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Role and mechanisms of SGLT-2
inhibitors in the treatment of
diabetic kidney disease
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Ji-Xin Tang* and Cui-Wei Yao*

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable
Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang
City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
Guangdong, China
Diabetic kidney disease (DKD) is a chronic inflammatory condition that affects

approximately 20-40% of individuals with diabetes. Sodium-glucose co-

transporter 2 (SGLT-2) inhibitors, emerging as novel hypoglycemic agents,

have demonstrated significant cardiorenal protective effects in patients with

DKD. Initially, it was believed that the efficacy of SGLT-2 inhibitors declined as the

estimated glomerular filtration rate (eGFR) decreased, which led to their

preferential use in DKD patients at G1-G3 stages. However, recent findings

from the DAPA-CKD and EMPA-KIDNEY studies have revealed equally

beneficial cardiorenal effects of SGLT-2 inhibitors in individuals at stage G4

DKD, although the underlying mechanism behind this phenomenon remains

unclear. In this comprehensive analysis, we provide a systematic review of the

mechanisms and functioning of SGLT-2 inhibitors, potential renal protection

mechanisms, and the therapeutic efficacy and safety of SGLT-2 inhibitors in

kidney diseases, with a particular focus on stage G4 DKD. Gaining a deeper

understanding of the renal protective effect of SGLT-2 inhibitors and their

underlying mechanisms is highly significance for the successful utilization of

these inhibitors in the treatment of diverse kidney disorders.
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Abbreviations: ABCG2, ATP-binding cassette subfamily G member 2; AGEs, Advanced glycosylation end
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renal disease; GLUT9, Proteins glucose transporter protein 9; KDIGO, Kidney Disease: Improving Global

Outcomes; NHE3, Na+-H+ exchanger 3; NO, Nitric oxide; RAAS, Renin-angiotensin-aldosterone system;

RAGE, Receptors for advanced glycosylation end products; RAS, Renin-angiotensin system; SGLT-1,

Sodium-glucose co-transporter protein 1; SGLT-2, Sodium-glucose co-transporter protein 2; SNS,

Sympathetic nervous system; TGF, Tubuloglomerular feedback; TGF-1, Transforming growth factor 1;

CANVAS, Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes ; CREDENCE ,

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy ; DAPA-CKD, Dapagliflozin in

Patients with Chronic Kidney Disease; DECLARE-TIMI 58, Dapagliflozin and Cardiovascular Outcomes in

Type 2 Diabetes; EMPA-KIDNEY, Empagliflozin in Patients with Chronic Kidney Disease; EMPA-REG

OUTCOME, Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes; SCORED,

Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease.
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1 Introduction

Diabetes, a prevalent illness worldwide, poses a significant

threat to human health. As of 2019, approximately 463 million

individuals were affected by diabetes, and this number is projected

to reach 700 million by 2045 (1). Diabetic kidney disease (DKD), a

common microvascular complication associated with diabetes,

affects around 20-40% of diabetic patients and can progress to

end-stage renal disease (ESRD) in some cases (2–4). While

controlling blood glucose levels is crucial in slowing DKD

progression, it becomes challenging to lower glycated hemoglobin

in patients with advanced DKD, leading to difficulties in halting

disease advancement due to patient or pharmaceutical factors (5).

Consequently, the pursuit of effective therapeutic approaches that

can safeguard kidney function and delay the onset of DKD has

emerged as a prominent research area in DKD studies.

Currently, renin-angiotensin system inhibitors are recommended

as the primary drugs per the guidelines for treating DKD. However,

they are not entirely adequate for DKD treatment due to their

potential increased risk of ESRD and acute renal failure (6, 7). The

effectiveness and safety of SGLT-2 inhibitors, a novel hypoglycemic

agent, have been validated for stage G1-G3 DKD therapy, resulting in

the 2020 KDIGO guidelines recommending their use for DKD

patients with an estimated glomerular filtration rate (eGFR) ≥ 30

mL/min/1.73 m2 (8). Further research is still necessary to ascertain

their efficacy and safety for individuals with stage G4-G5 DKD.

Recent findings from the DAPA-CKD and EMPA-KIDNEY

trials have revealed that SGLT-2 inhibitors offer significant benefits

in improving cardiovascular and renal function, as well as delaying

the progression of renal disease in stage G4 DKD patients,

irrespective of their diabetes status (9, 10). As a result, the 2022

KDIGO guidelines have also recommended a revision of the eGFR

threshold to 20 mL/min/1.73 m2 for DKD patients (11). Therefore,

this paper aims to comprehensively review the research progress

surrounding the mechanisms of action of SGLT-2 inhibitors, their

potential renal protective effects, and their efficacy and safety in

patients with stage G4 DKD.
2 The function of SGLT-2 inhibitors

2.1 SGLT-2 inhibitors and mechanism of
action

SGLT-2 inhibitors are a relatively new class of antidiabetic

medications that have gained attention in recent years. The use of

non-selective SGLT inhibitors, extracted from apple tree root bark

glycosides, was first reported in the 1830s and since then, SGLT-2

inhibitors have become a popular focus of research due to their

unique mechanism of action, which does not rely on insulin (12).

SGLT-1 and SGLT-2 are crucial molecules involved in glucose

reabsorption in the kidney and are primarily located in the renal

tubular epithelium. In normal physiological conditions, glucose
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filtered from the glomerulus enters the tubules and is reabsorbed

by SGLT-1 and SGLT-2. Among these transporters, SGLT-2 is

predominant in the S1 and S2 segments of the renal proximal tubule

and functions as a high-capacity glucose transporter, responsible for

approximately 90% of glucose reabsorption in the renal tubules. On

the other hand, SGLT-1 functions as a low-capacity glucose

transporter and is found not only in the kidneys but also in the

gastrointestinal tract, where it plays a role in reabsorbing a smaller

amount of glucose in the renal tubules (13) (Figure 1).

SGLT-2 inhibitors are a class of hypoglycemic agents that have

gained popularity in recent years. They work by competing with the

SGLT-2 protein for glucose binding in the renal tubules. This

competition prevents SGLT-2 from binding to glucose, leading to

reduced glucose reabsorption by the renal tubules (Figure 1). As a

result, there is an increased excretion of glucose, sodium, and water

in the urine. This leads to lower blood glucose and reduced volume

load (14). Importantly, the mechanism of action of SGLT-2

inhibitors is independent of insulin regulation. It does not rely on

the regulation of insulin secretion by pancreatic b-cells or insulin
resistance in the body. Currently, there are several selective SGLT-2

inhibitors available on the market, such as empagliflozin,

dapagliflozin, and luseogliflozin. These medications specifically

inhibit SGLT-2. However, there are also SGLT-1 and SGLT-2

inhibitors, such as sotagliflozin and canagliflozin, which can

inhibit both transporters (15). Overall, the discovery and

development of SGLT-2 inhibitors have provided a novel

approach for managing blood glucose levels in individuals

with diabetes.
2.2 Hypoglycemic effects

The hypoglycemic effect of SGLT-2 inhibitors relies on renal

tubular reabsorption, and thus the amount of glucose excretion in

the urine is directly related to the glomerular filtration rate (16, 17).

In individuals with advanced DKD, specifically those with stage G4-

G5 DKD, the options for hypoglycemic medications are limited,

and dosage is often restricted. Therefore, it is crucial to assess the

effectiveness of treating patients with relatively advanced DKD

using SGLT-2 inhibitors. Several clinical studies have focused on

the glycemic efficacy of SGLT-2 inhibitors in individuals with type 2

diabetes and stage 3 chronic kidney disease (CKD). Their findings

indicate that the glucose-lowering effect is attenuated compared to

patients with normal renal function (18–20). In a study involving

dapagliflozin treatment for patients with type 2 diabetes and stage

3b-4 CKD, glycated hemoglobin levels did not decrease over the

102-week treatment period (21). Similarly, another study focusing

on DKD patients treated with luseogliflozin found that the increase

in urinary glucose excretion was lower in those with stage G4 DKD

compared to patients with stage G1-G3 DKD (22). These findings

suggest that the hypoglycemic efficacy of SGLT-2 inhibitors is

reduced in patients with stage G4 DKD when compared to those

with stage G1-G3 DKD.
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2.3 Nephroprotective effects

2.3.1 Reduction of glomerular hyperfiltration
On one hand, SGLT-2 receptors are primarily found in the

proximal tubule and are responsible for the reabsorption of glucose

and sodium ions. Consequently, the decreased sodium

concentration sensed at the macula densa location triggers a

tubuloglomerular feedback (TGF) mechanism, which stimulates

contraction of the efferent arteries and dilation of the afferent

arteries. This results in increased blood flow into the glomerulus,

raising the glomerular pressure and leading to glomerular

hyperfiltration and subsequent damage (23). In contrast, SGLT-2

inhibitors can reduce Na+ reabsorption in the renal tubules by

competitively binding glucose. This restoration of the TGF

mechanism promotes relaxation of the small arterial outflow,

reducing intraglomerular pressure and alleviating glomerular

hyperfiltration. These effects are crucial in preserving renal

function and slowing the progression of nephropathy (24).

However, another important player in Na+ reabsorption in the

proximal tubule is the Na+-H+ exchanger 3 (NHE3), responsible for
Frontiers in Immunology 03
about 70% of Na+ reabsorption through direct or indirect

mechanisms (25). Activation of the TGF system leads to increased

intraglomerular pressure and subsequent glomerular hyperfiltration.

Recent research has demonstrated that NHE3 works synergistically

with SGLT-2 in Na+ reabsorption, with SGLT-2 tightly regulating

NHE3 activity. Therefore, NHE3 is sensitive to the modulation by

SGLT-2 inhibitors (26, 27). A study conducted on diabetic mice

revealed that SGLT-2 inhibitors have the ability to inhibit NHE3

funct ion by promoting NHE3 phosphorylat ion. This

phosphorylation enhances Na+ excretion, effectively reducing

sodium levels within the body (28).This finding demonstrates the

potential of SGLT-2 inhibitors as therapeutic agents in regulating

NHE3 activity and mitigating glomerular hyperfiltration.

Hence, the underlying mechanism behind the natriuretic effect

of SGLT-2 inhibitors is to combat sodium-water retention and

repair TGF system, thereby alleviating the condition of glomerular

hyperfiltration for renal protection. This effect could be attributed

to the competitive inhibition of SGLT receptors and the subsequent

inhibition of NHE3. Notably, NHE3 seems to play a pivotal role in

the overall natriuretic effect of SGLT-2 inhibitors.
FIGURE 1

Normal renal tubular resorption of glucose. The location of the SGLT2-inhibitor’s action is also shown in the diagram. PCT, proximal convoluted
tubules; SGLT, sodium-glucose co-transporter.
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2.3.2 Regulation of the renin-angiotensin-
aldosterone system (RAAS)

The activation of RAAS, particularly the increased secretion of

angiotensin II (Ang II) and aldosterone, has been established as a

crucial factor in the progression of DKD (29–31). In response to

elevated blood glucose levels, SGLT-2 in the proximal renal tubule

enhances Na+ and glucose reabsorption. This leads to reduced

sensing of Na+ by the macula densa, resulting in decreased

adenosine production, which further activates the RAAS and

causes constriction of the small afferent arteries. Moreover, the

enhanced production of Ang II, stimulated by RAAS activation, also

triggers the release of aldosterone. The resulting oxidative stress,

inflammation, and renal fibrosis contribute to the accelerated

progression of DKD (32). With the usage of SGLT2 inhibitors,

the macula densa becomes more sensitive to changes in Na+

concentration. This results in increased adenosine production and

suppression of RAAS activation. Consequently, there is

vasoconstriction in the afferent arteries, while the inhibition of

RAAS also reduces the release of aldosterone release. These

combined effects help to alleviate oxidative stress, inflammation,

and fibrosis in the kidney, thereby mitigating the progression of

DKD (33).

In the past few decades, RAAS inhibitors have been widely used

as the primary approach to treat DKD (34). However, the

distinction between SGLT-2 inhibitors and RAAS inhibitors lies

in their differential effects on the small afferent and efferent

glomerular arteries. RAAS inhibitors dilate both the afferent and

efferent arterioles, but the efferent arterioles are dilated to a greater

extent, resulting in continued glomerular ultrafiltration and

subsequent damage to kidney units and podocytes (35).

Consequently, RAAS inhibitors alone may not effectively halt the

progression of early-stage DKD or provide optimal treatment for

individuals with advanced DKD (29, 36). However, SGLT-2

inhibition provides a greater degree of renal protection compared

to RAAS inhibition as it not only relieves glomerular hyperfiltration

but also reduces intra-glomerular pressure by dilating small

outgoing glomerular arteries and constricting small incoming

glomerular arteries. This unique mechanism of action suggests
Frontiers in Immunology 04
that SGLT-2 inhibitors may offer enhanced efficacy in delaying

the progression of DKD.
3 Potential renal protection
mechanisms

Although the exact mechanisms by which SGLT-2 inhibitors

protect the kidneys are not fully understood, recent research has

shown that these medications have numerous potential

renoprotective effects in addition to their traditional

hypoglycemic effects. These effects include reducingglomerular

hyperfiltration and volume load, inhibiting inflammation and

fibrosis, improving oxidative stress, enhancing erythropoietin

(EPO) production, enhancing mitochondrial energy supply,

inhibiting the sympathetic nervous system, protecting vascular

endothelial cells, and reducing blood uric acid levels, among

others (37–42) (Figure 2).
3.1 Anti-inflammatory, anti-oxidative stress
and anti-fibrotic effects

Mild systemic inflammation is commonly observed in patients

with DKD. Prolonged hyperglycemia leads to the production of

advanced glycosylation end products (AGEs) through the

glycosylation of non-enzymatic proteins. These AGEs promote

the formation of receptors for advanced glycosylation end

products (RAGE), resulting in oxidative stress and increased

levels of reactive oxygen species. This oxidative stress contributes

to the progression of kidney fibrosis and further decline in renal

function, marking a crucial phase in the development of DKD (43,

44). One of the key pro-fibrotic factors involved in this process is

transforming growth factor 1 (TGF-1). TGF-1, along with other

pro-fibrotic factors, intensifies inflammation and exerts strong pro-

fibrotic effects. It promotes the proliferation of mesangial cells and

the deposition of extra-mesenchymal matrix, leading to

glomerulosclerosis and interstitial fibrosis (45).
FIGURE 2

The diagram shows the renal protection mechanism of SGLT-2 inhibitors.
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In a study by Ojima et al., diabetic rats were used to investigate the

effects of empagliflozin on renal tissues. After 4 weeks of empagliflozin

treatment, there was a significant reduction in the expression of AGEs,

RAGE, and other proteins in renal tissues. This resulted in the

inhibition of the AGE-RAGE oxidative stress axis, demonstrating

empagliflozin’s potential as an anti-inflammatory, anti-fibrotic, and

tubular protective agent (46). Further experiments revealed that

empagliflozin effectively mitigated oxidative stress and attenuated

damage to the renal tissues. It is believed that this protective effect

may be attributed to empagliflozin’s ability to downregulate the TGF-

b-Smad pathway and upregulate the Nrf2/ARE pathway (47).

Consequently, SGLT-2 inhibitors such as empagliflozin have the

potential to safeguard kidney health by suppressing the expression

of AGEs, RAGE, and TGF-b1, thereby exerting anti-inflammatory,

anti-oxidative stress, and anti-fibrotic effects.
3.2 Promotion of EPO production

Renal anemia is a prevalent complication in advanced DKD,

and its management has been shown to slow down the progression

of renal failure (48, 49). In diabetic patients, increased glucose

reabsorption through SGLT-2 by proximal tubular epithelial cells

results in excessive consumption of adenosine triphosphate (ATP)

produced by the Na+/K+ pump. This leads to heightened oxygen

consumption by tubular epithelial cells and subsequently reduced

oxygen partial pressure in the kidney’s cortical tissue. The hypoxic

microenvironment of renal tubular epithelial cells triggers the

transformation of EPO-producing fibroblasts into myofibroblasts,

consequently reducing EPO production (50, 51). By diminishing

glucose reabsorption and lowering the demand on the Na+/K+

pump ATP, SGLT-2 inhibitors alleviate metabolic stress on

proximal tubules, thereby improving the microenvironment

within renal tubules.

This leads to the transformation of myofibroblasts to fibroblasts,

which partially increases EPO production and contributes to the

correction of anemia (52). The EMPA-HEART CardioLink-6 trial

demonstrated that empagliflozin-induced early elevation of EPO and

subsequent increments in hematocrit correlated with reductions in

ferritin and hemoglobin levels (53). An analysis of data from the

EMPA-REG outcome trial suggests that approximately 50% of the

mortality benefits associated with increased hematocrit in SGLT-2

inhibitor-treated patients may be attributed to enhanced erythropoietin

production. This gain might be due to the protective effects of EPO as a

circulating pleiotropic cytokine, including promoting angiogenesis,

improvingmitochondrial function, and suppressing inflammation.

Moreover, the elevated hematocrit resulting from EPO also directly

enhances the oxygen-carrying capacity of systemic tissues (54). Hence,

by stimulating the production of EPO,SGLT-2 inhibitors have the

potential to safeguard renal function and slow down the advancement

of renal failure.
3.3 Improved mitochondrial energy supply

The renal tubule ’s epithelial cells contain abundant

mitochondria, which play a crucial role in supplying energy for
Frontiers in Immunology 05
the reabsorption of metabolic substances like glucose and Na+ in the

renal tubules. ATP, produced by mitochondria, is essential for

glucose uptake by tubular epithelial cells. Glucose and fatty acids

are the primary sources of substrates for ATP production, with b-
oxidation of fatty acids generating significantly more ATP than

aerobic fermentation of glucose (55, 56). In a hyperglycemic

environment, there is an increase in glycolysis, tricarboxylic acid

cycle, and b-oxidation, along with an elevation in oxygen free

radical production, leading to tubulointerstitial fibrosis and

hastening the progression of renal failure (57, 58). Research

indicatesthat impaired fatty acid oxidation occurs in parallel with

the advancement of DKD (59, 60). Hence, enhancing mitochondrial

fatty acid oxidation to ensure a more efficient energy supply could

potentially delay the progression of DKD.

SGLT-2 inhibitors have been found to increase urinary glucose

excretion, leading to a decrease in glucose levels in the body. This

causes a shift in energy utilization, where fatty acid b-oxidation is

employed as the main source of energy. This shift in energy supply

is primarily responsible for the weight loss observed with SGLT-2

inhibitors (61). Furthermore, increased b-oxidation results in the

production of excess acetyl coenzyme A, which generates ketone

bodies (b-hydroxybutyrate, acetoacetate, and acetone). These

ketone bodies serve as a fuel source for ATP production in the

mitochondria, thus improving mitochondrial energy supply (62,

63). Moreover, SGLT-2 inhibitors can enhance mitochondrial

energy supply through various mechanisms. They promote EPO

production, enhance renal tissue oxygenation, and facilitate the

conversion of synthetic ATP fuel from glucose to ketone bodies

(64). Numerous clinical studies have demonstrated that the

application of SGLT-2 inhibitors promotes the synthesis of ketone

body and decreases the insulin-to-glucagon ratio (65–67). Hence, it

is believed that SGLT-2 inhibitors have the potential to enhance

kidney function by augmenting ketone body production through b-
oxidation, thereby improving the mitochondrial energy supply to

the renal tubular epithelial cells.
3.4 Inhibition of the sympathetic nervous
system (SNS)

Persistent activation of the SNS has been strongly linked to the

onset of type 2 diabetes (68). Moreover, its excessive activation is

associated with a negative prognosis in patients suffering from

advanced DKD (69). SNS hyperactivity has been correlated with

glomerulosclerosis, protein loss, and microalbuminuria.

Additionally, it promotes the development of renal fibrosis by

triggering pro-inflammatory and pro-fibrotic markers such as

tumor necrosis factor-b, it also hastens the development of renal

fibrosis. This, in turn, leads to a decline in glomerular filtration rate

and further exacerbates SNS activation, creating a harmful cycle

that accelerates the progression of DKD (70, 71). Sano has proposed

that the kidneys play a central role in sympathetic overactivation

and has suggested that SGLT-2 inhibitors could potentially provide

cardiovascular and renal benefits by reducing afferent renal nerve

activity and inhibiting reflex mechanisms within the central

nervous system that activate the systemic sympathetic nerves (72).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1213473
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2023.1213473
Herat et al. proposed that the neurotransmitter norepinephrine,

released by the sympathetic nervous system, may enhance the

expression of SGLT-2. This, in turn, leads to an increase in the

reabsorption of glucose and sodium in the renal tubules, as well as

elevated levels of blood sugar and blood pressure (73). It has also

been demonstrated that dapagliflozin can reduce the expression of

tyrosine hydroxylase and norepinephrine in hypertensive mice.

These findings suggest that the effect of SGLT-2 inhibitors in

protecting renal function could be attributed to a decrease in

renal sympathetic nerve activity.
3.5 Improve vascular endothelial function

DKD is a complication of diabetes mellitus characterized by

damage to the small blood vessels. The dysfunction of the vascular

endothelium is considered the initial factor contributing to the

development of diabetic microangiopathy. Impaired function of

endothelial cell often results in reduced production of nitric oxide

(NO) (74, 75). However, extended administration of SGLT-2

inhibitors has been shown to effectively improve vascular endothelial

dysfunction in diabetic rats by enhancing NO diastolic function,

reducing oxidative stress, and alleviating glucose toxicity in the

aortic rings (76, 77). In a study investigating endothelial dysfunction

in diabetes, dapagliflozin was found to potentially facilitate the repair

of vascular endothelial by decreasing the expression of vascular

adhesion molecules, phosphorylated IkB expression, and infiltration

of inflammatory macrophages in vivo (41).
3.6 Reduce uric acid

Chronic hyperuricemia has been consistently identified as a risk

factor for the progression of CKD, particularly in individuals with

coexisting type 2 diabetes (78). The kidneys play a crucial role in

eliminating uric acid from the body, primarily through the renal

tubules (79). Within the renal tubules, specific proteins, namely

glucose transporter protein 9 (GLUT9) and ATP-binding cassette

subfamily Gmember 2 (ABCG2), are responsible for the reabsorption

and excretion of urate, respectively. Of these proteins, GLUT9 plays a

central role in the handling of urate (78). The hypouric acid effect of

SGLT-2 inhibitors has been linked to the excretion of sugar in the

urine (80). These inhibitors work by blocking SGLT receptors, leading

to increased glucose excretion in the urine. The excess urinary glucose

then competes with GLUT9, reducing the reabsorption of urate and

increasing the excretion of uric acid (78). Research has demonstrated

that the ability of empagliflozin to lower uric acid levels is associated

with the upregulation of ABCG2 expression, which is mediated by the

AMPK/Akt/CREB signaling pathway (81).

4 Efficacy and safety of SGLT-2
inhibitors in stage G4 DKD

In recent years, the effectiveness and safety of SGLT-2 inhibitors

in treating patients with type 2 diabetes and mild to moderate renal

insufficiency (eGFR ≥ 30 mL/min/1.73 m2) have been confirmed
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through large clinical trials such as EMPA-REG OUTCOMES (82),

DECLARE-TIME 58 (83), CANVAS-R (84), and CREDENCE (85).

However, the efficacy and safety of SGLT-2 inhibitors in patients

with stage G4 and even G5 DKD have remained unclear until the

release of the results from DAPA-CKD (9) and EMPA-KIDNEY

(10). These studies have provided a significant basis for establishing

the effectiveness and safety of SGLT-2 inhibitors in patients with

stage G4 DKD.
4.1 Effect on cardiac and renal outcomes

The DAPA-CKD clinical trial enrolled patients with CKD and

an eGFR ranging from 25 to 75 mL/min/1.73 m2, with up to 67.5%

of them having DKD. During the study, which had a median follow-

up duration of 2.4 years, the results demonstrated a significant

reduction in the risk of the primary endpoint event, which included

sustained reduction in eGFR exceeding 50%, ESRD, and a

composite endpoint of death resulting from renal or

cardiovascular causes in the dapagliflozin treatment group (9). In

the subgroup analysis of patients with stage 4 CKD, the use of

dapagliflozin group demonstrated significant benefits. The

dapagliflozin group exhibited a 27% reduction in the risk of

experiencing the main composite endpoint event, which included

sustained decline in eGFR exceeding 50%, ESRD, and death from

kidney disease. Additionally, there was a 29% decrease in the risk of

experiencing sustained decline in eGFR > 50%, ESRD, and death

from kidney disease.The risk of hospitalization for heart failure or

cardiovascular death was lowered by 17%, and the risk of all-cause

mortality decreased by 32%. Furthermore, dapagliflozin treatment

also resulted in a slower rate of decline in eGFR and significantly

reduced proteinuria. Remarkably, there were no significant

differences in therapeutic benefits and safety observed between

stage 2-3 CKD and stage 4 CKD groups (86).

The EMPA-KIDNEY trial, with a median follow-up of 2 years,

included 46% of patients with DKD and 34.5% of patients with stage

4 CKD and an eGFR of 20–30 mL/min/1.73 m2. The primary

endpoint events were cardiovascular death or progression of kidney

disease. Progression of kidney disease was defined as a > 40%

reduction in eGFR from baseline values, a sustained decrease in

eGFR to < 10 mL/min/1.73 m2, ESRD, or death due to kidney

disease causes. The results of the trial showed that the group

receiving empagliflozin had a 28% lower risk of cardiac and

kidney endpoints compared to the placebo group. Furthermore,

there was a 14% lower risk of hospitalization for any reason in the

empagliflozin group. Additionally, empagliflozin treatment delayed

the decline in eGFR and reduced albuminuria, particularly in

patients with a higher urine protein to creatinine ratio at

baseline.These beneficial outcomes were consistent across

subgroups defined by different eGFR ranges (10). Overall, the

EMPA-KIDNEY trial demonstrates that empagliflozin is effective

in reducing the risk of cardiovascular and kidney events,

hospitalization, and progression of kidney disease in patients with

DKD and CKD stage 4. These findings highlight the potential

benefits of empagliflozin in managing kidney disease in these

patient populations.
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In the CREDENCE trial, which focused on patients with DKD,

the primary endpoint was defined as doubling of blood creatinine

levels, development of ESRD, or death from cardiovascular or renal

causes. After 2.6 years of follow-up, the results indicated that

canagliflozin reduced the risk of the primary outcome by 30%

and the risk of progressing to ESRD by 32% (85). Interestingly, in

the subgroup of patients with stage G4 DKD, canagliflozin did not

significantly improve glycated hemoglobin levels. However, it did

lead to a significant 33% reduction in urinary albumin levels and a

slower decline in eGFR compared to the placebo group. These

findings were consistent with the DAPA-CKD and EMPA-

KIDNEY trials, where the risk of major outcomes in the stage G4

DKD subgroup was similar to that of other subgroups defined by

eGFR (87). Overall, these results highlight the efficacy of

canagliflozin in reducing the risk of renal and cardiovascular

events, as well as slowing the progression of kidney disease in

patients with DKD, including those with stage G4 DKD.

The SCORED trial aimed to evaluate the effects of sotagliflozin

in patients with DKD, specifically those with an eGFR of 25-65 mL/

min/1.73 m2. The trial had a median follow-up period of 16 months.

The primary endpoint was the incidence of serious cardiovascular

adverse events. Additionally, the advancement of renal disease was

assessed as a secondary endpoint, which included a decline in eGFR

of more than 50% from baseline, ESRD, dialysis, or renal

transplantation. However, the results of the trial did not

demonstrate statistically significant differences in either all-cause

mortality or the renal composite endpoint outcomes between the

sotagliflozin group and the control group (88). Surprisingly, the

subgroup analysis focusing on patients with stage G4 DKD did not

show substantial reductions in the primary endpoints of

cardiovascular death and heart failure (89).

A separate study investigating the effects of sotagliflozin over a

52-week period showed that it did not significantly improve

glycated hemoglobin levels after 26 weeks. Furthermore, its

cardiorenal outcomes were consistent with the findings from the

SCORED trial (90). Notably, sotagliflozin did not demonstrate a
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specifically in patients with stage G4 DKD, which is in contrast to

the positive results observed in other trials such as DAPA-CKD,

EMPA-KIDNEY, and CREDENCE studies. To summarize, SGLT-2

inhibitors have been found to offer significant cardiac and renal

benefits to patients with stage G4 DKD, which were comparable to

those observed in patients with stage G1-G3 DKD. It is widely

acknowledged that as the eGFR decreases, patients experience a

decline in glomerular filtration function and a reduced ability to

reabsorb glucose and Na+ in the renal tubules.

Therefore, their ability to lower blood sugar, improve

glomerular hyperfiltration, and reduce volume load is diminished.

However, even in the presence of a significant decrease in eGFR,

SGLT-2 inhibitors still provide notable cardiorenal benefits. These

benefits may be attributed to potential renoprotective effects, such

as reducing inflammation and fibrosis, improving oxidative stress,

enhancing mitochondrial energy supply, inhibiting the SNS,

promoting EPO production, and improving vascular endothelial

function. Additionally, considering that sotagliflozin is less effective

in improving cardiovascular and renal outcomes in patients with

more advanced DKD, dapagliflozin, empagliflozin, and

canagliflozin are recommended for the treatment of patients with

relatively advanced DKD (Table 1).
4.2 Adverse reactions

When evaluating the safety of SGLT-2 inhibitors in patients

with stage G4 DKD, it is crucial to consider both their positive

impact on the heart and kidneys, as well as any potential negative

side effects they may cause. Various types of SGLT-2 inhibitors

exhibit different adverse events, particularly hypoglycemia,

genitourinary infection, ketoacidosis, acute kidney injury (AKI),

fractures or amputations, and other adverse events. Therefore, when

utilizing SGLT-2 inhibitors, a thorough assessment of the patient’s

condition should be conducted.
TABLE 1 Effect of SGLT-2 inhibitors on cardiac and renal outcomes.

Drug DAPA-CKD EMPA-KIDNEY CREDENCE SCORED

Dapagliflozin Empagliflozin Canagliflozin Sotagliflozin

Median follow-up(years) 2.4 2.0 2.6 1.3

eGFR(ml/min/1.73m2) 25-75 20-90 30-90 25-60

Stage 4 CKD rate 14%(n=624) 34.2%(n=1131) 4%(n=174) 7.7%(n=813)

Renal outcomes
Hazard Ratio(95%CI)
P Value

0.56(0.45-0.68)
p<0.001

0.72(0.64-0.82)
P<0.001

0.66(0.53-0.81)
P<0.001

0.71(0.46-1.08)
p>0.05

Cardiovascular outcomes
Hazard Ratio(95%CI)
P Value

0.71(0.55-0.92)
P=0.009

0.84 (0.64-0.82)
P=0.15

0.69(0.57-0.83)
P<0.001

0.74(0.63-0.88)
P<0.001

Deaths from any cause
Hazard Ratio(95%CI)
P Value

0.69(0.53-0.88)
P=0.004

0.87(0.70-1.08)
P=0.21

0.83(0.68-1.02)
p>0.05

0.99(0.83-1.18)
p>0.05
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4.2.1 Hypoglycemia
Since the primary mechanism of SGLT-2 inhibitors involves

inhibiting renal glucose excretion, which is independent of insulin

secretion, the risk of hypoglycemia is low (91). Clinical trials such as

DAPA-CKD, EMPA-KIDNEY, SOCRED, and CREDENCE have

demonstrated no increased risk of hypoglycemia in patients with

stage G4 DKD (9, 10, 85, 88). Additionally, a study involving type 2

diabetic patients with CKD stages 3b-4 also found no severe

hypoglycemic events in the dapagliflozin group, while three

(4.3%) severe hypoglycemic events occurred in the placebo group

(21). Therefore, SGLT-2 inhibitors have not been shown to raise the

incidence of hypoglycemia in patients with advanced DKD.
4.2.2 Ketoacidosis
Ketoacidosis, which is often characterized by gastrointestinal

symptoms such as nausea, vomiting, and diarrhea, is a serious

adverse effect of SGLT-2 inhibitors (92). The occurrence of

ketoacidosis may have a multifaceted mechanism. On one hand,

the reduction in blood glucose induced by SGLT-2 inhibitor inhibits

insulin secretion. On the other hand, the mechanisms associated

with SGLT-2 inhibitors also lead to an increase in glucagon

secretion, resulting in a high glucagon/insulin ratio. This elevated

ratio plays a significant role in promoting hepatic fatty acid

oxidation and ketone bodies production (93). Additionally, the

loss of glucose in the kidneys promotes the secondary reabsorption

of ketone bodies, further contributing to ketoacidosis (94).

In a recent multicenter study, the risk ratios for ketoacidosis

were found to be 3.58, 2.52, and 1.86 for canagliflozin,

empagliflozin, and dapagliflozin respectively. The high incidence

of ketoacidosis with canagliflozin is primarily attributed to its

greater selectivity for SGLT-1 over SGLT-2. Inhibition of SGLT-1

contributes to the development of diarrhea and volume deficit,

which can serve as important trigger for ketoacidosis (95). In

both the EMPA-KIDNEY and SOCRED trials, ketoacidosis

occurred more frequently in the empagliflozin and sotagliflozin

groups. Adverse events of diarrhea were also more common in

the sotagliflozin group, further increasing the risk of ketoacidosis

(10, 88). Therefore, individuals taking SGLT-2 inhibitors

should be vigilant for potential ketoacidosis if they experience

gastrointestinal symptoms.
4.2.3 Genitourinary system infections
SGLT-2 inhibitors, by promoting the excretion of high amounts

of sugar in urine through the kidneys, can increase the risk of

urinary tract infections, particularly Candida infections. These

infections are more common in females than males and can

typically be alleviated with conventional drug therapy (96).

Findings from the SCORED trial indicate a higher incidence of

genital fungal infections in the sotagliflozin group compared to the

placebo group, and this difference was statistically significant (88).

Furthermore, other related studies have also suggested a higher

likelihood of genital fungal infections in patients with type 2

diabetic CKD stages 3b-4 who use dapagliflozin (21).
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4.2.4 Acute kidney injury
Previous explanations for SGLT-2 inhibitor-induced AKI have

often focused on the diuretic effect of these inhibitors, which can

lead to a decrease in eGFR due to constriction of the small incoming

glomerular arteries through tubular feedback (97). However, as

research progressed, a more plausible mechanism for the

development of AKI was proposed. SGLT-2 inhibitors cause uric

aciduria by enhancing the excretion of uric acid via GLUT9 in the

renal proximal tubules. This, in turn, triggers an immune response

through the activation of inflammatory vesicles and localized

inflammatory reactions, ultimately resulting in AKI (98).

Additionally, when SGLT-2 inhibitors inhibit glucose

reabsorption in the S1 and S2 segments of the renal tubules, there

is an increased influx of glucose into the S3 segment. Conversely,

the uninhibited SGLT1 receptors also facilitate greater glucose

uptake, which may activate aldose reductase and lead to the

conversion of glucose in the S3 segment into fructose and sorbitol.

The conversion of glucose in the S3 segment into fructose

through fructose kinase activity contributes to the local production

of uric acid, oxidative stress, and the release of chemokines, which

promote AKI (99). Moreover, the accumulation of sorbitol and

fructose due to decreased inositol levels in hyperglycemia may also

predispose individuals to the development of AKI (100). Although

some studies suggest a potential risk of AKI with SGLT-2 inhibitors,

a larger body of research, including studies involving patients with

advanced diabetic nephropathy, has failed to demonstrate an

increased risk of AKI. The DAPA-CKD trial has indicated that

the decrease in serious adverse events related to AKI may reflect the

potential protective effect of dapagliflozin beyond the initial decline

in eGFR (9). Similarly, the application of empagliflozin,

sotagliflozin, and canagliflozin in patients with relatively advanced

CKD has also shown no elevated risk of AKI (10, 85, 88). Hence,

further studies are needed to confirm whether SGLT-2 inhibitors

actually increase the incidence of AKI.

4.2.5 Fracture and amputation
According to the findings from the CANVAS clinical study, the

group treated with canagliflozin exhibited a significantly higher

incidence of fracture and amputation compared to the placebo

group, with incidences that were 97% and 26% higher, respectively.

However, the exact mechanism by which SGLT-2 inhibitors

contribute to fractures and amputations remains unclear. There

have been suggestions that hypovolemia caused by osmotic diuresis

and altered bone metabolism due to increased phosphate uptake

may be the primary factors responsible for fractures (101, 102).

Similarly, hypovolemia and reduced blood flow to the lower

extremities resulting from diuresis are thought to be the main

causes of amputation (103). In contrast, no increased risk of fracture

or amputation was observed in the CREDENCE trial involving

canagliflozin (85). Likewise, the DAPA-CKD, EMPA-KIDNEY, and

SOCRED trials also found no elevated risk of fracture or amputation

(9, 10, 88). After evaluating the potential risks of amputation linked

to the use of SGLT-2 inhibitors, the panel reached the conclusion

that canagliflozin was the only specific medication associated with
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an increased risk. They found no evidence suggesting that other

SGLT-2 inhibitors posed a similar risk of amputation (104).

Following a comprehensive assessment of the extended

effectivenes and adverse events of four SGLT-2 inhibitors in

patients with stage G4 DKD, over a follow-up period ranging from

1.3 to 2.6 years, it has been observed that these medications exhibit

reduced efficacy in lowering blood glucose levels in such individuals.

Additionally, they are associated with adverse events, including

urinary tract infections, as well as potential serious risks such as

ketoacidosis, fractures, and amputations. However, instances of

hypoglycemia and AKI are infrequent. Moreover, most SGLT-2

inhibitors significantly decrease the likelihood of cardiovascular and

renal complications in both diabetic and non-diabetic patients with

kidney disease over long-term treatment. Consequently, SGLT-2

inhibitors represent a valuable drug option for managing stage G4

DKD in the long run. Furthermore, findings from a 4-year study

focusing on patients with diabetes indicate that dapagliflozin

demonstrates favorable safety and tolerability profile when used

over an extended duration (105). In general, the long-term safety

and tolerability of SGLT-2 inhibitors in patients with G4 DKD were

found to be relatively favorable. However, it is important to note that

the four primary clinical study populations may not fully represent

patients with DKD, particularly those in stages G4-5. Therefore,

further studies are required to evaluated the effectiveness and safety of

SGLT-2 inhibitors specifically in this patient population.
4.3 Advantages and disadvantages of
individual SGLT-2 inhibitors

4.3.1 Dapagliflozin
Dapagliflozin, the first SGLT-2 inhibitor approved for the

treatment of type 2 diabetes (106), continues to demonstrate

significant benefits in reducing renal and cardiovascular

outcomes, as well as the risk of mortality in patients with stage

G4 DKD. Furthermore, its long-term use does not appear to

increase the incidence of adverse events, even when patients have

an eGFR as low as 15 mL/min/1.73 m2. Regarding adverse events,

the incidence of serious adverse events was found to be 34.5%.

However, the dapagliflozin group did not show an increased risk of

adverse events such as hypoglycemia, ketoacidosis, AKI, fracture,

and amputation compared to the DKD dapagliflozin group in stages

G2-3 or the placebo group in stage G4 DKD. It is worth noting,

however, that the incidence of renal-related adverse events was

higher in patients with stage G4 DKD.
4.3.2 Empagliflozin

In the EMPA-KIDNEY trial, it was observed that empagliflozin

had a beneficial effect in reducing the risk of renal outcomes. However,

it did not show a significant reduction in the risk of cardiovascular

outcomes or death. Regarding adverse events, the incidence of serious

adverse events was found to be 35.2%. It is worth noting that while

there is a potential risk of genitourinary infection and ketoacidosis,

there was no increased risk of fracture or amputation.
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4.3.3 Canagliflozin

In the CREDENCE trial, canagliflozin demonstrated a reduction

in the risk of both renal outcomes and cardiovascular outcomes.

However, it did not show a significant reduction in the risk of all-

cause mortality. With regard to adverse events, the incidence of

serious adverse events was found to be 33.5%. The most common

serious adverse events were urinary tract infections (13.4%) and

ketoacidosis (0.5%). Importantly, there was no increased risk of

fracture or amputation associated with canagliflozin usage.
4.3.4 Sotagliflozin

In the SOCRED trial, sotagliflozin showed a reduction in

cardiovascular outcomes risk. However, it did not demonstrate a

reduction in renal or cardiovascular risk specifically in the stage G4

DKD subgroup. In terms of adverse events, the incidence of serious

adverse events was 23.4%. Diarrhea (8.5%), ketoacidosis (0.6%), and

urinary tract infections (11.5%) were more frequently reported with

sotagliflozin compared to placebo. Importantly, there was no

increased risk of fracture or amputation observed.

In summary, all four SGLT-2 inhibitors have shown the ability to

reduce renal, cardiovascular, and mortality risks in patients with stage

G4 DKD, with generally favorable safety profiles. Among them,

dapagliflozin stands out as it effectively reduces renal, cardiovascular,

and mortality risks without the occurrence of ketoacidosis, and it also

lowers the incidence of AKI. However, sotagliflozin appears to be less

effective in improving cardiac and renal outcomes in advanced DKD

patients and should be used with caution in this population. In terms of

adverse events, sotagliflozin has the lowest incidence of serious adverse

events, but is more associated with diarrhea and urinary tract

infections. It is worth noting that, except for dapagliflozin, the other

three SGLT-2 inhibitors carry a potential risk of ketoacidosis.

Therefore, dapagliflozin is recommended as a preferable option for

patients with advanced DKD.
5 Conclusion and Prospect

Delaying the progression of diabetic nephropathy, a leading

cause of ESRD, is of utmost importance. SGLT-2 inhibitors, a novel

class of glucose-lowering drugs, have shown substantial

cardiovascular and renal protective effects in patients with stage

1-4 CKD, regardless of the presence of diabetes. However, as eGFR

declines, the hypoglycemic effects, improvement of glomerular

hyperfiltration, and suppression of the RAAS by SGLT-2

inhibitors become less effective. Despite this, SGLT-2 inhibitors

continue to demonstrate significant cardiorenal benefits in

advanced DKD, potentially due to their ability to suppress

inflammation and fibrosis, improve oxidative stress, enhance EPO

production, optimize mitochondrial energy supply, inhibit the SNS,

and protect vascular endothelial cells. These mechanisms likely

contribute to the observed renal protective effects of SGLT-2

inhibitors in advanced DKD.
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Further investigation and clarification are needed to fully

understand the linked mechanisms and the renal protective effects

of SGLT-2 inhibitors from multiple perspectives. Currently, the

efficacy and safety of SGLT-2 inhibitors in treating patients with

advanced DKD have been increasingly supported. The threshold for

using SGLT-2 inhibitor has been lowered to an eGFR of 20 mL/min/

1.73 m2, and they can be continued until the initiation of dialysis or

renal transplantation, as long as they are well-tolerated by the

patient. It is exciting to anticipate whether future advancements

will relax the restrictions on the use of SGLT-2 inhibitors for

patients with all stages of CKD.
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