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ER stress: an emerging regulator
in GVHD development

Hee-Jin Choi and Xue-Zhong Yu*

Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center,
Medical College of Wisconsin, Milwaukee, WI, United States
Allogeneic hematopoietic cell transplantation (allo-HCT) is a promising

therapeutic option for hematologic malignancies. However, the clinical

benefits of allo-HCT are limited by the development of complications

including graft-versus-host disease (GVHD). Conditioning regimens, such as

chemotherapy and irradiation, which are administered to the patients prior to

allo-HCT, can disrupt the endoplasmic reticulum (ER) homeostasis, and induce

ER stress in the recipient’s cells. The conditioning regimen activates antigen-

presenting cells (APCs), which, in turn, activate donor cells, leading to ER stress in

the transplanted cells. The unfolded protein response (UPR) is an evolutionarily

conserved signaling pathway that manages ER stress in response to cellular

stress. UPR has been identified as a significant regulatory player that influences

the function of various immune cells, including T cells, B cells, macrophages, and

dendritic cells (DCs), in various disease progressions. Therefore, targeting the

UPR pathway has garnered significant attention as a promising approach for the

treatment of numerous diseases, such as cancer, neurodegeneration, diabetes,

and inflammatory diseases. In this review, we summarize the current literature

regarding the contribution of ER stress response to the development of GVHD in

both hematopoietic and non-hematopoietic cells. Additionally, we explore the

potential therapeutic implications of targeting UPR to enhance the effectiveness

of allo-HCT for patients with hematopoietic malignancies.
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1 Introduction

The endoplasmic reticulum (ER) is one of the largest organelles found within the cells

of eukaryotic organisms and is the main place for the synthesis, folding, and modification

of secretory or transmembrane proteins (1, 2). However, various conditions including

hypoxia, oxidative stress, infection, or cancer might hamper the ER homeostasis and induce

the ER stress (3). Cells activate a conserved adaptive signaling pathway, known as the

unfolded protein response (UPR), to manage ER stress and control protein quality (4).

Growing evidence indicates that UPR plays a significant role in the development and

progression of various diseases including cancer, diabetes, neurodegenerative disorders,

autoimmune diseases, and inflammatory (5–7). In this review, we focus on the regulation of
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the homeostasis and activation of hematopoietic and non-

hematopoietic cells by the ER stress response and its potential

impact on the development of GVHD.
2 Molecular mechanism of ER
stress response

There are three primary UPR mediators including inositol-

requiring enzyme-1 (IRE-1), protein kinase R (PKR)-like

endoplasmic reticulum kinase (PERK), and activating

transcription factor 6 (ATF6) (8). In the rest status, chaperon

protein Bip binds to the ER luminal domain of three mediators,

preventing their activation and keeping them in a monomeric,

inactive state. However, upon accumulation of misfolded proteins

within the ER lumen, Bip dissociates from PERK, IRE-1, and ATF6,

triggering their activation (9–11).
2.1 IRE-1

IRE-1 has two isoforms, namely IRE-1a and IRE-1b (12). IRE-

1a has a broader expression pattern across tissues and cell types than

IRE-1b, and it plays a major role in the UPR (13). The cytoplasmic

region of IRE-1a contains both Ser/Thr kinase and endoribonuclease

(RNase) domains (14). IRE-1a activation occurs through

oligomerization and trans-autophosphorylation, which induces a

structural change, ultimately activating the RNase domain (15).

Upon activation, IRE-1a cleaves a 26-nucleotide intron from the

mRNA encoding the transcription factor X-box binding protein-1

(XBP-1). This alteration results in expression of a more stable and

active form, referred to as XBP-1s (6). Upon binding to the UPR

element (UPRE) that contains the consensus sequence

TGACGTGG/A, XBP-1s functions as a transcription factor for

UPR-related genes (15). In addition, IRE-1a possesses the

distinctive capability of inducing IRE1-dependent decay (RIDD) of

mRNA, which helps to alleviate a stressed ER from the pressure of

newly synthesized proteins (16). Besides its nucleolytic activity, IRE-

1a also possesses signaling functions. For instance, it activates the

stress-induced Jun N-terminal kinase (JNK)2 and interacts with

components of the cell-death machinery, such as caspase-12 (17,

18). Increasing evidence demonstrates that non-coding RNAs,

including microRNAs (miRNAs), play significant roles in the ER

stress response. The activity of IRE-1a is commonly linked to the

suppression of miRNA accumulation due to its RNase function.

SeveralmiRNAs includingmiRs-17, 34a, 96, and 125b were shown to

repress the translation of pro-apoptotic proteins (19, 20).
2.2 PERK

PERK plays a dual role, able to detect the magnitude of ER stress

and initiate growth arrest for repair, or activate apoptosis when ER

stress becomes too severe (9). Upon activation, PERK undergoes

oligomerization and autophosphorylation in its cytosolic kinase

domain (8). Subsequently, PERK phosphorylates the eukaryotic
Frontiers in Immunology 02
translation initiation factor 2 (eIF2a), leading to the inhibition of

mRNA translation (15). On the other hand, specific mRNAs that

contain short open reading frames in their untranslated regions can

still be translated when eIF2 is phosphorylated. Among these

mRNAs is one that encodes the transcription factor ATF4 (21).

The C/EBP Homologous Protein (CHOP) and growth arrest and

DNA damage–inducible 34 (GADD34) are two significant target

genes that are regulated by ATF4 (21). If ER stress persists, CHOP

activates the genes responsible for encoding death receptor 5 (DR5)

and Bim, ultimately leading to apoptosis (22, 23). GADD34 functions

as a negative feedbackmechanism by encoding a protein phosphatase

1 (PP1) that counteracts PERK by dephosphorylating eIF2a (24).

The PERK signaling pathway also triggers the phosphorylation and

subsequent activation of the other transcription factor known as

nuclear factor erythroid 2-related factor 2 (NRF2) (25). PERK can

trigger the induction of various miRNAs including miR-211/204,

miR-708, miR-483 and miR-216b (26–29). However, the

implications of PERK-related activities on miRNA are contentious.

While some of miRNAs induced by PERK are associated with pro-

survival functions (26), the others, such as with miR-216b miR-483

andmiR-211-5p,may promote apoptosis (27–29). Conversely, PERK

can be directly targeted by certain miRNAs like miR-204 and miR-

1283, which, as a result, suppress PERK signaling (30, 31).
2.3 ATF6

ATF6 consists of a bZIP domain located in the cytosol and a stress-

sensing domain situated within the ER lumen (15). Upon ER stress

condition, ATF6 is enclosed within transport vesicles that detach from

the ER and carry it to theGolgi apparatus, where site-1 (S1P) and site-2

(S2P) proteases cleave ATF6 at two distinct sites in a sequential

manner (32). Subsequently, the released N-terminal cytosolic

segment of ATF6, known as ATF6(N), translocate to the nucleus

and triggers the activation of genes targeted by the UPR (21). ATF6

alsomodifies the levels of variousmiRNAs, such asmiR-721,miR-363,

andmiR-455, with some of thesemiRNAs beingdownregulated, which

could contribute to the increase of their corresponding mRNAs (33).
3 An overview of GVHD pathogenesis

The classification of GVHD as acute or chronic has traditionally

been based on the timing of its presentation, with a cutoff of 100

days after transplantation (34). The latest classification from the

National Institutes of Health (NIH) includes the identification of

late-onset acute GVHD (occurring after day 100) and an overlap

syndrome that exhibits characteristics of both acute and chronic

GVHD (35). The 2014 NIH Consensus Conference revised the

diagnostic and scoring criteria for cGVHD to provide a more

accurate measurement of the disease burden and facilitate further

research (36). The update clarified the definition of overlap chronic

GVHD, modified diagnostic criteria for organ system involvement,

revised organ-specific severity score, removed certain indicators,

and incorporated abnormalities not due to GVHD into the organ-

specific scores (36).
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3.1 Pathogenesis of acute GVHD

Acute GVHD (aGVHD) develops as a result of three underlying

processes (37). First, the administration of chemotherapy and

radiotherapy during the conditioning phase prior to graft infusion

can cause tissue damage and result in the release of various

molecular activators of the immune response that can enhance

the presentation of alloantigen by antigen-presenting cells (APCs)

in the host (38). Subsequently, in the early post-HCT phase, donor

T cells interact with host APCs, followed by donor APCs later on.

These interactions provide costimulatory signals that activate and

differentiate donor T cells into subtypes including T-helper (Th) 1,

T-cytotoxic (Tc) 1, and Th17/Tc17 (39). In the final step, the

cytotoxic effector T cells and phagocytes migrate towards target

organs and release inflammatory cytokines including IFN-g, TNFa,
IL-1b, IL-2, and IL-17, resulting in tissue damage (40).
3.2 Pathogenesis of chronic GVHD

The pathogenesis of chronic GVHD (cGVHD) also can be

characterized by three phases (41). The early phase of cGVHD is

marked by the rapid stimulation of non-hematopoietic cells, such as

fibroblasts and endothelial cells, alongwith innate immune cells. In this

stage, T cells become activated upon encountering APCs that increase

the expression of co-stimulatory molecules due to tissue damage

related to conditioning (42). The involvement of pathogenic Th17

cells has been suggested, as suppressing IL-17-producing cells through

programmed death 1 (PD-1) or IL-12 blockade leads to a reduction in

cGVHDsymptoms in the skin, liver, and salivary glands (43, 44). Phase

II is characterized by the adaptive activation of effector cells in the

immune system, especially T and B cells (41). Somatic hypermutation

in B cells leads to the production of autoreactive antibodies, which can

contribute to the development of cGVHD in the skin, bronchiolitis

obliterans, and liver damage (45). A crucial element in the

development of cGVHD is the damage to the thymus caused by

alloreactive T cells, resulting in the loss of the central tolerance loss and

release of autoreactive CD4+ T cells (46). The development of cGVHD

is facilitated by a lack of regulatory T cells (Tregs), regulatory B cells

(Bregs), and CD4+ iNKT cells (41). Abnormal tissue repair and

activation of fibroblasts are characteristic features of phase 3 (41).

The production of extracellular matrix collagen and biglycan by

activated fibroblasts leads to the cross-linking of collagen, resulting

in an elevation of tissue stiffness (47).
4 The contribution of UPR in
GVHD development

The underlying mechanism of GVHD is the recognition of the

host major or minor histocompatibility antigens by T cells. While

the T cells from the donor are the primary cause of GVHD, both the

donor and host APCs can exhibit host antigens to the donor T cells

(40). The induction of GVHD depends mainly on host APCs, but

donor APCs could enhance this effect (48, 49). As a result of HCT

conditioning and GVHD, MHC expression is induced on the
Frontiers in Immunology 03
endothelial and epithelial cells of target tissues, resulting in the

acquisition of functional antigen-presenting activity (50, 51). Hence,

it is possible for both hematopoietic and non-hematopoietic APCs

in the host to trigger GVHD. Other than the immune system, the

skin, liver, lung and intestine are the main organs that can be

affected in GVHD (52). Due to the presence of numerous highly

secretory cells, ER stress and UPR have significant roles in various

biological processes and are involved in the pathogenesis of these

tissues (53, 54). Therefore, we outline below how the UPR impacts

non-hematopoietic cells as well as regulates hematopoietic immune

cells in the development of GVHD.
4.1 Role of UPR in hematopoietic cells

4.1.1 Dendritic cells
The induction of acute GVHD requires hematopoietic APCs, and

due to their efficiency, DCs are considered the most important APC

population (40, 48). Conventional dendritic cells (cDCs) are the

predominant DC subset, and they can be further divided into cDC1

and cDC2 types (3). cDC1s express CD8a and have a specialized

ability to cross-present exogenous antigens to CD8+ T cells while

cDC2s express CD11b and have a critical role in activating CD4+ T

cells (3). Plasmacytoid dendritic cells (pDCs) make up a minor

population of DCs, but they have a unique ability to sense nucleic

acids from pathogens and produce type I interferon (55). One of the

initial studies demonstrated the association between ER stress andDCs

and revealed a significant impairment in the development and survival

of DCs upon XBP-1 deletion in the hematopoietic compartment (56).

The authors reported that pDCs exhibited notably higher levels of

XBP-1 splicing compared to cDCs andweremore adversely affected by

XBP-1 deficiency (56). A more recent study, however, demonstrated

that cDCs exhibit the highest IRE1a activity in the ER stress-activated

indicator (ERAI) mouse model (57). Moreover, the deletion of XBP-1

in cDC1s disrupted antigen presentation by directly modulating the

expression of key proteins involved in loading antigens onto the MHC

complex (57, 58). Interestingly, the loss of XBP1 in mucosal cDC1s

affects tissue-specific survival differently; specifically, lung cDC1s die

while intestinal cDC1s can survive (59). These results imply that the

threshold for IRE1 activation varies across different mouse strain,

environment, tissues, and DC subtypes.

In the presence of ER stress, treatment with toll-like receptor

(TLR) agonists results in a substantial increase in CHOP activation

and its direct binding to the promoter region of the pro-

inflammatory cytokine IL-23p19 in DCs (60). Expanding and

maintaining the Th17 population, crucial for the development of

acute and chronic GVHD, is significantly influenced by IL-23 (61).

The activation of STAT3 signaling by IL-23 leads to an increase in

the expression of RORgt, the key transcription factor of Th17 cells

(62). In GVHD, the targeted deletion of XBP-1s in DCs effectively

inhibits alloreactive CD4 T cells and the pharmacological inhibition

of XBP-1 offers protection against GVHD (63). The authors also

presented evidence that this phenomenon is specific to GVHD since

the T cell response within the tumor was not impacted by XBP-1

deficient DCs (63). Thus, ER stress may serve as a critical mediator

for regulating DCs functions by controlling antigen presentation
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and cytokine production (Figure 1). However, the impact on

GVHD through specifically targeting XBP-1 in DCs remains to be

investigated. Additional research is required to gain a

comprehensive understanding of how UPR distinguishes between

the alloreactive response and antitumor activity.

4.1.2 Macrophages
Macrophages become primed due to the allogeneic reaction and

production of inflammatory cytokines and chemokines, which lead

to the characteristic symptoms of acute GVHD (39, 64). Moreover,

activated macrophages that produce TGF-b and platelet-derived

growth factor a (PDGF-a) promote aberrant tissue repair,

resulting in the activation of fibroblasts in cGVHD (41). Both TLRs

and NOD1/NOD2 receptors directly activate IRE-1/XBP-1 signaling

in macrophages, enabling them to achieve a pro-inflammatory

response (65, 66). In addition, IRE-1a regulates mitochondrial

dysfunction via nucleotide-binding domain and leucine-rich repeat

containing (NLRP3)-caspase-2, resulting in inflammasome

activation and IL-1b production (67). Macrophage polarization

was also mediated by IRE-1a, with promotion of M2 polarization

and decrease inM1polarization observed upon abrogation of IRE-1a
(68). In GVHD, the polarization ofM1macrophagesmediated by the

NLRP3 inflammasome drives the differentiation of Th1 and Th17

cells, leading to the disease progression (69). The role of ATF6 in

macrophages was demonstrated to regulate the TLR-mediated pro-

inflammatory response in ER-stressed macrophages by activating
Frontiers in Immunology 04
NF-kB and limiting Akt activation (70). These findings prove that ER

stress response plays an active role in the pathophysiological

mechanisms of macrophages by regulating cytokine expression and

polarization (Figure 1). Therefore, while the direct impact of UPR in

macrophages on GVHD development is not yet clear, it is possible

that inhibiting UPR in macrophages could potentially provide

benefits for GVHD prevention. Additional studies are necessary to

determine how the UPR contributes to the development of GVHD

through regulating macrophages.

4.1.3 T cells
Donor T cells that react against host tissues are primarily

responsible for causing GVHD (37). Moreover, the differentiation of

CD4 T cells into different lineages of Th cells, including Th1 and Th17

cells, is closely associated with the development of GVHD (37).

Previous studies have reported that the regulation of Th2 and Th17

differentiation is mediated by eIF2a and XBP-1 signaling pathways,

respectively (71). In addition, activation of the IRE1-XBP1 pathway

was observed during acute infection and found to be crucial for the

differentiation of CD8 T cells into effector T cells (72). However, the

role of the UPR in the activation of anti-tumoral T cells remains a topic

of controversy. In certain tumormodels, tumor cells triggered theUPR

to impede the anti-tumor activity of T cells (73–75). Elevated CHOP in

tumor infiltrated CD8 T cells directly cause repression of T-bet

expression, a master regulator of effector T cell function (73). The

accumulation of cholesterol in tumor-infiltrating CD8 T cells induced
FIGURE 1

The impact of the ER stress response on the development of GVHD. The modulation of hematopoietic and non-hematopoietic cell function in the
development of GVHD is significantly influenced by ER stress response. XBP-1 can interfere with the generation of antimicrobial peptides, change
the microbiome composition, and trigger the apoptosis of intestinal epithelial cells (IECs). The IRE-1a/XBP-1 signaling pathway is crucial for both the
development and antigen-presenting ability of dendritic cells (DCs). Additionally, CHOP plays a role in IL-23 production by DCs, which is important
for Th17 differentiation in the development of GVHD. The activation of IRE-1 and ATF6 is related to the polarization and pro-inflammatory activity of
macrophages. IRE-1 activation can induce T cell exhaustion and repress mitochondrial respiration, while PERK activation can reduce T-bet
expression and subsequently decrease Th1 activation. However, mild activation of PERK can induce protective mitophagy and enhance T cell
function. The induction of RIDD through XBP-1 inhibition resulted in a decrease of B cell pathogenicity. Activation of myofibroblast, which leads to
accelerated fibrosis, is associated with the activation of IRE-1 and ATF6. Taken together, targeting the ER stress response may be an effective
approach for controlling GVHD and malignant relapse.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1212215
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi and Yu 10.3389/fimmu.2023.1212215
XBP-1 signaling, which was linked to increased expression of immune

checkpoints and functional exhaustion of these T cells (75). In ovarian

cancer, IRE-1a-XBP-1 signaling pathway plays a crucial role in

regulating T cell function, including mitochondrial activity (74). It

has been demonstrated that XBP-1 regulates the number of glutamine

carriers, which in turn restricts the inflow of glutamine required to

maintain T cell mitochondrial respiration under glucose-deprived

conditions (74). On the contrary, a moderate activation of PERK by

carbonmonoxide led to the suspension of protein translation, induced

protective mitophagy and enhanced mitochondrial function,

ultimately boosting the efficacy of anti-tumor T cells (76). In general,

the function of UPR in T-cell allogeneic response remains largely

unknown. As the UPR can enhance or suppress T cell function

depending on the intensity of ER stress and the microenvironment

(Figure 1), additional research is required to reveal the role of UPR in

T-cell pathogenicity in the development of GVHD.

4.1.4 B cells
The role of B cells in controlling the pathogenesis of aGVHD

remains controversial (77, 78). However, in the case of cGVHD, there

is a significant body of evidence suggesting an interplay between

donor T and B cells in disease pathogenesis (47). Studies have shown

that the IRE-1a/XBP-1s signaling pathway plays a crucial role in both
the development of B cells and the differentiation of plasma cells,

which are responsible for producing high levels of immunoglobulin

(Ig) (79, 80). We have shown that deletion of XBP-1 specifically in B

cells reduces the severity of cGVHD (81). This reduction is associated

with impaired B-cell functions, including decreased expression of co-

stimulatory factors, reduced Ig production, and impaired

differentiation of germinal center cells, as well as reduced T-cell

responses (81). Interestingly, the reduced pathogenicity of XBP-1-

deficient B cells in cGVHD can be reversed by restricting RIDD

activity (82). Furthermore, restraining RIDD activity in B cells alone

led to increased severity of chronic GVHD (82). These findings

indicate that RIDD is an important mediator in reducing the

pathogenesis of cGVHD by targeting XBP-1s (82) (Figure 1).

While the significance of IgG has been reported, the impact of

IgM, a notable target of RIDD in B cells, on GVHD is not well

understood (83, 84). Therefore, additional research is necessary to

ascertain the role of RIDD-mediated IgM in B cells and its influence

on GVHD development. In addition, despite B cells being able to

activate all three branches of theUPR in response to pharmacological

inducers, there is limited research on the role of PERK andATF6 in B

cells and their contribution to the development of GVHD (85), which

deserves further studies.
4.2 Role of UPR in non-hematopoietic cells

4.2.1 Intestinal epithelial cells
The intestinal epithelium serves as a vital intermediary and

barrier between the luminal environment and the immune system

of the host due to the presence of numerous highly secretory cells

(54). Intestinal epithelial cells (IECs) are persistently exposed to

microbiota, toxins, andmetabolites, which lead to the production of a

significant quantity of cytokines and other proteins, causing ER stress
Frontiers in Immunology 05
(86). Intestinal inflammation is primarily linked to the IRE-1a-XBP1
branch of the UPR pathway, as evidenced by the heightened

susceptibility of induced colitis in IECs deficient for IRE-1a or

XBP-1 (7, 13). On the other hand, in the context of GVHD, ER

stress is induced in intestinal cells, which can disrupt the production

of anti-microbial peptides, alter the composition of the microbiome,

and affect the activity of pro-apoptotic pathways (87). Therefore,

either genetic or pharmacological blockage of IRE-1/XBP-1 signaling

can reduce the severity of GVHD by directly protecting the intestinal

epithelium (87) (Figure 1). Additional research is required to

determine the underlying mechanisms by which IRE-1/XBP-1

regulates gut epithelium differentially in GVHD and colitis models.

4.2.2 Fibroblast
The activation of myofibroblasts leads to excessive production

and deposition of collagen and other extracellular matrix proteins,

which characterizes fibrosis and is a significant pathological feature

of cGVHD (41, 88). A prior investigation demonstrated that through

the cleavage of miR-150, IRE-1a can stimulate myofibroblast

activation and trigger fibrosis (20). The pharmacological inhibition

of IRE-1a decreased skin fibrosis and reversed the fibrotic phenotype

of myofibroblasts that were extracted from patients with scleroderma

(20). A recent study demonstrated that ATF6 transcriptionally

controls the expression of thioredoxin domain-containing protein

5 (TXNDC5), which promotes fibrosis by enhancing TGF-b
signaling activity in kidney fibroblasts (89). ER stress can activate

fibroblasts and promote pulmonary fibrosis through a positive

feedback loop with ZC3H4, a recently discovered member of the

CCCH-type zinc finger protein family (90). These data suggest that

ER stress plays a crucial role in fibroblast activation and could be a

potential target for regulating fibrosis in cGVHD (Figure 1).

However, further research is necessary to validate this hypothesis.
5 Conclusion

GVHD control is a delicate task, as suppressing T cell response to

prevent GVHD may also compromise GVL activity and potentially

lead to tumor relapse. UPR can have a dual effect on the regulation of

immune cell activity, which depends on the severity of ER stress.

Therefore, we propose that regulatingUPRmay be a viable strategy for

GVHDprevention while preserving the GVL activity. It is also possible

that ER stress may serve as potential biomarkers to predict GVHD

onset, in that elevated expressions of GRP78 and CHOP in patient

biopsies were shown to correlate with the severity of GVHD (87). The

IRE-1a-XBP-1 signaling pathway appears to be a promising target for

GVHD, as inhibiting this pathway in DCs, B cells, and IECs has been

shown to reduce their function and the severity of GVHD. However,

XBP-1 inhibition has been found to increase the activity of T cells,

providing a rationale in preserving the GVL effect upon XBP-1

inhibition in HCT. The impact of PERK on T cell activity is

disputed, as PERK can either decrease or increase T cell activity

depending on the levels of PERK induction. Based on our findings,

we propose that targeting the IRE-1a and PERK signaling pathways

could serve as potential strategies tomitigate GVHD. Specifically, IRE-

1a plays a critical role in the function of DCs by stimulating T cells and
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increasing damage to IECs. Thus, IRE-1 may represent a promising

target for cGVHD due to its significant involvement in activating B

cells, promoting fibroblast activation, and facilitating M2 macrophage

polarization. On the other hand, PERK is involved in T cell activation,

which is an essential pathogenic process in the development of

aGVHD. In addition, the role of ATF6 in GVHD progression

remains largely unexplored due to the lack of efficient tools for

detecting pathway activation. The three branches of the ER stress

response can interact with one another, and therefore regulating these

interactions could be a potential strategy for distinguishing GVH and

GVL responses. Further research is necessary to comprehend the

influence of PERK and ATF6 signaling on disease progression and

to investigate strategies for regulating the interplay of the three UPR

mediators, aiming to prevent GVHD while maintaining GVL activity

in allo-HCT.
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