner et al.

argued that extracellular acidosis stimulates antigen capture, promotes

the expression of MHC class II molecules CD86 and CD40, and

induces the maturation and secretion of IL-12 in mouse (135) and

humanDCs (136). Notably, the maintenance of an acidic environment

and the accumulation of lactate in the TME complement each other.

In tumors, an acidic environment can promote the accumulation of

lactate and thus impair the function of DCs.

In general, owing to the combination of many factors in the

TME, DCs are significantly dysfunctional. An accurate

understanding of the role of each component in DC dysfunction

will help to better understand the tumor state and to accurately
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explore ways to restore the activity of DCs. However, the TME is a

complex and interconnected whole, and ultimately, all factors need

to be linked for a systematic and comprehensive understanding of

the causes and processes of the dysfunction of DCs.
4 Dendritic cell-based strategies for
cancer immunotherapy

As the key activators of the immune response, the immune

activation potential of DCs can be used to induce anti-tumor

responses in patients with cancer, which is a promising

development. Primary strategies based on DCs include the creation

of immunoenhancers that promote the generation and activation of

DCs, or the preparation of autologous DC-based vaccines for patient

administration. Flt3L, GM-CSF, and Toll-like receptor (TLR) ligands

are common immunoenhancers. The development and maintenance

of DCs depend on the Flt/Flt3L axis (137), and attempts have been

made in clinical studies to enhance the immune response induced by

tumor vaccines by administering Flt3L (NCT02129075) (138). GM-

CSF stimulates the differentiation, activation, and migration of DCs

(139, 140), and consistently, administration of the CpG ODN/GM-

CSF combination in melanoma patients results in enhanced mutation

of all identifiable DC subpopulations and the recruitment of T-cell-

stimulating and cross-presenting DCs to support protective

melanoma immunity (141). When combined with TLRs in DCs,

TLR ligands can activate signal transduction pathways and induce the

expression of genes involved in the maturation of DCs (142).

Therefore, some immunostimulatory ligands for TLRs, such as poly

(I:C), are often used as immunoadjuvants in DC-based therapies and

have shown promising results (143, 144). DEC205, also known as

CD205 or LY75, is an endocytic receptor expressed at high levels by

CD8+ DCs and is involved in antigen uptake and cross-presentation

(145). The fusion of tumor antigens with targeted antibodies against

DEC205 to enhance DC-induced immune responses has been well

studied and explored in clinical trials (138, 146). Recently, a

pioneering study provided new insights into the application of

DEC205 as a therapeutic target. Martinek et al. analyzed the

transcriptome of T-cells and macrophages in situ in melanoma

patient samples using immunofluorescence-guided laser capture

microdissection and observed that stromal macrophages contained

a gene expression signature linked to antigen capture and

presentation (CD14+LY75+). This can distinguish patients with

significantly better long-term survival and includes a gene module

of monocyte-derived DCs (147). This study provides valuable

insights into the reprogramming of stromal macrophages to

upregulate gene features related to antigen capture and

presentation to acquire DCs function and could be a potential

option for cancer therapy.

DC-based therapeutic cancer vaccines are a popular strategy for

stimulating an effective tumor immune response as they return

autologous activated DCs loaded with tumor-associated antigens to

patients (148). In April 2010, the FDA approved the marketing of the

first DCs vaccine, sipuleucel-T, for the treatment of prostate cancer

(149). Furthermore, in the NCCN Clinical Practice Guidelines in
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Oncology (NCCN Guidelines®): Prostate Cancer (version 1.2023),

sipuleucel-T is recommended for the treatment of metastatic

castration-resistant prostate cancer (CRPC) and is a category 1

option for certain patients who have not received previous

treatment with docetaxel or novel hormone therapy. Sipuleucel-T is

also an option for patients with metastatic CRPC who have received

prior treatment with docetaxel or a novel hormone therapy, but not

for patients who have already received both (150). In recent years,

DC-based vaccines have undergone extensive clinical trials for the

treatment of various cancers, including liver cancer (151), melanoma

(152), lung cancer (153), ovarian cancer (154), and pancreatic cancer

(155). Although the safety of DC-based vaccines has been proven over

the past few decades, their clinical efficacy requires improvement.

Consequently, DC-based vaccines are undergoing a great deal of

technical innovation, including the selection of DC subpopulations,

methods of induction maturation, and choice of loading antigens

(148, 156), with the aim of exploiting the anti-tumor potential of DCs

more effectively.

The key to cancer immunotherapy is the manipulation of the

immune system to achieve cancer control and the desired treatment.
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The efficacy of immune checkpoint inhibitors, which have shown

some success, depends largely on the present baseline immune

response, and DC-based vaccines are highly effective at rescuing

the baseline anti-tumor immune response. Therefore, there has been

considerable interest in combining DC-based vaccines with immune

checkpoint inhibitors (ICIs), and several such studies have been

conducted in recent years (Table 1). Recently, Guo et al. reported a

case of a patient with metastatic gastric cancer whose tumor

progressed after the first two months of receiving personalized

neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC)

vaccine alone, despite the observed T-cell response against the

tumor neoantigen and the fact that upregulated PD-1 levels in T-

cells were observed after Neo-MoDC vaccine administration.

Subsequently, the patient received a combination treatment of the

Neo-MoDC vaccine and nivolumab; promisingly, the combination

triggered a stronger immune response and mediated complete

regression of all tumors for over 25 months (157). Furthermore,

anti-PD-1/PD-L1 antibodies in combination with DC-based vaccines

have been extensively explored in a variety of murine tumor models

(158–164) and, without exception, combination treatment has shown
TABLE 1 Active clinical trials combining DC-based vaccine with immune checkpoint inhibitors (ICIs) therapy (clinicaltrials.gov, April 28, 2023).

Intervention Tumor Phase N Trial
identifier

Status

ICIs DC-based vaccine used

Pembrolizumab Anti-HER2/HER3 DC vaccine Breast cancer II 23 NCT04348747 Recruiting

CCL21-gene modified autologous DC vaccine Non-small cell lung cancer I 24 NCT03546361 Recruiting

Autologous DC loaded with autologous tumor
homogenate

Mesothelioma I 18 NCT03546426 Recruiting

Autologous tumor lysate-pulsed DC vaccine Glioblastoma I 40 NCT04201873 Recruiting

Intra-tumor injection of autologous DC Non-Hodgkin lymphoma I/II 11 NCT03035331 Active, not
recruiting

Therapeutic autologous DC Melanoma I/II 7 NCT03325101 Active, not
recruiting

Autologous DC pulsed with melanoma tumor-specific
peptides

Melanoma I 12 NCT03092453 Active, not
recruiting

Nivolumab Autologous neoantigen pulsed autologous DC vaccine Hepatocellular carcinoma and liver
metastases from colorectal
carcinoma

II 60 NCT04912765 Recruiting

Camrelizumab Glioblastoma stem-like cell antigens- pulsed DC vaccine
(GSC-DCV)

Glioblastoma II 40 NCT04888611 Recruiting

Atezolizumab Autologous DC vaccine Small cell lung cancer I/II 20 NCT04487756 Recruiting

DC loaded with the mesothelioma-associated tumor
antigen WT1

Pleural mesothelioma I/II 15 NCT05765084 Recruiting

Nivolumab/
Ipilimumab

DC-based p53 Vaccine Small cell lung cancer II 14 NCT03406715 Active, not
recruiting

Tumor-lysate loaded autologous dendritic cells Glioblastoma I/II 25 NCT03879512 Recruiting

Anti-PD-1
antibody

Autologous EphA2-targeting CAR-DC vaccine loaded with
KRAS mutant peptide (KRAS-EphA-2-CAR-DC)

Solid tumors I 10 NCT05631899 Recruiting

Autologous EphA2-targeting CAR-DC vaccine loaded with
TP53 mutant peptide (TP53-EphA-2-CAR-DC)

Solid tumors or lymphomas I 10 NCT05631886 Recruiting

Anti-PD-1/PD-
L1 antibody

Alpha-type-1 polarized dendritic cell (aDC1) vaccine Melanoma II 24 NCT04093323 Recruiting
fr
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superior efficacy compared to monotherapy, with stronger anti-

tumor-specific T-cell responses and lower immunosuppressive cell

infiltration. Additionally, the combination of anti-CTLA-4 and DC-

based vaccines could lead to more effective cancer treatments. For

example, in a clinical trial (NCT01302496), researchers enrolled 39

patients with pretreated advanced melanoma who received a DC-

based mRNA vaccination plus ipilimumab. The results showed that a

strong tumor-associated antigen-specific immune response was

observed in patients treated with the combination of a DC-based

vaccine and ipilimumab, with an encouraging 6-month overall

response rate of 38%. Subsequent long-term follow-up after more

than 5 years indicates that 7/39 patients, who all achieved a complete

response, were still disease-free (165). Similarly, in the exploration of

multiple preclinical experimental models of pancreatic cancer (166),

breast cancer (167), colorectal cancer (168), and melanoma (169), the

silencing of CTLA-4 can induce a more effective anti-tumor immune

response together with DC-based vaccines by reducing the

infiltration of immunosuppressive cells and increasing the Teff/

Treg ratio. In summary, combining DC-based vaccines with

immune checkpoint inhibitors is a promising option for

treating tumors.

Combining a personalized DC-based vaccine with

chemotherapeutic agents and targeted drugs is also an effective way
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to improve the efficacy of tumor vaccines, and we have compiled

active relevant clinical trials in Tables 2, 3. It is already clear that

chemotherapy can enhance the efficacy of DC-based vaccines by

enhancing antigen production and eliminating suppressive immune

cells . Some specific chemotherapeutic drugs, such as

cyclophosphamide (170), have been shown to directly deplete

suppressive immune cells in patients with cancer at low doses. A

phase I clinical study suggested that cyclophosphamide with a DC-

based vaccine treatment downregulated tumor infiltration of

immunosuppressed cells and demonstrated excellent anticancer

effects (NCT01241682) (171). In glioblastoma, a combination of

Temozolomide- and DC-based vaccines has been favored, and

recently, the publication of the results of a phase III prospective

externally controlled cohort trial has gained widespread attention

(NCT00045968). The results show that the median overall survival

for patients with newly diagnosed glioblastoma assigned to the

DCVax-L cohort (232 patients, 222 of whom received autologous

tumor lysate-loaded dendritic cell vaccine “DCVax-L” plus

temozolomide) at enrollment was 19.3 months from the time of

randomization compared with 16.5 months from randomization for

the 1366-patient external control populations. In addition, in patients

with recurrent glioblastoma, the combination of DCVax-L with

standard treatment showed a survival benefit (172). Currently,
TABLE 2 Active clinical trials combining DC-based vaccine with chemotherapy drugs (clinicaltrials.gov, May 28, 2023).

Intervention Tumor Phase N Trial identifier Status

Chemotherapy
drug(s) DC-based vaccine used

Temozolomide Autologous dendritic cells loaded with autologous tumor
homogenate in glioblastoma

Glioblastoma II 28 NCT04523688 Recruiting

Malignant glioma tumor lysate-pulsed autologous dendritic
cell vaccine

Glioblastoma I 21 NCT01957956 Active, not
recruiting

Autologous Wilms’ tumor 1 (WT1) messenger (m)RNA-
loaded dendritic cell (DC) vaccine

Glioblastoma I/II 20 NCT02649582 Recruiting

Dendritic and glioma cells fusion vaccine Glioblastoma I/II 10 NCT04388033 Recruiting

Human CMV pp65-LAMP mRNA-pulsed autologous DCs Glioblastoma II 80 NCT03688178 Recruiting

Autologous dendritic cells pulsed with multiple neoantigen
peptides

Glioblastoma I 10 NCT04968366 Recruiting

Cyclophosphamide/
Fludarabine

NY-ESO-1-157-165 peptide pulsed dendritic cell vaccine Malignant neoplasm II 6 NCT01697527 Active, not
recruiting

Autologous dendritic cells loaded with autologous tumor-
lysate

Melanoma I 20 NCT01946373 Recruiting

MART-1 peptide-pulsed dendritic cells Melanoma II 1230 NCT00338377 Active, not
recruiting

Cyclophosphamide Autologous dendritic cell vaccine loaded with personalized
peptides

Non-small cell lung
cancer

I 16 NCT05195619 Recruiting

Gemcitabine Autologous DC vaccine Sarcoma I 19 NCT01803152 Active, not
recruiting

Platinum/
Pemetrexed

Dendritic cells loaded with the mesothelioma-associated
tumor antigen Wilms’ tumor protein 1

Malignant pleural
mesothelioma

I/II 28 NCT02649829 Active, not
recruiting

Decitabine Dendritic cell/acute myelogenous leukemia fusion cell vaccine Acute myelogenous
leukemia

I 45 NCT03679650 Recruiting
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chemotherapy remains the primary treatment for most cancers, and

the combination of chemotherapy and DC-based vaccines has

promising prospects owing to their cooperative effect. Furthermore,

the combination of DC-based vaccines and targeted drugs has been

explored. In a phase II clinical trial, Storkus et al. proposed that DC-

based vaccines targeting tumor blood vessel antigens combined with

dasatinib could induce therapeutic immune responses in patients

with checkpoint-refractory advanced melanoma (NCT01876212)

(173). Trastuzumab can enhance the uptake and cross-presentation

of HER-2 derived peptides by DCs to improve the generation of

peptide-specific CTLs (174), which provides a theoretical reference

for the combination of Trastuzumab with a DC-based vaccine.
5 Conclusion

DCs play an indispensable role in triggering anti-tumor immune

responses. However, under tumor conditions, immunosuppressive

TME weakens their function. The defective function of DCs is an

important reason why tumors evade immune surveillance and is

closely associated with the poor efficacy of some immunotherapies,

such as immune checkpoint inhibitors. Based on the pivotal role of

DCs in the immune response, which determines their importance in

anti-tumor therapy, many studies have been undertaken to improve

the function of DCs, and some protocols, such as DC-based vaccines,

have become available options for the treatment of tumors. In

addition, the use of DC-based vaccines in combination with ICIs

has good application prospects because they can induce a more

effective baseline immune response, which is necessary for ICIs to

exert their anticancer effects. However, several issues remain

unaddressed. The complex composition of the TME and the close

and diverse interactions among its components ultimately result in

the inhibition of the normal function of multiple immunostimulatory

cells, including DCs, and the induction of immune escape. How to

effectively and selectively target the immunosuppressive effects of the

TME on DCs needs to be further explored.
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