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Suárez-Magdalena O, Abraham S and
Mas JM (2023) A quantitative systems
pharmacology model for certolizumab
pegol treatment in moderate-
to-severe psoriasis.
Front. Immunol. 14:1212981.
doi: 10.3389/fimmu.2023.1212981

COPYRIGHT

© 2023 Coto-Segura, Segú-Vergés,
Martorell, Moreno-Ramı́rez, Jorba,
Junet, Guerri, Daura, Oliva, Cara,
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Background: Psoriasis is a chronic immune-mediated inflammatory systemic

disease with skin manifestations characterized by erythematous, scaly, itchy and/

or painful plaques resulting from hyperproliferation of keratinocytes.

Certolizumab pegol [CZP], a PEGylated antigen binding fragment of a

humanized monoclonal antibody against TNF-alpha, is approved for the

treatment of moderate-to-severe plaque psoriasis. Patients with psoriasis

present clinical and molecular variability, affecting response to treatment.

Herein, we utilized an in silico approach to model the effects of CZP in a

virtual population (vPop) with moderate-to-severe psoriasis. Our proof-of-

concept study aims to assess the performance of our model in generating a

vPop and defining CZP response variability based on patient profiles.

Methods:We built a quantitative systems pharmacology (QSP) model of a clinical

trial-like vPop with moderate-to-severe psoriasis treated with two dosing

schemes of CZP (200 mg and 400 mg, both every two weeks for 16 weeks,

starting with a loading dose of CZP 400 mg at weeks 0, 2, and 4). We applied

different modelling approaches: (i) an algorithm to generate vPop according to

reference population values and comorbidity frequencies in real-world

populations; (ii) physiologically based pharmacokinetic (PBPK) models of CZP

dosing schemes in each virtual patient; and (iii) systems biology-based models of

the mechanism of action (MoA) of the drug.

Results: The combination of our different modelling approaches yielded a vPop

distribution and a PBPK model that aligned with existing literature. Our systems
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biology and QSP models reproduced known biological and clinical activity,

presenting outcomes correlating with clinical efficacy measures. We identified

distinct clusters of virtual patients based on their psoriasis-related protein

predicted activity when treated with CZP, which could help unravel differences

in drug efficacy in diverse subpopulations. Moreover, our models revealed

clusters of MoA solutions irrespective of the dosing regimen employed.

Conclusion: Our study provided patient specific QSP models that reproduced

clinical and molecular efficacy features, supporting the use of computational

methods as modelling strategy to explore drug response variability. This might

shed light on the differences in drug efficacy in diverse subpopulations, especially

useful in complex diseases such as psoriasis, through the generation of

mechanistically based hypotheses.
KEYWORDS

psoriasis, anti-TNF, certolizumab pegol, mathematical modelling, virtual population,
mechanism of action
1 Introduction

Psoriasis is a chronic immune-mediated inflammatory systemic

disease with skin manifestations typically characterized by

erythematous, scaly, itchy and/or painful plaques. The

physiopathology of psoriasis is marked by a complex molecular

interplay involving dysregulated cytokines, immune cell activation,

and altered keratinocyte proliferation, contributing to the

development and persistence of the disease (1, 2). Psoriasis affects

1-4% of the population worldwide (3–5). Patients with psoriasis

generally present a significantly reduced health-related quality of

life and a high burden of disease (6–10). Psoriasis is often linked to

comorbidities, especially in its moderate-to-severe forms. These can

include psoriatic arthritis, cardiometabolic diseases, metabolic

syndrome, obesity, and depression (5, 11–13), highlighting the

systemic nature of the disease and the importance of

multidisciplinary care. The molecular mechanisms underlying the

relationship between psoriasis and its comorbidities are not fully

elucidated, underscoring the need for additional research to unravel

the interplay between these conditions at a molecular level (14).

This could affect treatment efficacy, urging the need to address

psoriasis’ treatment in personalized clinical setting (15, 16). Current

treatment for moderate-to-severe psoriasis includes phototherapy,

oral systemic immunomodulatory drugs (methotrexate, apremilast,

acitretin, and cyclosporine), and biologic agents (17, 18). The latter

are monoclonal antibodies often administered subcutaneously that

inhibit different cytokines, including tumor necrosis factor (TNF),

interleukin (IL)-12/23, IL-17s, and IL-23.

Certolizumab pegol [CZP] is a PEGylated antigen binding

fragment (Fab’) of a humanized monoclonal antibody against TNF-

alpha. CZP is currently approved for the treatment of moderate-to-

severe psoriasis, psoriatic arthritis, axial spondylarthritis, rheumatoid

arthritis, and Crohn’s disease (Crohn’s disease is only approved by

the FDA) (19–21). CZP has shown a rapid and sustained reduction of
02
psoriasis activity and improvement in patients’ quality of life in

pivotal studies CIMPASI-1, CIMPASI-2 and CIMPACT (22–25),

with a favorable safety profile (26–28). Due to its molecular structure

without constant fragment (Fc-free), CZP has no to minimal transfer

from mother to infant across the placenta and to breast milk, and is

the only biologic agent with pharmacokinetic clinical data in its label

supporting potential use in both pregnancy and breastfeeding for

chronic inflammatory diseases (29–31). The conjugation of the Fab’

fragment to two molecules of polyethylene glycol (PEG) has been

associated to increased half-life and reduced antigenicity,

immunogenicity, and toxicity (32). It has also been linked to

enhanced selectivity for inflamed tissue compared to non-inflamed

tissue. CZP has shown more rapid tissue penetration, higher levels,

and greater persistence in inflamed tissue when compared to

adalimumab and infliximab (33, 34).

In Europe, the approved CZP dosing schedule for the treatment

of plaque psoriasis consists of a loading dose of CZP 400 mg (given

as 2 subcutaneous injections of 200 mg each) at Weeks 0, 2 and 4,

and a maintenance dose of CZP 200 mg Q2W. In patients with

insufficient response, a dose of 400 mg Q2W can be considered (21).

In the United States, the FDA approved CZP dosing schedule

consists of 400 mg Q2W (given as 2 subcutaneous injections of

200 mg each). For some patients (with body weight ≤90 kg), a dose

of 400 mg initially and at Weeks 2 and 4, followed by 200 mg every

other week may be considered (20). From analysis of the baseline

characteristics of patients included in CIMPASI-1, CIMPASI-2 and

CIMPACT, it is not possible to identify which patients would most

benefit from the CZP 400 mg Q2W dose. However, for almost all

measures, CZP 400 mg Q2W demonstrates numerically superior

efficacy results compared to CZP 200 mg Q2W. Interpatient

variability in treatment response poses challenges in managing

psoriasis. Molecular heterogenicity significantly contributes to this

variability, highlighting the necessity of a better understanding of

the molecular factors that underlie such differences (35, 36).
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Modelling and computational techniques are increasingly being

used in biomedical investigation. These approaches offer valuable

tools for investigating complex issues that are challenging to test in

live organisms, as well as for generating mechanistic hypotheses to

elucidate clinical observations. The insights gained through

modeling can then be further validated and contrasted with in

vitro or in vivo experimental results, enhancing our understanding

of biological processes, and facilitating advancements in medical

science. They can also address methodological challenges, bridging

the gap between randomized clinical trials (RCTs) and

observational studies (37, 38). In fact, the US and European

medicines agencies have endorsed in silico strategies as valuable

complementary tools for defining randomized clinical trials (RCTs),

enhancing study design, and even circumventing certain studies in

specific situations, such as drug repositioning (39). In this regard,

over the past few decades, substantial progress has been made in

collaboration with the pharmaceutical industry to develop good

practice guidelines and recommendations for various

computational approaches, including pharmacometrics models

(e.g., for pharmacometrics models) (40, 41). However, the

absence of established guidelines for modelling approaches in

other disciplines, such as systems medicine, remains a notable

gap (42). Nonetheless, there is a widespread consensus on the

essential principles governing these approaches. For instance, the

Good Practices in Model-Informed Drug Discovery and

Development (MID3) describes the “quantitative framework for

prediction and extrapolation, centered on knowledge and inference

generated from integrated models of compound, mechanism, and

disease level data and aimed at improving the quality, efficiency,

and cost-effectiveness of decision making” (43). These guidelines

also classify the evidence extracted from the modelling approaches

in three categories based on their purposes and their impact for

industry decision-making (44) or for regulatory assessment (45):

“LOW” impact, when the evidence generated does not allow to

make clinical or commercial decisions; “MEDIUM” impact, when

the obtained data could be useful in strategic conditioning of future

trial or experimental design; and “HIGH” impact, when conclusions

obtained from modelling directly support decision-making without

the need for additional experimental or trial studies (43).

We recently described a computational method, according to

the above-mentioned guidelines, that combined different modelling

approaches (virtual population [vPop] randomization through

population deconvolution, physiologically based pharmacokinetic

[PBPK] modelling, and systems biology [SB] modelling) to build

quantitative systems pharmacology (QSP) models and simulate the

mechanism of action (MoA) of a drug in a virtual patient

population (46). Herein, our objective is to assess the potential of

this approach in offering molecular insights into the drug’s MoA,

thereby establishing mechanistic profiles through the evaluation of

patient-specific archetypes. To investigate the method’s ability to

explore response variability beyond a mere dose effect, we utilized

psoriasis as a representative example of a complex and

heterogeneous disease, along with the evaluation of two approved

CZP dosing schemes. Thus, we modified and adapted this

methodology to simulate the two officially approved CZP dosing

regimens within a virtual population (vPop) with moderate-to-
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severe psoriasis. Our aim was to assess the method’s capability to

accurately replicate non-standard demographic distributions (i.e.,

increasing body mass index [BMI]), and effectively model a non-

small molecule compound at both the physiologically-based

pharmacokinetic (PBPK) and quantitative systems pharmacology

(QSP) levels. Subsequently, we conducted an extensive evaluation of

the models using biological and clinical data, and employed

clustering analyses to investigate the molecular variability

captured by the models.
2 Methods

Combining several modelling approaches, we followed

sequential stages to generate the QSP model set and to create the

virtual patient population based on a RCT population (Figure 1). In

the design phase, we compiled information and defined the

population (condition and patient population characterization

and sample size calculat ion) and intervention (drug

characterization) details. In the modelling phase, we embedded a

series of vPop, PBPK, and SB-based models (Therapeutic

Performance Mapping System [TPMS]) to create QSP models.

We exploited clinical efficacy information on drugs used in

moderate-to-severe psoriasis, along with known molecular

information on psoriasis severity, as prior information to generate

the models. Finally, we performed SB-based analyses and examined

the molecular variability among the virtual patients’ models by

applying a comprehensive and robust clustering approach.
2.1 Population definition

2.1.1 Demographical and clinical definition
To reflect real demographic and comorbidity parameters, we

used psoriasis-related studies as a reference. We obtained

population demographic information from the CIMPASI I,

CIMPASI II and CIMPACT trials (23–25), while we inferred the

frequency of comorbidities (diabetes, hypertension, non-alcoholic

fatty liver [NAFLD], anxiety, and depression) from the prevalence

and odds ratio in the population with psoriasis (47–50). For

psoriatic arthritis, we used the self-reported (not diagnosed-

based) frequency reported in the CIMPASI I, CIMPASI II and

CIMPACT trials (23–25).

2.1.2 Molecular definition
To characterize the populations’ disease and comorbidities in

detail, we carried out a manual literature curation protocol as

previously described (51, 52). For psoriasis definition, we initiated

an extensive and careful full-length review of relevant articles found

in the PubMed database up until the moment of the start of the

study (restricted from October 2013 to October 2018) obtained by

the following search string: psoriasis [TITLE] AND (molecular

[TITLE/ABSTRACT] AND (pathophysiology [TITLE/ABSTRACT]

OR pathogenesis [TITLE/ABSTRACT])). We retrieved the list of

publications identified and assessed them at the title and abstract

level. When we found molecular information describing
frontiersin.org
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pathophysiology conditions, we thoroughly reviewed the full text to

identify the main pathophysiological processes described as being

involved in psoriasis (Supplementary Table A in the S2 File). We

further characterized each pathophysiological process at the protein

level by using the retrieved publications and saved for analysis all

proteins whose activity (or lack thereof) was functionally associated

with the development of the condition (Supplementary Table A in

the S2 File). We characterized comorbidities with the

same methodology.

Besides the bibliographical characterization, we collected

additional data to further characterize moderate-to-severe

psoriasis. We retrieved expression data from the Gene Expression

Omnibus public repository (53) using the query [19th November

2018]: psoria* [TITLE]. We only considered studies performed in

humans through expression array (Series type: Expression profiling

by array) with more than 30 samples. We obtained three datasets

that fitted the mentioned characteristics: GSE13355 (54, 55),

GSE14905 (56), and GSE78097 (57) (which included information

on severity; we considered psoriasis as moderate-to-severe when the
Frontiers in Immunology 04
Psoriasis Area Severity Index [PASI] >=12). We analyzed

experiments using GEO2R software with the default settings. We

then selected the proteins that resulted positively or negatively

differential between severe and mild psoriasis lesions (GSE78097;

adj. P-value< 0.01, |log2FC|>1) and between psoriatic lesions and

control biopsies in at least one of the two psoriasis vs. control

experiments (GSE13355, GSE14905; adj. P-value< 0.01). We

detected 58 genes as representatives for the severe psoriatic state

with respect to mild lesions and control biopsies (Supplementary

Table B in the S2 File).

2.1.3 Sample size calculation
We calculated the minimum sample size of virtual patients to be

generated as the population number for which a molecular classifier

was able to discriminate between patients with psoriasis and healthy

individuals while having enough statistical power. Given that TPMS

models’ outcomes are based on predicted protein activity, we

considered experimental measures that could relate to protein

activity variability, particularly gene expression. We queried the
FIGURE 1

In silico clinical trial protocol overview. The protocol was divided into three main stages: Phase I, study design and information compilation; Phase II,
mathematical modelling; and Phase III, data analysis to obtain molecular insights on the drug’s mechanisms of action. PBPK, Physiologically based
pharmacokinetic; QSP, Quantitative systems pharmacology.
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Gene Expression Omnibus database (53) (February 2021) and

obtained the following series containing the raw microarray files

for skin biopsies from patients with psoriasis and controls:

GSE13355, GSE14905, GSE78097 (Supplementary Table C in the

S2 File). They totaled 209 patients (118 cases and 91 controls). We

normalized raw data by using the CuBlock cross-platform

normalization method (58) to enable analyzing experimental data

from different platforms.

To identify the minimum sample size, we applied a previously

described approach (46) based on a progressive sampling method

(taking subsets from 10 to the maximum number of samples)

proposed by Mukherjee et al. (59) and Figueroa et al. (60). This

approach aims at identifying the minimum sample size needed to

obtain a two-feature based classifier that achieves a determined

discrimination accuracy—namely the maximum accuracy (“Max

accuracy”) when considering all available samples (209 samples)—

by applying a classification training procedure. We used K-fold

cross-validated accuracy (k = 10) to validate the classifiers’

performance. The percentage of Max accuracy reached for each

subset of samples and for the total was calculated using the

classifiers obtained for that subset (Supplementary Figure S1 in

the S1 File). All tested subsets with 20 or more samples reached a

90% Max accuracy when computed with statistical powers of 95%

(and even 99%). Considering statistical powers of 95%, the 95%

Max accuracy was achieved with around 30 patients (i.e., 15 patients

per cohort) and remained above the 95% Max accuracy threshold

for the evaluated increasing set sizes. To have enough

representativity of all comorbidity groups (the lowest in frequency

incidence, diabetes type II - 0.438 (49), would need a population of

343 individuals to reach a cohort of 15 patients), and given that our

computational approach allowed us to obtain patients more easily

than RCTs, we established 500 virtual patients as the sample size.

2.1.4 Virtual population simulation
For the present study, we generated a vPop resembling a real CT

patient population with psoriasis since the patients with psoriasis

CT populations differ from global population distributions by

reason of its increased BMI and weight. We used the CIMPASI I,

CIMPASI II and CIMPACT trials (23–25) to gather the reference

distribution parameters. We retrieved age, weight, and BMI and

constructed the vPop using an adapted version of the algorithm

proposed by Allen et al. (61), as described elsewhere (46). We

assumed that height was unrelated to the disease and used general

distributions from European standard population values (62).

Additionally, we assigned molecular tags to the patients to

account for comorbidity prevalence. Tags were distributed

randomly among the virtual patients, with no co-occurrence

frequency for any paired comorbidity. As an exception, we only

assigned the obese molecular definition tag to patients presenting a

BMI >30 kg/m2.

While demographic parameters were later used to obtain

individualized PBPK models of the two CZP dosing schemes, we

used comorbidity data, once translated into molecular information,

as preliminary restriction information for generating the

QSP models.
Frontiers in Immunology 05
2.2 Intervention definition

In our model, the vPop was treated with the two approved

dosing schemes of CZP. We used a two-branch scheme, one per

dosage, to compare their differences, mimicking the CIMPASI I,

CIMPASI II and CIMPACT trials. We used the same 500 virtual

patients (i.e., same individualized PBPK models) to obtain the two

study branches: subcutaneous administration of CZP 200 mg every

two weeks for 16 weeks and subcutaneous administration of CZP

400 mg every two weeks for 16 weeks, with both arms receiving the

loading dose of CZP 400 mg at weeks 0, 2, and 4. This resulted in

two interventions, or QSP models, per patient, generating a total of

1,000 models.

2.2.1 Certolizumab pegol molecular and
pharmacokinetic characterization

To characterize CZP, aside from reviewing official regulatory

documentation and drug-target dedicated databases, we performed

an evaluation of the currently available bibliography regarding

known targets of the drug, as well as pharmacokinetic

information, in PubMed (search restricted from October 2013 to

October 2018). The specific search queries were the following:

certolizumab [TITLE] AND (target [TITLE/ABSTRACT] OR

molecular [TITLE/ABSTRACT] OR pharmacokinet* [TITLE/

ABSTRACT]). We analyzed all articles at the title and abstract

levels. From those selected, we reviewed the presence of molecular

and pharmacokinetic information in depth to identify possible

proteins/genes to be considered drug target candidates, as well as

additional information for subsequent modelling (Supplementary

Table D in the S2 File).

2.2.2 Physiologically based
pharmacokinetic modelling

To assess the relation of each dosage with the drug’s

concentration in body organs, we built a PBPK model for each

virtual patient. Because antibodies primarily distribute within the

blood system, with low penetration in other organs and tissues, we

constructed a two-compartment model system consisting of only

the skin (administration tissue) and the blood (clearance system).

We applied the equations associated with blood flow rates and skin

volumes described by Brochot and Quindroit (63). However, blood

volume was adjusted to fit the drug’s distribution volume for

optimized modelling. Since these variables depend on cardiac

frequency, age, BMI, and sex, they yielded individualized models

as described elsewhere (64).

The absorption constant (ka) was calculated using the following

formula (65):

ka =
ln2
T1

2= a
(Equation 1)

Where T1
2= a is the absorption half-life.

When approximating T1
2= a ≈ Tmax=3 (66), we obtained:

ka =
(ln2)
Tmax=3

(Equation 2)
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The clearance constant parameter (kel) was calculated by fitting

a general model to pharmacokinetics data points. We used

European Medicine Agency’s Cmax values, and additional points

were extrapolated using Cmax, half-life, and Tmax parameters

(67, 68).

We implemented all PBPK compartment models in

MATLAB™ (69) and integrated differential equations describing

the kinetics of the compounds and the fitting procedures by using

the SimBiology Toolkit.
2.3 QSP modelling – obtaining
virtual patients

2.3.1 Systems biology-based modelling – TPMS
TPMS technology (51) generates mathematical models by

applying supervised machine learning methods based on a human

protein functional network, using known biological, medical, and

pharmacological information as training data (Supplementary

Table E in the S2 File). These models can be used to simulate the

behavior of drugs and the pathophysiology of diseases in terms of

changes in protein activity (52, 70–72).

Here, we used TPMS to build the mathematical models to

simulate the behavior of CZP over psoriasis by modelling the

changes in disease-related proteins’ activity (Supplementary Table

A in the S2 File). Besides TPMS training data, which included

specific psoriasis treating and inducing/exacerbating drugs

(Supplementary Table E in the S2 File), we used additional

molecular information to denote different patient types, including

(i) gene expression in moderate-to-severe psoriasis (Supplementary

Table B in the S2 File) and (ii) psoriasis common comorbidities

(diabetes, hypertension, NAFLD, anxiety, and depression).

TPMS mechanism of action models can be defined by the

predicted protein activity achieved for each protein (ranging

between -1 [completely inhibited] and 1 [completely activated])

by the flow of the signal through the protein-protein interaction

network (51). From the predicted protein activity of the proteins

designated to define psoriasis, we calculated the previously

described TPMS model-derived parameter tSignal (Equation 3)

(51), which ranges between -1 and 1, and used it for the

molecular definition of psoriasis (Supplementary Table A in the

S2 File) in the QSP models:

tSignal =
1
no

n
i=1viyi (Equation 3)

Where n is the number of proteins defining the protein set with

non-zero signal; vi are the protein signs (active or inactive)

according to each disease/comorbidity definition; and yi are the

resulting modelled signal values achieved by each protein “i” after

stimulating the model with the corresponding drug.

2.3.2 Integrating PBPK and systems biology
modelling – QSP models

We computed QSP models for each patient-dosage using the

TPMS methodology as previously described (46). Briefly, we used

two types of restrictions to generate the models: (i) quantitative
Frontiers in Immunology 06
dose-related data, which are related to the effectiveness of the drug-

dosage, and was computed using concentration data and effectivity

relation; and (ii) molecular data, which can be subdivided in

patient-specific molecular information related to his/her disease

and comorbidity characterizations, and protein known information

from publicly available databases and Biological Effector Database

(51). Consequently, the resulting models allowed evaluating the

influence of the different dosing schemes.

In order to link the CZP concentration with efficacy, a proxy

model-derived EC50 parameter was calculated as described

previously (46). Here, a set of clinical trials evaluating moderate

to severe psoriasis using different drugs were included with PASI75

as outcome measure, which were modelled using the same PBPK

modelling strategy as for CZP (efficacy data, specific PK parameters

and data sources in Supplementary Table D in the S2 file).

Exceptionally, infliximab, however, was modelled as a single

compartment, with an intravenous dosage; and for apremilast a

model previously described (46) was used, with an oral dose and

liver clearance.
2.4 Data analysis

2.4.1 Statistical treatment
We analyzed the generated data with MATLAB™ functions

and Python or R packages. For the analysis of the population

demographic and molecular parameters, we used descriptive

statistics (mean and standard deviation, frequency tables, or pie

charts) and applied the appropriate parametric and non-parametric

tests. We used Pearson’s correlation to evaluate the fitting of tSignal

to clinical and severity measures. We used Wilcoxon rank-sum test

for the comparison of predicted protein activity level. In all cases,

we reported the applied test and calculated the false discovery rate

(FDR) according to Benjamini-Hochberg (73) multi-test correction

method to control for type I errors, whenever applicable. We set the

statistical significance level based on p- or q-values for each analysis,

always being, at least,<0.05. We applied a data science-based

approach (51) to identify classifier molecules by using cross-

validated accuracy as a quality measure.

A selection and conversion methodology was applied (46) to

evaluate whether the predicted protein activity of the proteins

defined in the psoriasis definition were able to fit an efficacy

metric, namely PASI75, as defined in available clinical trials

(Supplementary Table D in the S2 file). We evaluated the tSignal

on the set of drug models created as a proxy of this clinical efficacy

measure. In order to link the clinical efficacy measure, PASI75, with

the model-derived value, ADHD-tSignal, linear regression analysis

(Pearson’s correlation) between both variables was performed to

parameterize the following equation:

Clinical efficacy measure = A*model − derived efficacy + B

(Equation 4)

This process was designed to maximize the absolute value of the

Pearson correlation coefficient (|r|) between clinical and tSignal

values, maintaining molecular information from the bibliography-

based characterization. Proteins within the psoriasis molecular
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definition distorting this relationship were identified and discarded

iteratively to optimise the correlation and identify the protein set

that best fitted the clinical measurements.We calculated the

accuracies of SB and QSP models for each solution within each

model and expressed them as the percentage of compliance of all

drug-pathophysiology relationships included in the training

set (51).

2.4.2 Clustering algorithms
We used an unsupervised clustering strategy to find molecular

patterns in the resulting model’s output. As input data, we used the

resulting signal values of psoriasis’ characterized proteins for all

patient-dosage models. First, we carried out a feature (protein)

normalization for each arm by subtracting the mean predicted

protein activity value to minimize the potential direct impact of

drug concentration per patient without compromising inter- and

intra-protein variability. Then, we applied a dimensional reduction

method using Principal Component Analysis (74) or

Multidimensional Scaling (MDS) (75) with two, three, and five

dimensions. We obtained the clusters by applying a set of different

clustering algorithms: Kmeans (76), self-organizing map (77),

Spectral (78), Gaussian mixture model (79), and hierarchical (80).

We encapsulated all the methodology in a single clustering strategy

analysis, which also computed the optimal number of clusters for

each setting, defined according to Calinski Harabasz (81), Davies-

Bolduin (82), Gap (83), and Silhouette (84) indexes, being the latter

prioritized among the rest. We evaluated the quality of the resulting

clustering analyses by three quality indicators: Hopkins statistics (to

measure the clustering tendency of a data set) (85), Dunn index (to

evaluate the cluster compaction) (86), and Jaccard Bootstrap Index

(to measure the stability of the clustering solution in a set of

bootstrap resamples) (87). Once the best model was identified, we

computed the Euclidean distance between clusters to evaluate

their proximity.
2.4.3 Enrichment analysis
To functionally evaluate the protein predicted activity, we

carried out a hypergeometric enrichment analysis (88) over the

proteins with a more characteristic behavior in each cluster
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compared with the complete set of model solutions. The complete

list of proteins included in the models was used as protein universe.

We used KEGG (89), Gene Ontology (90), and TRRUST (91, 92) as

reference databases. We only selected enriched pathways with an

FDR q-value< 0.01. Moreover, we excluded those containing either

more than 300 genes—to keep biologically specific results—or less

than 10 genes—to reduce artifacts. We used a modification of

Hausdorff distance (93) between the enriched sets over the

human protein network (51) as a link value between the sets to

represent the results’ network. We performed all network

representations with the software Cytoscape (94).
2.5 Computational resources

We executed all simulations described in this study in the

Anaxomics’ cloud computing server, which integrates more than

800 computational threads in machines with 64 Gigabytes of RAM.

Sof tware , da tabases , and too l s are the proper ty o f

Anaxomics Biotech.
3 Results

3.1 Virtual population distribution matched
literature patient demographics

According to statistical evaluation, the patient deconvolution

and vPop simulation led to the generation of a vPop with moderate-

to-severe psoriasis that reproduced the demographic characteristics

of real clinical trial reference populations (no statistically significant

differences with the mean values of clinical trials, Table 1). As

expected, mean weight and BMI were found higher than in general

populations, with high proportions of patients with overweight -

BMI >= 25 - and obesity - BMI >= 30 (Figure 2C). When comparing

our vPop o a European-like population (62) with the same

population size, age distribution, and sex ratio to assess

demographic distribution similarity, both weight and BMI were

found to be significantly higher in the vPop with psoriasis than in

the European population (Wilcoxon rank sum test, p< 0.001). No
TABLE 1 Demographic characteristics of the generated virtual population and the reference population (23–25).

Virtual population
(N=500)

Reference populationa

(N=1,020) p-valueb

Sex (% females) 34.4 34.4 NA

Age (years) 46.03 ± 14.76 45.53 ± 13.23 0.40

Height (cm) 170.67 ± 12.54 -c NAc

Weight (kg) 89.58 ± 23.87 90.73 ± 22.71 0.26

BMI (kg/m2) 30.99 ± 8.68 30.48 ± 7.07 0.11
fro
Values are mean (± standard deviation) unless otherwise stated. Boxplot representations can be found in Supplementary Figure S2 in S1 File.
BMI, Body mass index; NA, Not applicable.
aValues taken from the CIMPASI I, CIMPASI II and CIMPACT clinical trials.
bCalculated with the unpaired two-tailed Student’s T-test.
cFor demographic data not provided in the clinical trials, European mean values were used for modelling.
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differences were observed for height (Wilcoxon rank sum test, p=

0.802) or for age (Wilcoxon rank sum test, p= 0.226). Additionally,

the vPop was created to include comorbid patients according to

real-world data (Figure 2B), achieving a population of 87%

moderate-to-severe psoriasis patients suffering at least one

comorbidity. The 500 virtual patients, defined by their

characteristics, were submitted to PBPK and SB mechanistic

modelling of the two dosage regimens of CZP (Figure 2A),

obtaining two arms of models for the same patients.
3.2 Physiologically based pharmacokinetic
models fitted literature data

Several Cmax concentration datapoints were used to fit the

PBPK models: 200 mg dose Cmax, 400 mg dose Cmax (67), and 400

mg initial dose followed by 200 mg doses until achieving Cmax at

the steady state (95). Additionally, clearance-related datapoints

were extrapolated and used to refine the model (68). The

resulting PBPK models adjusted to all reported Cmax values and

extrapolated clearance data points with an R2 > 0.95 (Figure 3). The

calculated Tmax, half-life, and Cmax parameters for the standard-

patient (75 kg, 170 cm, 40 years old) model were similar to literature

values (Supplementary Table F in the S2 file).
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3.3 SB and QSP models were able to
reproduce known biological and
clinical activity

The MoA of CZP in our vPop (QSP models) presented a mean

accuracy value of 91.51% with respect to the training information.

These simulations took into account the whole available data on

pathologies, drugs, and the populations’ characteristics. Once built,

the potential of QSP models to reproduce clinical and molecular

data was tested.

We evaluated the psoriasis tSignal in models developed for the

different psoriasis drugs to assess the correlation between the literature-

based psoriasis definition and clinical observations (i.e., PASI75

scores). We identified a list of 115 proteins out of the 124 original

psoriasis protein effectors (Supplementary Table A in S2 File) that,

when measured together using the tSignal, correlated with |r|=0.85 to
PASI75 measurements of (Supplementary Figure S3 in S1 File).

We analyzed the tSignal calculated from the optimized psoriasis

definition of the CZP models developed for the virtual patient

population. The tSignal was then compared with the predicted

protein activity of known psoriasis severity-associated proteins. The

predicted protein activity of 12 proteins were identified to correlate

to the TPMS-psoriasis tSignal, 9 of them presenting moderate

correlation (|r|>0.5) for both dosing schemes (Table 2).
A B

C

FIGURE 2

(A) Study branch scheme, (B) Comorbidity frequency distribution and (C) BMI distribution by sex. CZP, Certolizumab pegol; NAFLD, Non-alcoholic
fatty liver disease; PsA, Psoriatic arthritis; BMI, Body mass index.
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A B
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FIGURE 3

(A) PBPK model representation. (B-D) Comparison of CZP concentration in blood between literature’s Cmax values and extrapolated datapoints and
the simulated curve using the PBPK model, generated from a standard adult patient, for: (B) 200 mg single dose of CZP (67); (C) 400mg single dose
of CZP (67); and (D) 3 x 400 mg loading doses + 4 x 200mg doses (95). CZP, Certolizumab pegol; PBPK, Physiologically based pharmacokinetic.
TABLE 2 Evaluation of correlation of predicted protein activity of proteins previously shown to correlate with psoriasis clinical severity (measured
according to PASI) with tSignal.

Gene name UniProt code
CZP 200 mg CZP 400 mg

Reference to psoriasis severity
Rho (r)a FDR q valuea Rho (r)a FDR q valuea

IFNG P01579 -0.77 4.80E-97 -0.75 8.06E-90 (96)

S100A9 P06702 -0.76 1.50E-92 -0.75 7.88E-93 (97–99)

FLT1 P17948 -0.68 1.07E-67 -0.70 8.54E-74 (100)

VEGFA P15692 -0.66 5.82E-64 -0.63 1.46E-57 (100–103)

NAMPT P43490 -0.65 1.82E-59 -0.63 1.16E-55 (104)

SLC2A1 P11166 -0.64 3.11E-58 -0.56 3.83E-42 (105)

PRL P01236 -0.57 4.28E-43 -0.56 3.20E-42 (106)

MMP9 P14780 -0.54 1.47E-38 -0.66 4.75E-65 (107)

CRP P02741 -0.53 1.06E-36 -0.55 4.06E-40 (108–111)

IL1B P01584 -0.47 1.36E-28 -0.51 9.23E-34 (112, 113)

LEP P41159 -0.43 8.75E-24 -0.36 3.55E-17 (114)

TNF P01375 -0.33 5.79E-14 -0.64 6.52E-59 (112, 115, 116)
F
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Calculated for the two dosing schemes (CZP 200 mg and 400 mg).
CZP, Certolizumab pegol; FDR, False Discovery Rate; PASI, Psoriasis Area Severity Index.
aPearson’s correlation Rho and the respective adjusted p-value are indicated. Only results with non-negligible correlation are presented (|Rho|>0.3).
Grey-shaded genes show strong or moderate correlation to tSignal for both dosing schemes. Correlation strength: strong – |rho|>0.8; moderate – 0.8>|rho|>0.5; low – 0.5>|rho|>0.3; negligible
– |rho|<0.3.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1212981
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coto-Segura et al. 10.3389/fimmu.2023.1212981
We observed a strong correlation between the optimized

psoriasis tSignal measure and the original psoriasis tSignal (i.e.

considering the complete response) within the CZP models in the

virtual patients population (r>0.99 for both dosing schemes).
3.4 Patient-specific QSP mechanistic
models can be clustered according to their
molecular variability

To identify distinct mechanistic response patterns to CZP, we

performed clustering analysis on the individualized patient models’

response to the drug using the predicted protein activity as a

measure of variability. Several combinations of dimensionality

reduction and clustering algorithms were applied, and the best

model according to Hopkins (0.84), Dunn (0.09), and Jaccard

Bootstrap (0.53) indexes was selected. The resulting model

involved a hierarchical clustering algorithm with Euclidean

distance and average aggregation function, using a five

dimensions reduction space after MDS with Spearman coefficient

as distance. This model identified three mechanistic clusters as

optimal (Figure 4A) with a similar proportion of patients from both

dosage arms (Figure 4B). Clusters were represented using the two

main dimensions of MDS (Figure 4A), which, combined, explained

the observed variability of 63.55%. According to Euclidean distance,
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all three clusters were at a similar distance from each other, with

cluster 3 being the most distant among them (Supplementary Table

G in the S2 file).

Clustering was found to be associated with differences in the

dose-normalized tSignal. Cluster 1 showed a higher signal (with

respect to the mean signal for the entire population per branch) than

the rest of the samples (Student’s T-test, p< 0.001), while cluster 2

presented the lowest value (Student’s T-test, p< 0.001). To further

characterize the clusters, additional comparison analyses were

performed to identify potential differences regarding the

demographic characteristics within the clusters. When comparing

each cluster against the rest, cluster 1 was found to accumulate the

highest ratio of females (Chi-squared test, p< 0.001) and the lowest

height and weight values (Student’s T-test p< 0.001). On the other

hand, cluster 2 presented a higher percentage of males and the highest

values for weight and BMI (Student’s T-test p< 0.001) (Table 3).

The proportion of patients suffering from comorbidities in each

cluster was also evaluated and resulted in statistically significant

findings. Cluster 2 showed a higher frequency of obese patients

(Fisher test p< 0.001) than the other clusters. Conversely, cluster 1

had more patients suffering from diabetes type II and NAFLD

(Fisher test p< 0.001) than the remaining clusters. Finally, cluster 3

stood out by accumulating all non-comorbid patients, comprising

the lowest frequency of patients with diabetes type II, hypertension,

NAFLD, and obesity (Fisher test p< 0.001).
A

B

FIGURE 4

Clustering analysis results. (A) Two-dimension representation of the best clustering setting result using all 1,000 patient models after MDS, and (B)
the branch incidence of each obtained cluster. MDS, Multidimensional scaling.
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To elucidate the underlying processes contributing to the

mechanistic differences between clusters, enrichment analyses

were conducted for the proteins from all models that differed in

their mean predicted activity value more than 0.1 from the overall

value in each cluster (Wilcoxon rank-sum test, FDR q< 10E-4,

Supplementary Table H in the S2 File) (Figure 5, Supplementary

Table I in the S2 File). In order to consider the direction of the

differences, separate enrichment analyses were conducted for

proteins exhibiting higher activity (UP) and lower activity

(DOWN) within in each cluster, as compared to the overall

model solutions (Supplementary Table H in the S2 File).

According to the distance analysis, cluster 3 shared only a few

enriched processes with clusters 1 or 2, which were related to

signaling by cAMP and G proteins (Figure 5A). Clusters 1 and 2

demonstrated a similar profile of processes, although with an

opposite modulation tendency compared to the mean population.

Within the least active processes in cluster 1 (Figure 5B), the main

components were integrin and adhesion-related pathways,

including processes related to early development (formation of

primary germ layer, gastrulation, embryonic morphogenesis,

endoderm formation, endoderm development, endodermal cell

differentiation, mesodermal cell differentiation). Angiogenesis-

related pathways (positive regulation of angiogenesis, positive

regulation of vasculature development) were also found among the

least active processes in cluster 1. On the contrary, Wnt-related

pathways were the least active in cluster 2 (Figure 5C) and included

epithelial formation pathways (morphogenesis of epithelium,

morphogenesis of embryonic epithelium).

By applying feature selection and classification algorithms, we

successfully identified proteins whose predicted activity allowed the

differentiation of mechanisms within each cluster with a cross-

validated balanced accuracy of at least 0.8 (Table 4).
4 Discussion

In the present study, we applied an in silico technology to build

a QSP model of a clinical trial-like vPop with moderate-to-severe

psoriasis treated with two dosing schemes of CZP. We successfully

applied and combined different modelling approaches, namely: (i)

an algorithm to generate vPop in accordance to RCT reference

population values and comorbidity frequencies in real-world

populations; (ii) PBPK models of the dosing schemes of CZP in
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each virtual patient; and (iii) SB-based models of the MoA of the

drug, which provided outcomes that correlated with clinical efficacy

measures and previously reported molecular markers of psoriasis

severity (e.g. PASI score). Furthermore, we were able to identify

clusters of virtual patients based on their psoriasis-related protein

predicted activity when treated with CZP, which could help unravel

differences in the drug efficacy in diverse subpopulations, classified

according to the proteins involved in the disease’s MoA.

Utilizing epidemiological data, we successfully constructed a

virtual population (vPop) that closely resembled a randomized

clinical trial (RCT) population in terms of demographic

parameters and frequencies of comorbidities (23–25, 47–50).

Although the vPop compiled the anticipated demographic

parameters and comorbidity frequencies, the relationship between

these parameters was not taken into account. For instance, while

patients were allowed to have up to two or three comorbidities, and

obesity was assigned to individuals with a BMI>30, potential

associations between demographic characteristics and

comorbidities beyond these specific criteria were not considered.

Indeed, we obtained a 13% of non-comorbid patients with psoriasis;

this figure could not be verified because of the lack of

epidemiological information on psoriasis and overall comorbidity.

Moreover, it is possible that this percentage might be

underestimated due to the scarcity of patients with multiple

comorbidities in the dataset. In the same line, the number of

obese patients included was based on the BMI distribution of the

reference clinical trials (23–25), yielding 50% of obese patients in

our study. This number was higher than the frequency reported on

the clinical trials (around 40%), or the one that could be inferred

from epidemiological data on obesity and psoriasis (around 29%)

(12, 117). Thus, our method created a population enriched in obese

patients, while underestimating or neglecting the number of

extremely obese patients in real settings. The limitations

associated with the algorithm used to generate virtual populations

may impact the accuracy of conclusions regarding the percentage of

the population. However, these limitations do not affect the validity

of comparisons between different pharmacological strategies within

the same population (46).

Our PBPK and SB-based models demonstrated high accuracy in

reproducing known data. Through the identification of a subset of

psoriasis-related proteins within the literature-based psoriasis

definition, we successfully established a correlation between

clinical efficacy values from clinical trials testing psoriasis drugs
TABLE 3 Results of the comparison analysis between demographic characteristics within the clusters.

ID Age, years Height, cm Weight, kg BMI, kg/m2 Sex,
M:F ratio

1 46.46 ± 15.25 (0.537) 161.63 ± 10.85 (<0.001) 78.00 ± 23.23 (<0.001) 30.41± 10.37 (0.165) 0.39 (<0.001)

2 45.88 ± 14.18 (0.814) 177.45 ± 9.59 (<0.001) 101.83 ± 20.36 (<0.001) 32.61 ± 7.42 (<0.001) 0.83 (<0.001)

3 45.79 ± 14.79 (0.717) 171.51 ± 11.78 (0.131) 86.80 ± 21.75 (0.009) 29.75 ± 7.96 (0.001)
0.70

(0.028)
Figures are mean ± standard deviation (and p-values*).
*Student’s T-test: each cluster vs. rest of clusters.
BMI, Body mass index; ID, Cluster ID; M:F ratio, Male to female ratio. p-values in bold are those considered statistically significant (p< 0.05).
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(i.e., PASI75) and the model-derived psoriasis activity proxy [i.e.,

the tSignal (51)]. This subset contained the majority of the initially

identified proteins, further validating the accuracy of our approach.

When considering the CZP models in the virtual population, the

tSignal considering both definitions (original and optimized)

strongly correlated. In addition, the predicted activity of proteins

known to correlate with disease severity (measured with PASI), was

also found to correlate with the tSignal, including inflammatory

proteins [IL-1b (118, 119), TNFa (112, 115, 116), CRP (109–111,

120)], proteins related to skin immunological barrier and epithelial
Frontiers in Immunology 12
hyperplasia [S1009 (121–125), IFN-g (124, 126, 127)], angiogenic

proteins [VEGF/FLT1 (128), MMP9 (129)], adipokines [NAMPT

(104, 116)], leptin (114, 130, 131), sexual hormones [prolactin,

previously associated to autoimmune diseases (132)], and a glucose

metabolism protein related to both keratinocyte proliferation (133,

134) and T cell activity regulation (135, 136). These results

suggested that our models, and our psoriasis definition, could be

useful to answer drug efficacy questions.

In this sense, our observations of the unsupervised clustering of

patients regarding their predicted mechanisms match with
A

B C

FIGURE 5

Comparison of mechanisms of action enrichment analysis. (A) Network representation of the enrichment analysis results of the most differentially
modulated proteins in each cluster (C1, C2, and C3) with respect to the population mean and their relationship. Details on the least active processes
in (B) cluster 1 and (C) cluster 2.
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previously published data. Both our study and existing literature

consistently show that large morphometric characteristics (weight,

height, BMI), particularly obesity, are associated with a poorer

response to anti-TNF treatment (137–139). In line with our results,

age has not been found to affect the biologics’ effectiveness in

psoriasis (140). Interestingly, our models indicated a better response

to CZP in women, despite conflicting evidence in the literature

regarding the impact of sex on treatment efficacy for CZP and the

anti-TNF class (139, 141–148). Given that most previously

published data focused on adalimumab treatment, with limited

CZP data included, it remains unclear whether the observed sex

differences are specific to CZP, the entire anti-TNF class, or

influenced by biological or gender-based factors such as hormonal

levels, immunological status, age of diagnosis, or access to

treatment. They might also be explained by sex differences in

comorbidities. However, our population did not specifically

model the association between female sex, comorbidities, and

their clinical manifestations. Nevertheless, the impact of sex on

the response to CZP in psoriasis may involve complexities beyond

drug concentration differences, which were not captured by our

QSP models. This limitation highlights the need for further
Frontiers in Immunology 13
investigation. Our results on the impact of comorbidities,

especially regarding cluster 3 grouping all patients with psoriasis

and no comorbidities, suggested that co-occurrent comorbidities

could result in mechanistic differential response to treatment,

supporting the current tendency towards managing patients with

a multi-disciplinary approach (16). Further molecular analysis of

these models, beyond the scope of this study, could uncover relevant

hypotheses in this regard.

The molecular evaluation of the clusters showed that there is a

molecular diversity within the model solutions and virtual patients to

CZP mechanism of action, and that the processes involved in this

diversity are related to psoriasis development. Our results showed

that CZP treatment could regulate integrin and adhesion-related

processes associated with immune cells recruitment and homing

(149), as well as keratinocyte function (150–152) and tissue

differentiation. While anti-TNF treatment has been related to the

modulation of inflammatory cell recruitment and homing, its effect

on integrin regulation has not been well established. Since the

regulation of integrins and their interaction partners is key for

homeostasis of the skin (151), a detailed evaluation of these results

is granted for understanding whether the downregulation of this
TABLE 4 Psoriasis effectors that best classify the patients in each cluster.

Gene name UniProt code
Mean normalized predicted protein activity value BACC

C1 C2 C3 C1 vs C2 C1 vs C3 C2 vs C3

ITGB1 P05556 -0.15 0.19 -0.07 0.964 0.662 0.841

ITGAE P38570 -0.12 0.09 0.01 0.966 0.780 0.702

ITGA1 P56199 -0.18 0.24 -0.09 0.968 0.635 0.845

KDR P35968 -0.06 0.07 -0.02 0.928 0.685 0.764

S100A9 P06702 -0.17 0.04 0.11 0.923 0.913 0.653

ITGB7 P26010 -0.17 0.24 -0.11 0.974 0.623 0.877

ERAP1 Q9NZ08 0.06 0.05 -0.11 0.510 0.958 0.959

IL4 P05112 -0.10 -0.01 0.11 0.667 0.885 0.809

DEFB4A O15263 0.08 0.09 -0.18 0.526 0.902 0.919

FLT4 P35916 -0.01 0.01 -0.01 0.897 0.587 0.840

CXCL8 P10145 -0.19 0.03 0.14 0.811 0.868 0.645

FLT1 P17948 -0.03 0.04 -0.01 0.890 0.620 0.798

IL18 Q14116 0.02 0.08 -0.10 0.599 0.834 0.869

CCL20 P78556 0.04 0.06 -0.10 0.543 0.854 0.892

ICAM1 P05362 -0.13 -0.05 0.17 0.633 0.838 0.799

PPARD Q03181 -0.03 -0.03 0.07 0.561 0.823 0.832

IFNA2 P01563 -0.01 -0.01 0.03 0.526 0.844 0.837

DEFB103A P81534 -0.02 -0.02 0.04 0.523 0.837 0.823

THBS1 P07996 0.02 0.02 -0.05 0.520 0.810 0.829

EFNA1 P20827 -0.02 -0.03 0.06 0.507 0.819 0.819
fr
Only proteins showing a BACC> 0.8 (highlighted in bold font, cross-validated p< 0.001) to classify between, at least, two of the clusters are included. The mean normalized predicted protein
activity value for each cluster is provided, and values with a difference of more than 0.1 in absolute value with respect to the population mean are highlighted. Values above the mean of the
remaining solutions are shaded in green and those below in red.
BACC, Cross-validated balanced accuracy; C1, C2, and C3: Cluster 1, Cluster 2, and Cluster 3.
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1212981
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coto-Segura et al. 10.3389/fimmu.2023.1212981
activity could be relevant to CZP mechanistic efficacy. Our models

highlight that modulating the Wnt pathway, involved in psoriasis

development (153) through its role in hyperproliferation of

keratinocytes and angiogenesis (154–156), could be related to anti-

TNF efficacy. TNFa has been reported to reduce the canonical Wnt/

b-catenin pathway through DKK-1 induction (157), linking

inflammation, particularly TNF, to bone pathology (158). Anti-

TNF treatment in rheumatic conditions, such as psoriatic arthritis

and rheumatoid arthritis, has been found to modulate this pathway

(159–162). Non-canonical Wnt signalling pathways have been

recently highlighted as relevant in inflammatory disorders (e.g.,

psoriasis and psoriatic arthritis) (163, 164). The reduced activity of

these pathways in cluster 2 seemed to indicate suboptimal TNF

inhibition. These findings might pinpoint the importance of

effectively controlling the inflammatory component of psoriasis to

prevent the development of rheumatic complications, including

psoriatic arthritis. Given that the identified clusters presented

different tSignal values, these results could point to different

psoriasis pathophysiological mechanisms or CZP therapeutic

mechanisms that could be determinants of clinical efficacy,

although prospective validation is required.

Our study can be framed within the increasing tendency to

leverage recently available high-performance computing

technologies in the field of biomedicine. The use of these

technologies, combined with regulatory frameworks, will advance

precision medicine pipelines, enabling personalized healthcare while

reducing, refining, and partially substituting animal and human

experimentation (165). According to the MID3 guidelines

definitions, this theoretical model yielded conclusions classified as

MEDIUM, suggesting its potential as a reliable hypothesis-generation

tool capable of providing molecular insights. However, further

experimental and clinical assays are necessary before its translation

into clinical practice.

In our study, we generated subject-specific models from

population information deconvolution. While the use of population

aggregated values solves the potential ethical issues implied in

managing individualized patient data (165), it entails the limitation

of the patients not being real patients, precluding a conclusion for

personalized medicine. As previously discussed, potential

associations between the evaluated factors, impacting population

frequencies and molecular/clinical differences, were not considered

in our study (e.g. co-occurrence of comorbidities, increased risk for

occurrence of comorbidities depending on the patient profile, or

associations between patient characteristics not occurring in general

population). Other factors, such as smoking or alcohol consumption,

which are challenging to define at the molecular level, were neither

taken into consideration. The use of demographic data and

distributions from real-world psoriasis registries can help correct

biases in RCT values, including those related to inclusion and

exclusion criteria (e.g. exclusion of females of childbearing age).

However, it is important to note that this approach has limitations

in evaluating highly specific subpopulations and relies on the

assumptions made for each profile’s modeling (165). This

methodology can build true patient-specific models when the

necessary information is available, such as through real-world data

registries. With computational power as the only limitation, our
Frontiers in Immunology 14
approach allows for the recruitment of a great number of patients,

which can be difficult, costly, and even not feasible in a conventional

clinical trial setting. Moreover, paired analysis of the same subject in

relation to different interventions, akin to a cross-over study, can be

conducted without requiring a washout period. This approach avoids

even the slightest discrepancies in the characteristics of the

populations included in each trial arm.

Finally, although we made efforts to gather extensive

information on patients, disease, and treatments at the molecular

and clinical level, and established benchmarks for validation, it is

important to acknowledge that our approach, like any modelling

technique, was constrained by the available information at the time

of the study (46, 165). While our models were deemed suitable

based on the available data, the presented models and conclusions

are subject to updates and improvements over time as new

prospective data and information are generated. The SB and QSP

models were built by incorporating the whole human protein

network and a wide range of drug-pathology relationships

(Supplementary Table E in the S2 File) (51). This approach

achieved an accuracy exceeding 90%, demonstrating the models’

ability to generalize and accommodate new information beyond the

specific data compiled for psoriasis and the studied drugs.
5 Conclusion

Our study provided patient-specific QSP models of the MoA of

CZP, a PEGylated Fab humanized monoclonal antibody against

TNF-alpha, in a vPop of patients with moderate-to-severe psoriasis,

based on PBPK and SB models. The models reproduced clinical

(i.e., PASI scores from different psoriasis treatments) and molecular

(i.e., known psoriasis severity markers) efficacy features, supporting

the use of these approaches to build hypotheses-generating models.

The models’ analyses allowed to identify clusters of MoA solutions

regardless of the dosing scheme, inferring the existence of dose-

independent MoA differences between virtual patients, potentially

involving developmental processes, such as angiogenesis and the

Wnt pathway. The presented findings highlight the potential of in

silico population- and patient-specific modeling approaches in

advancing the study of diverse and complex diseases like

psoriasis. These approaches enable detailed investigation of

distinct pathophysiology and drug mechanisms. However, it is

important to recognize that the results obtained from these

models should be considered as hypotheses, requiring further

prospective studies for clinical applicability. Nonetheless, such

modeling approaches have the potential to reduce and refine pre-

clinical and clinical experimentation and provide valuable data in

the post-marketing setting.
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The spectrum of mild to severe psoriasis vulgaris is defined by a common activation of
IL-17 pathway genes, but with key differences in immune regulatory genes. J Invest
Dermatol (2016) 136(11):2173–82.

58. Junet V, Farrés J, Mas JM, Daura X. CuBlock: a cross-platform norMalization
method for gene-expression microarrays. Bioinformatics (2021) 37(16):2365–73.

59. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, et al.
Estimating dataset size requirements for classifying DNA microarray data. J Comput
Biol (2003) 10(2):119–42.

60. Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size
required for classification performance. BMC Med Inform Decis Mak (2012) 12:8.

61. Allen RJ, Rieger TR, Musante CJ. Efficient generation and selection of virtual
populations in quantitative systems pharmacology models. CPT Pharmacometrics Syst
Pharmacol (2016) 5(3):140–6.

62. ESS Round 7: European Social Survey Round 7 Data. Data file edition 2.2. NSD -
Norwegian Centre for Research Data, Norway - Data Archive and distributor of ESS data
for ESS ERIC. (2014). Available at: https://www.europeansocialsurvey.org/data/
download.html?r=7.

63. Brochot C, Quindroit P. Modelling the Fate of Chemicals in Humans Using a
Lifetime Physiologically Based Pharmacokinetic (PBPK) Model in MERLIN-Expo. In:
Ciffroy P, Tediosi A, Capri E editors. Modelling the Fate of Chemicals in the
Environment and the Human Body. Cham: Springer International Publishing (2018).
p. 215–57.

64. Ciffroy P, Alfonso B, Altenpohl A, Banjac Z, Bierkens J, Brochot C, et al.
Modelling the exposure to chemicals for risk assessment: a comprehensive library of
multimedia and PBPK models for integration, prediction, uncertainty and sensitivity
analysis - the MERLIN-Expo tool. Sci Total Environ (2016) 568:770–84.
frontiersin.org

http://www.medicines.org.uk/emc/medicine/32367
https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125160s237lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125160s237lbl.pdf
https://www.ema.europa.eu/en/documents/product-information/cimzia-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/cimzia-epar-product-information_en.pdf
https://holford.fmhs.auckland.ac.nz/docs/simulation-in-drug-development-good-practices.pdf
https://holford.fmhs.auckland.ac.nz/docs/simulation-in-drug-development-good-practices.pdf
https://www.fda.gov/media/71364/download
https://www.ema.europa.eu/en/documents/presentation/presentation-role-modelling-simulation-regulatory-decision-making-europe_en.pdf
https://www.ema.europa.eu/en/documents/presentation/presentation-role-modelling-simulation-regulatory-decision-making-europe_en.pdf
https://www.ema.europa.eu/en/documents/presentation/presentation-role-modelling-simulation-regulatory-decision-making-europe_en.pdf
https://www.europeansocialsurvey.org/data/download.html?r=7
https://www.europeansocialsurvey.org/data/download.html?r=7
https://doi.org/10.3389/fimmu.2023.1212981
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coto-Segura et al. 10.3389/fimmu.2023.1212981
65. Murphy JE. Clinical Pharmacokinetics. 6th Edition: American Society of Health-
System Pharmacists. (2016). Available at: https://www.ashp.org/-/media/store-files/
p5365-frontmatter.ashx.

66. Holford N. Absorption and half-life. Transl Clin Pharmacol (2016) 24(4):157–60.

67. ASSESSMENT REPORT FOR Cimzia. (2009). Available at: https://www.ema.
europa.eu/en/documents/assessment-report/cimzia-epar-public-assessment-report_en.

68. van Eerden RAG, Oomen-de Hoop E, Noordam A, Mathijssen RHJ, Koolen
SLW. Feasibility of extrapolating randomly taken plasma samples to trough levels for
therapeutic drug monitoring purposes of small molecule kinase inhibitors. Pharm
(Basel) (2021) 14(2).

69. The MathWorks Inc. MATLAB and SimBiology Toolbox Release 5.7. Natick,
MA: The MathWorks Inc. (2017).

70. Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, Valls R, et al. In-
silico drug repurposing study predicts the combination of pirfenidone and melatonin as
a promising candidate therapy to reduce SARS-CoV-2 infection progression and
respiratory distress caused by cytokine storm. PloS One (2020) 15(10):e0240149.
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Gutiérrez L, et al. Elucidating the mechanism of action of the attributed
immunomodulatory role of eltrombopag in primary immune thrombocytopenia: an
in silico approach. Int J Mol Sci (2021) 22(13).

72. Romeo-Guitart D, Forés J, Herrando-Grabulosa M, Valls R, Leiva-Rodrıǵuez T,
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