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Interplay between RNA
interference and transposable
elements in mammals

Alexis Cornec and Enzo Z. Poirier*

Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
RNA interference (RNAi) plays pleiotropic roles in animal cells, from the post-

transcriptional control of gene expression via the production of micro-RNAs, to

the inhibition of RNA virus infection. We discuss here the role of RNAi in

regulating the expression of self RNAs, and particularly transposable elements

(TEs), which are genomic sequences capable of influencing gene expression and

disrupting genome architecture. Dicer proteins act as the entry point of the RNAi

pathway by detecting and degrading RNA of TE origin, ultimately leading to TE

silencing. RNAi similarly targets cellular RNAs such as repeats transcribed from

centrosomes. Dicer proteins are thus nucleic acid sensors that recognize self

RNA in the form of double-stranded RNA, and trigger a silencing RNA

interference response.

KEYWORDS

RNA interference, mammals, transposable elements, Dicer (Dicer1), epigenetics, pattern
recognition receptor (PRR), pathogen-associated molecular pattern (PAMP)
Introduction

RNA interference (RNAi) is a ubiquitous mechanism of post-transcriptional regulation

of gene expression (1). Present in plants, fungi and animals, it relies on the inhibition of

messenger RNA translation via the production of micro-RNAs (miRNAs), a family of small

RNAs. Irrespective of its function in regulating gene expression, RNAi also carries a role in

antiviral immunity (2, 3). The machinery of RNAi is indeed equipped to recognize

exogenous viral RNA and target it for cleavage, thereby thwarting infection. If

exogenous virus infection represent an obvious threat, cell viability can also be

jeopardized by the presence of transposable elements (TEs) in genomic DNA, which

have the ability to disrupt gene expression regulation and genomic architecture (4, 5). To

avoid such adverse effects, TEs are usually maintained transcriptionally silent via several

mechanisms, including RNAi (6, 7). This review discusses the interplay between the

machinery of RNAi and endogenous RNAs, including TEs. We focus here on mammals,

without detailing the well-documented role of RNAi in controlling TEs present in

invertebrates or plants [reviewed in (8)].
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The RNAi machinery as a pattern
recognition receptor

Mammalian control of gene expression by the machinery of

RNAi depends on the production of primary miRNAs (pri-

miRNAs) by genomic transcription, which are cleaved in the

nucleus by Drosha, generating precursor miRNAs (pre-miRNAs,

Figure 1) (1). After being translocated to the cytoplasm, pre-

miRNAs are processed by a protein of the Dicer family, giving

rise to mature miRNAs. Incorporated into an RNA-induced

silencing complex (RISC), miRNAs guide the interaction of

Argonaute (Ago) with cognate mRNAs to inhibit translation

(Figure 1). Embryonic lethality of Dicer knock-out mice

highlights the physiological importance of this regulatory

mechanism (9). The RNAi machinery is additionally involved in

the protection against RNA viruses, playing a cornerstone antiviral

role in multiple eukaryotes, including plants, worms and insects (3,

10–12). The defensive role of RNAi in mammals and humans has

been debated, but recent data indicate that the pathway can be

protective in certain cellular contexts. For example, antiviral RNAi

protects mammalian stem cells from RNA viruses (13). Viral

infection leads to the accumulation of double-stranded RNA

(dsRNA) in the cytoplasm, originating from viral replication or

from RNA secondary structures within viral genomes. Dicer cleaves

dsRNA into small-interfering RNAs (siRNAs), which are small
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RNAs of approximately 21-23 nucleotides in length (Figure 1). As

part of RISC, siRNAs guide the degradation of viral genomes by the

endonuclease Ago. Note that, while miRNA-driven RNAi does not

canonically function through mRNA cleavage, antiviral RNAi

largely depends on the enzymatic activity of mammalian Ago2

(3). Mammals encode a single Dicer gene, which protein product,

Dicer, generates miRNAs for transcription regulation. If several

studies document human Dicer’s poor ability to target dsRNA for

cleavage, the protein has been involved in dsRNA-driven antiviral

RNAi in specific conditions (3, 14, 15). An additional isoform,

termed antiviral Dicer (aviD), is produced by alternative splicing of

mRNAs from the Dicer gene. aviD is expressed in stem cells within

tissues and is specialized in targeting viral dsRNA as a starting point

for antiviral RNAi (13). Another truncated isoform of Dicer, Dicer°,

specific to rodents, is produced in oocytes and targets dsRNA (16).

An efficient antiviral RNAi response depends on the ability to

specifically detect viral RNA, but not cellular RNA. This classical

immunology conundrum of discrimination between “self” and

“non-self” is achieved by targeting dsRNA, which represents a

pathogen-associated molecular pattern (PAMP). In this context,

Dicer, aviD and Dicer° display functional similarities with unrelated

pattern recognition receptors (PRRs) that detect dsRNA, such as the

interferon triggers RIG-I and MDA5 (17). In the absence of virus,

formation of dsRNA structures within cellular RNAs is actively

curtailed by Adar1, thereby preventing unwanted activation of
FIGURE 1

RNA interference in mammals. Left, post-transcriptional regulation of gene expression by RNAi. Pri-miRNAs, produced by genomic transcription, are
processed into pre-miRNAs by the Microprocessor complex, composed of Drosha and Dgcr8. After shuffling to the cytoplasm, pre-miRNAs are
cleaved by Dicer to generate mature miRNAs of 22 nucleotides in length on average. Loaded into RISC containing the endonuclease Ago, miRNAs
guide the sequence-specific interaction with mRNAs to inhibit translation, resulting in mRNA degradation. Mismatch(s) between miRNA and mRNA
sequences prevent degradation of mRNAs by Ago2. Right, expression of TEs, or RNA virus infection, lead to the cytosolic accumulation of dsRNA,
which is processed by Dicer proteins, giving rise to siRNAs that guide cognate RNA degradation (no mismatch, Ago2 endonuclease is active). TEs are
mainly composed of ERVs, LINEs and SINEs. ERVs may encode the ORFs Gag, Pol and Env, delimited by LTRs, while LINEs encode two ORFs. SINEs
do not encode any functional ORFs and rely instead on LINE proteins for cycle completion.
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immunity against “self” (18–21). Recognition of exogenous viral

infection through dsRNA thus fits within the binary opposition

“self” versus “non-self”. This is not the case when considering TEs,

which are sequences –partly of retroviral origin– embedded in the

genome. TEs could canonically be considered as “self” because they

are encoded by the host, but nonetheless need to be identified and

maintained transcriptionally silent.
Transposable elements

Following the initial discovery of TEs by Barbara McClintock in

1950, decades of studies documented the quasi universal presence of

TEs in organisms from the prokaryote and eukaryote kingdoms

(22). TEs can be defined as genomic DNA sequences which, when

intact, have the potential to express and re-integrate in the genome

(23). While gene-encoding sequences account for 2% of total

human genome, TEs constitute almost 50% of genomic DNA

(23). Although regrouped under a single appellation, TEs are

constituted of unrelated classes of elements, organized by their

origin and transposit ion mechanism [Figure 1 (24)] .

Retrotransposons are TEs that perform a “copy and paste” cycle,

which starts with TE transcription and RNA translocation in the

cytoplasm. TE DNA is subsequently produced via reverse

transcription, performed by a TE-encoded enzyme, before

integration in genomic DNA. Retrotransposons make up for 90%

of mammalian TEs, and are composed of two unrelated groups,

identified by the presence or absence of long terminal repeats (LTR)

[Figure 1 (24)]. LTR elements originate from ancient events of

germline infection by exogenous retroviruses; for this reason, they

are coined endogenous retroviruses (ERVs) (25). Non-LTR

elements are composed of long interspersed nuclear elements

(LINEs) and short interspersed nuclear elements (SINEs), with

LINEs being the most abundant TEs in mice (approximately 20%

of the genome (26). In humans, the LINE-1 (L1) family was

documented to be uniquely able to perform a complete cycle,

including reverse transcription and integration (25). SINEs, which

constitute about 10% of the mouse genome, do not encode an open

reading frame, but rather rely on proteins encoded by LINEs. The

human genome comports more than a million copies of a hominid-

specific SINE termed Alu element, which can be transcribed and

form dsRNA in the cytoplasm (27).

Amid the millions of TEs populating the mouse and human

genomes, only a small fraction retains the ability to complete a full

transposition cycle, which comprise the evolutionary young L1s in

humans (4, 28). TE genomic neo-insertions can be a source of

genetic innovation, by contributing to the organization of the

tridimensional chromatin architecture, as well as by participating

to the evolution of gene-regulatory networks (29, 30). Nonetheless,

TEs represent a threat for genomic organization, as random TE

insertions may occur within coding or regulatory sequences,

influencing or disrupting gene expression (30). Indeed, TEs can

act as enhancers or promoters for nearby genes, or can induce

heterochromatin formation in the vicinity of insertions. In line with

TEs’ deleterious effects, deficiencies in TE control have been or may

be linked to cancer, neurodegenerative and developmental
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pathologies (4, 5, 31, 32). Inhibition of TE expression relies on

multiple pathways, most of which act at the transcriptional level by

inducing the formation of heterochromatin on TE loci. DNA

methyltransferases, including Dnmt1, deposit methyl groups on

cytosines within TE genomic DNA, providing binding sites for

heterochromatin modifiers (6, 33–35). Histone methylation at

specific positions, notably on lysine 9 of histone 3 (H3K9me3),

represent another pathway of heterochromatin formation (36, 37).

The use of a given mechanism of TE inhibition depends on the

nature of the family/subfamily of TEs, as well as the cell type and the

physiological/pathological context. Prevention of TE expression

necessitates the specific recognition of TEs within the diversity of

genomic sequences, akin to a distinction between “self” (coding and

non-coding genes) and “non-self” (TEs). This partly depends on a

family of proteins termed Krüppel-associated box zinc-finger

proteins (KRAB-ZFPs) that evolved DNA-binding motifs

recognizing TE genomic DNA in a sequence-specific manner

(38–40). KRAB-ZFPs interact with cofactor KAP1/TRIM28 and

guide the deposition of H3K9me3 on TE DNA by the histone

methyltransferase SETDB1 (39, 41, 42). KRAB-driven recognition

of TEs depends on the evolution of a TE-specific DNA binding

motif, only possible across important evolutionary periods.

Consequently, it is tempting to speculate that KRAB-ZFPs may

not be able to target the entire spectrum of evolutionary young TEs,

raising the question of the means by which such sequences are

maintained transcriptionally silent.
Interplay between the RNAi pathway
and TEs

Soon after the initial discovery of RNAi by Andrew Fire and

Craig Mello in C. elegans, data from the early 2000’s pointed

towards a role of the pathway in controlling TEs in embryonic

cells (43). Svoboda et al. used siRNAs and dsRNA injection in 1-cell

embryos to knock-down Dicer, and demonstrated increased

expression of Internal A Particles (IAP) and MERVL, two

families of ERVs (44). In cultured human cells, siRNAs mapping

to L1s could be detected, which production was linked to the

activity of Dicer by a knock-down approach (45). Cumulative

evidence similarly points towards a role of RNAi in controlling

TE expression in embryonic stem cells (ESCs) (Figure 1). Knocking-

out the Dicer gene in mouse ESCs and oocytes correlates with an

increased expression of ERVs, LINEs and SINEs (16, 46–52).

Additionally, TE expression is repressed by methylation of

genomic DNA. Such heterochromatin mark is however erased

during early development, upon a wave of demethylation

occurring just after fertilization (53). Berrens et al. mimicked the

wave of DNA demethylation in mouse ESCs by acutely depleting

Dnmt1, leading to transcriptional activation of a limited set of TEs

(52). In this context, RNAi participates to TE silencing in mouse

ESCs, in compensation for the lack of methylation-driven

transcription inhibition. Combining methylation loss and

impaired RNAi translates into increased expression of a subset of

evolutionary young ERVs such as IAPEz or MERVL (52). RNAi-

driven control of TE expression is not solely present in
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undifferentiated cells such as ESCs. By studying age-related macular

degeneration, a condition characterized by a progressive

degradation of the retinal pigmented epithelium in aging patients,

the Ambati group demonstrated that the phenotype is due to

decreased Dicer levels, leading to upregulation of SINE RNAs

(B1/B2 SINEs in mice and Alu elements in humans) (27). It is

worth noting that the nature of TEs controlled by RNAi varies

depending on the cell types and tissues considered. For example,

Dicer ablation in cells of the retinal pigmented epithelium translates

into increased TEs that seem largely restricted to SINEs, while

LINEs and ERVs are upregulated in other cell types (27, 52). This

could be related to the cell type-dependent organization of

chromatin, linked to differentiation, as well as to other parameters.

In addition to Dicer-driven RNAi, data implicate piwi-

interacting RNAs (piRNAs), a class of small RNAs, in the control

of TEs (54, 55). The piRNA pathway is a well-documented anti-TE

mechanism acting in the germline, through the generation of

piRNAs transcribed from piRNA clusters (56). Recently, piRNAs,

partly of TE origin, were detected in brain tissues of adult mice.

Genetic ablation of the piRNA pathway translates into behavioral

deficit, suggesting that it may be an additional small RNA-based

mechanism that controls TE in somatic cells (54, 55).

The functional importance of such mechanism, as well as the

putative role of TE neo-integrations in piRNA clusters, is

currently unknown.
Molecular mechanism of TE control
by RNAi

Dissection of the molecular mechanism behind RNAi control of

TEs suggests that it follows a classical dsRNA-driven RNAi pathway

(Figure 1). Knock-down and knock-out approaches targeting the

Dicer transcripts/Dicer gene show that protein products of theDicer

gene are essential for the pathway. Upon loss of Dicer in the retinal

pigmented epithelium, re-expression of TEs translates into

accumulation of cytosolic dsRNA, detected by immunostaining

using a specific antibody (27). If the TE sequences that form

dsRNA await determination, the existence of TE dsRNA is also

highlighted by a body of work showing that PRRs such as MDA5,

which detect dsRNA and trigger an interferon response, can be

activated upon TE expression in cancer cells (57–59). Formation of

TE dsRNA is expected to arise from RNA secondary structures,

from transcription of inverted repeats and from bidirectional

transcription, when RNAs transcribed from both sense and

antisense orientation hybridize (45, 50, 52). dsRNA from TE

origin is presumably similar in structure to dsRNA generated

upon exogenous infection by RNA viruses. The distinction

between “self” and “non-self”, on which relies RNAi-driven

control of TEs, thus appears akin to the specific detection of viral

infection. Existence of siRNAs from TE origin, lost upon Dicer

down-regulation or KO in mouse ESCs and oocytes, points towards

a role of product(s) of the Dicer gene in cleaving TE dsRNA (16, 46–

50, 52). siRNAs bearing TE sequences can be immunoprecipitated

with Ago2, and Ago2 KO leads to increased TE expression,
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demonstrating that TE control depends on RISC activity (50, 52,

60). This is not universal, as Alu silencing in the retinal pigmented

epithelium does not strictly depend on Ago2 (27). Note that, if

canonical Dicer is the product of the Dicer gene deemed to be the

main actor of dsRNA-driven control of TEs, other Dicer isoforms

can participate in TE regulation, such as Dicer° in oocytes (16).

Detection of dsRNA structures formed by TE RNA is regulated by

Adar1, which prevents their binding by RLRs and the activation of

an interferon response (20, 59). Whether Adar1 similarly dampens

RNAi silencing of TEs is currently unknown. If data document

RNAi control of TE expression through the detection of dsRNA,

deviations from this mechanism exist. For example, small RNAs

generated by Dicer processing of cellular transfer RNAs can

participate to the silencing of certain ERV families (61). Specific

miRNAs, such as miR-128 and let-7, regulate the L1 family of

LINEs (62, 63). Irrespective of their detailed mechanism of control,

inactivation of RNAi-driven TE control translates into increased TE

expression, which can have dire functional consequences.
Functional consequences of
alleviating RNAi-driven control of TEs

Cytosolic dsRNA resulting from TE expression represents a

canonical PAMP, or “non-self” signal, which, in differentiated cells,

activates PRRs including MDA5 and the Toll-like receptor 3 (57,

58). Both PRRs’ stimulation results in the activation of innate

immunity and production of interferons, potentially leading to

autoimmunity. If pathways of interferon activation are functional

in differentiated cells, they are severely compromised in stem cells,

including ESCs, which could explain why TE re-expression does not

translate into interferon-driven cytotoxicity in this context (3, 64).

During age macular degeneration, expression of Alus in cells of the

retinal pigmented epithelium leads to NLRP3 inflammasome

activation and MyD88-dependent apoptosis, ultimately resulting

in patient blindness (27, 65). Whether the downregulation of RNAi

in pathological contexts could translate into TE re-expression,

leading to inflammation and/or genomic instability, remains to

be explored.
Role of RNAi in processing other
endogenous dsRNAs

RNAi-driven control of TEs, relying on dsRNA targeting,

mirrors antiviral RNAi thwarting exogenous virus. Even if TEs

are part of genomic DNA, one could, in this framework, consider

TEs as “non-self”, controlled by the pathway of antiviral RNAi, even

if most of the TEs are not from viral origin (ERVs, originating from

ancient events of retrovirus integration, constitute around 8% of the

human genome, to put in perspective with the 40% of virus-

unrelated TEs). The binary distinction between “self” and “non-

self” becomes even weaker when considering that a mechanism of

RNAi-driven silencing of centromeric repeats has been

documented. Centromeric repeats are indeed actively silenced via
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the RNAi-dependent deposition of heterochromatin marks (16, 66–

70). Upon Dicer KO, expression of satellite repeats constitutive of

centromeres correlates with major defects in mitosis and meiosis,

resulting in impaired spermatogenesis. RNAi regulates expression

of centromeric repeats via dicing of satellite dsRNA (69). dsRNA-

driven RNAi is thus utilized in various settings, which include –but

are not limited to– PAMPs such as TE dsRNA.
Conclusions and perspectives

There is an established role for dsRNA-driven RNAi in the

control of certain families of TEs, which bears strong similarities

with the antiviral RNAi pathway acting against exogenous viral

infections. In this pathway, Dicer proteins act as PRRs, recognizing

PAMPs in the form of dsRNA of TE origin. If such mechanism

shows efficiency in controlling TEs, the selective pressures behind

its existence remain unclear. Indeed, more robust pathways such as

DNA and histone methylation are at play in cells to sturdily prevent

the expression of TEs. In that case, why use RNAi at all? Certain

situations, such as the initial wave of DNA demethylation during

embryonic development, call for compensatory mechanisms. In

that case, RNAi fills the space left by the inactivation of the go-to

mechanism of TE control. The existence of evolutionary young TEs,

not yet targetable by sequence-specific KRAB-ZNFs, may be a

second example of RNAi temporarily taking over, although this

remains a speculation. Subfamilies of TEs such as IAPEz, ETn and

MMERK10C, that are controlled by RNAi upon DNA methylation

inhibition, are also the target of KRAB-ZNFs in mouse ESCs (40,

52). Whether RNAi synergizes with other pathways of TE

regulation is currently unknown. Outstanding questions of the

field include the thorough mapping of TE families controlled by

RNAi, which are likely to be cell type and context-dependent, as

well as the determination of TE sequences forming dsRNA. The

regulation of TE expression participates in various physiological

and pathological processes. Increased TE expression is involved,

within normal physiology, in the establishment of an immune

response against commensal microbiota (71). Cellular senescence,

which correlates with aging, is associated with/can be driven by

increased TE expression (72–74). Tumors express certain TEs at

high levels, which bolsters anti-tumor immunity by triggering an
Frontiers in Immunology 05
inflammatory response via dsRNA detection, as well as by providing

a source of neoantigens for adaptive immunity (75–79).

Compounds able to awaken TE expression in tumors and boost

immunity thus represent promising anti-cancer therapies (57–59,

80). Whether RNAi is involved in TE regulation in immunity, aging

or cancer remains to be explored.
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