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Background: Machine learning (ML) is a valuable tool with the potential to aid

clinical decision making. Adoption of ML to this end requires data that reliably

correlates with the clinical outcome of interest; the advantage of ML is that it can

model these correlations from complex multiparameter data sets that can be

difficult to interpret conventionally. While currently available clinical data can be

used in ML for this purpose, there exists the potential to discover new

“biomarkers” that will enhance the effectiveness of ML in clinical decision

making. Since the interaction of the immune system and cancer is a hallmark

of tumor establishment and progression, one potential area for cancer biomarker

discovery is through the investigation of cancer-related immune cell signatures.

Hence, we hypothesize that blood immune cell signatures can act as a biomarker

for cancer progression.

Methods: To probe this, we have developed and tested a multiparameter cell-

surface marker screening pipeline, using flow cytometry to obtain high-

resolution systemic leukocyte population profiles that correlate with detection

and characterization of several cancers in murine syngeneic tumor models.

Results: We discovered a signature of several blood leukocyte subsets, the most

notable of which were monocyte subsets, that could be used to train CATboost ML

models to predict the presence and type of cancer present in the animals.

Conclusions: Our findings highlight the potential utility of a screening approach

to identify robust leukocyte biomarkers for cancer detection and

characterization. This pipeline can easily be adapted to screen for cancer

specific leukocyte markers from the blood of cancer patient.
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Introduction

Machine learning (ML) has enormous potential to aid in the

optimization of clinical decision-making for cancer patient care (1).

Although this idea has propelled multiple ML-supplemented

healthcare initiatives (2), many of these have failed to reach the

standard required to be readily used in clinical practice (3–9). This

might be attributable to the previous ML projects being built on a

generalized cancer patient population rather than a more defined

pool of patients and outcome targets from which more specific data

input for ML could be acquired (10). The ideal clinical data for ML

model training should be easily and objectively attainable, and

reliably correlate with the clinical outcome of interest. This, in turn,

highlights the importance of appropriate data selection for ML

model training and the that the limits of ML models’ predictive

capacity are restricted due to the dataset they were trained on (11).

Therefore, to optimize the utility of ML predictive models, it is

paramount to identify data, often referred to as “biomarkers”, that

robustly correlates with the prescribed outcome.

The last few decades have seen the immune system identified as a

central modulator for tumor initiation and progression.While immune

cells can recognize and eliminate tumor cells, cancer cells are now

understood to escape such surveillance through various immuno-

suppressive mechanisms, often through hijacking of the immuno-

regulatory framework in the host’s immune system (12, 13). This tug-

of-war within the immune system can manifest in cancer-specific

immune cell signatures locally in the tumor microenvironment and

systemically in the secondary lymphoid tissues and blood (14–17). In

this context, we have hypothesized that immune cell profiles,

interpreted through ML models, may be predictors of cancer

progression and response to treatment. This is supported by our

earlier preclinical investigations in murine orthotopic tumor models

that identified blood myeloid cell profiles as key predictive biomarker

for the presence, type and progression of cancer in ML models (18).

To build further on our approach, we developed a multiparameter

cell-surface marker screening pipeline using flow cytometry to obtain

high-resolution systemic leukocyte population profiles that correlate

with the presence of cancer in our murine syngeneic tumor models.

Our rationale was that identification of various changes in the specific,

cancer-associated leukocyte populations in blood would allow us to

use this data for more robust ML model training for detection and

characterization of cancers. We used a screening pool of multiple

samples from cancer-bearing and healthy mice that were

differentiated by fluorescent vital dye barcoding (19–22). This was

then coupled with a leukocyte lineage fluorescent antibody backbone

panel and a commercial screen that applies >250 fluorescently tagged

antibodies (23) to identify cell surface markers. Using this approach,

we were able to effectively screen >20 leukocyte populations in nine

distinct samples from cancer-bearing and non-cancer control groups

in one pooled sample and identify cancer-specific changes across ~250

markers. From cancer-specific markers that were identified, a cancer-

specific antibody panel was designed to characterize the blood

leukocyte subsets from 44 mice bearing either no tumor or breast

or colorectal cancer by flow cytometry. Using the panel, we identified

several leukocyte subset profiles, the counts of which acted as

predictive biomarkers for the presence and type of cancer using
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ML. Our findings highlight the potential utility of a screening

approach to identify robust leukocyte biomarkers for cancer detection.
Methods

Animals

C57BL/6 (B6) and BALB/c (BC) female mice aged between 6-10

weeks (from the Australian Phenomics Facility, ANU) were used in

the study. Animals were housed in a specific pathogen-free

environment and used under strict adherence to protocols

approved by the institutional Animal Experimentation Ethics

Committee (AEEC), ANU, under protocol A2020/39. At

experimental end points, animals were euthanized by cervical

dislocation according to AEEC approved procedures.
Cell lines

The mammary carcinoma cell lines 4T1 (24) (ATCC), 4T1.2

(25) (kindly provided by Dr Robin Anderson, Olivia Newton-John

Cancer Research Institute), 4T1Br4 (26) (kindly provided by Dr

Normand Pouliot, Olivia Newton-John Cancer Research Institute),

and AT-3-OVA (27) (kindly provided by Dr. Di Yu), the colorectal

carcinoma cell lines CT26 (28) (ATCC) and MC38 (29) (kindly

provided by Dr. Di Yu), and the melanoma cell line B16-F10 (30)

(kindly provided by Dr Christopher Parish) were used in this study.

Cell lines were confirmed clear of specific pathogens by Cerberus

Sciences (ISO 9001 Licence No. AU843-QC). Cell lines were

cultured and subcultured as described previously in supplemented

(sRPMI) RPMI-1640 (11875093, ThermoFisher Scientific) (18).
Tumor establishment

Tumor cells (1 x 105) were injected subcutaneously in the right

hind flank (primary tumor) and then 3 days later in the left hind

flank (secondary tumor) of syngeneic mice (cell lines 4T1, 4T1.2,

4T1Br4, and CT26 injected in BC mice, and cell lines AT-3-OVA,

MC38 and B16-F10 injected in B6 mice) mixed across housing

cages as described previously (18). Tumors were grown and

monitored for 17-21 days. At study endpoint, mice were

humanely sacrificed, and their tumor and spleens excised and

weighed. The tumor burden was defined as the pooled tumor

weights of each individual at end point.
Blood and spleen collection
and processing

Blood and spleens frommice were collected at experimental end

point. Blood was collected and processed as described previously

(18). Spleens were harvested and processed to single cells as

described previously with the exception that the red blood cell

lysis step was not performed (31).
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Spleen cell barcoding

Spleen cells from 3 (of the 3-5) replicate mice bearing the largest

mass of 14-17-day-old tumor from either 4T1, 4T1.2, 4T1Br4, AT-

3-OVA, CT26, MC38 or B16-F10 cell lines, or no-tumor controls

(host B6 or BC mice) were pooled into 9 separate tubes in a total of

10 milliliters (mL) of phosphate buffered saline (PBS). The 9 spleen

cell groups were adjusted to the equivalent of 2 spleen masses based

on spleen weights (~equivalent to the mass of 2 normal spleens) by

removing appropriate volumes of cell suspension from each tube.

Cells volumes were then made to 10 mL with PBS and cells

sedimented by centrifugation (300 x g for 10 min), supernatant

aspirated and cells resuspended in 2.9 mL sRPMI. Each spleen cell

group was then barcoded separately with a unique concentration of

carboxyfluorescein diacetate succinimidyl ester (CFSE) and/or cell

trace violet (CTV) (Table S1) and all groups were then pooled into

one sample as previously described (19). Cells were then suspended

in 10 mL of sRPMI and passed through a 70 mm filter mesh and

counted. A total of 400 x 106 leukocytes was then suspended in 10

mL sRPMI, passed through a 70 mm filter mesh, sedimented by

centrifugation (300 x g for 10 min) and supernatant aspirated, ready

for immediate backbone antibody labelling.
Backbone antibody labelling

Barcoded pooled cells were resuspended in 0.6 mL of Labelling

Buffer (PBS containing 5 mM EDTA, 1% BSA [weight/volume])

with 5 mg/mL TruStain FcX™ (anti-mouse CD16/32) antibody

(101320, Biolegend) for 15 min at 4°C. Samples were then incubated

with a backbone panel of antibodies (Table S2) by adding 0.6 mL of

Labelling Buffer with 10% (v/v) Brilliant Stain Buffer Plus (BD)

containing a 2x stock of each antibody (Table S2), for 30 min at 4°C.

The pooled barcoded and backbone antibody-labelled cells were

then resuspended to 13.4 x 106 cells per mL (i.e. 1x106 cells/75 mL)
in Labelling Buffer and passed through a 70 mm filter mesh ready for

aliquoting into the wells of the LEGENDScreen plates.
LEGENDScreen assay

A LEGENDScreen Mouse PE Kit (BioLegend) was used for

spleen leukocyte screening for cancer-specific cell-surface markers.

Plates from the kit were prepared according to the manufacturer’s

instructions with lyophilized antibodies in each well of the assay

plates being resuspended in 25 mL of deionized H2O (dH2O).

The pooled barcoded and backbone antibody-labelled cells were

added at 75 mL (i.e. 1x106 cell) to each well containing the

reconstituted antibodies and incubated in the dark for 30 min at

4°C. Cells were then washed in Legend Screen Wash provided in

the kit, pelleted and resuspended in 40 mL Labelling Buffer

containing 1 mg/ml of the viability dye Hoechst 33285

(Invitrogen) and the equivalent of 500 Flow-Count Fluorospheres

(7547053, Beckman Coulter) per 40 mL and stored at 4°C overnight

before flow cytometry.
Frontiers in Immunology 03
Immunophenotyping of blood leukocytes
by flow cytometry

Blood samples (5 mL) were labeled with antibodies that included
the backbone panel and the screen-identified antibodies (Table S2)

and prepared for flow cytometry analysis using methods described

previously (18).
Flow cytometry

Flow cytometry was performed on a BD LSR-II X-20 (BD

Bioscience) flow cytometer with FACSDiva software (version

8.0.1). Application Settings were applied to standardize

fluorescence intensity readings between experiments, and

fluorescence intensities monitored and calibrated using Sphero™

8-peak Rainbow Beads (110620, BD Bioscience). Voltages were

initially set up using unlabeled RBC-lysed blood leukocytes. BD

CompBeads (552843, BD Bioscience) were used as compensation

controls as previously described (31). Blood cell samples were

acquired until a total of 2000 Flow-Count Fluorosphere beads

were collected based on side scatter (log-scale) and forward

scatter (linear-scale) plot gating. LEGENDScreen samples were

acquired at 10,000 events/second using the sample fine adjust and

on a low sample flow rate to collect a total of ~1-3 x 105 live

(Hoechst 33285−-gated) CD45+ cells. Every 36th sample acquisition

was followed by a 3 min run on a high sample flow rate with 10%

sodium hypochlorite solution in dH2O, then a 2 min run on a high

sample flow rate with dH2O, and the stability of fluorescence signal

of each channel assessed by acquiring 5000 Sphero™ 8-peak

Rainbow Beads. Raw Flow Cytometry Standard (FCS) files (i.e.,

FCS3.1) of the data are available upon request at the ANU DATA

COMMONS repository (https://dx.doi.org/10.25911/zrp3-nd51).
Flow cytometry analysis

Flow cytometry analysis was performed using FlowJo v10

software (BD Bioscience), CytoExploreR version 2.0.0 (32), and

cytoverse suite of R packages (33, 34). A combination of manual

gating and unsupervised Pairwise Controlled Manifold

Approximation Projection (PaCMAP) (35) analysis was used to

delineate cell populations and assess for manual gate cell population

segregation, and cell groups were then named based on marker

expression represented by median fluorescent intensities (MedFI) of

each marker plotted using heat map dot plots made using the

tidyverse suite of R packages (36) (see Results section).
Data normalization and processing

LEGENDScreen data
Leukocyte marker expression changes in cancer samples were

compared to control levels as follows: First, the average median

fluorescence intensity of the PE channel (MedFI-PE) from the
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fluorescence minus one (FMO) controls in the screen for each

leukocyte population (identified with the backbone antibody panel)

within each barcoded group was calculated. This FMO MedFI-PE

was then subtracted from each MedFI-PE from the corresponding

barcoded group leukocyte population across all the markers

screened to give a barcode corrected MedFI-PE (BC-MedFI-PE).

Background (matched no-cancer controls) BC-MedFI-PE of

LEGENDScreen markers for each cell population was subtracted

from the corresponding marker BC-MedFI-PE of the same cell

population in each tumor type. This BC-MedFI-PE difference was

then divided by the maximum BC-MedFI-PE change of each

marker for each population. Any value less than -1 was assigned

-1. This gave a cancer-specific marker change scale of -1 to 1 (with 0

being no-cancer controls level). These values were visualized on a

heat map dot plot using the R package ComplexHeatmap (37). The

raw and normalized MedFI data and the data for cell counts and

proportions for heatmap annotations can be found in

Supplementary Data (Data Sheets 2, 3).

Blood leukocyte data
To reduce the influence of inter-experimental technical

variability on the independent blood analysis experiments, their

data was normalized at several levels. Firstly, cell numbers in each

flow cytometry acquisition set were normalized to counting beads

spiked into the sample, with each sample normalized to 5000 Flow-

Count Fluorospheres (all of the spiked load), to give the number of

cells in ~5 mL of blood (“counting bead normalized” values).

Secondly, these normalized counts were normalized to the mean

counts of the respective blood leukocytes from non-tumor bearing

control animals within each experiment, the “nil normalized

values”. To get “normalized cell counts” per 5 mL of blood (as an

estimate of the overall cells across the groups), the “nil normalized

values” were multiplied to the overall mean of the “bead normalized

cell count” from all non-tumor-bearing animals for each cell

population across all experiments. This data can be found in

Supplementary Data (Table 1).
Supervised machine learning

Supervised machine learning was performed using Orange 3

software. Random Forest (38) and CATboost (39) modelling used

100 trees for prediction and 500 trees for ranking the feature

importance, with the maximum tree depth of 4 (for Random

Forest) and 6 (for CATBoost). For Random Forest, the maximum

number of features considered at each node was 5 and subsets

smaller than 5 were not split. For CATBoost learning, the learning

rate was 0.3, the regularization was lambda 3 and subsampling was

1. For classification of groups using monocytes, CATBoost was used

and trained on 66% of randomly sampled data and tested on the

remaining 34%. This was repeated 100 times and the results of

predicted and actual classes were displayed as a confusion matrix.

Feature ranking was done using both Random Forest and

CATBoost (built into the models in Orange 3 software). For the

learning curve as a function of decreased features (populations),

CATBoost was used and trained on 66% of randomly sampled data
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and tested on the remaining data. This was repeated 100 times and

the results were assessed using area under curve of the receiver

operating characteristics (AUC; to assess separability of the classes),

classification accuracy (CA; proportion of correct classification),

precision (ratio of correct positive prediction to all positive

prediction), recall (ratio of correct positive prediction to actual

positive), and F1 score (weighted average of precision and recall).

Final CATBoost prediction on the optimized feature subset was

trained on 66% of randomly sampled data and performed on the

remaining data.
Statistical analysis and data presentation

To compare the means between non-tumor controls (Nil),

CT26- and 4T1-burdened cohorts, data were transformed using

the formula Y=Log(Y+1) to help normalize distributions and

equalize variance, and then assessed by 2-way ANOVA using

GraphPad Prism software. Analysis was corrected for multiple

comparisons using the two-stage step-up method of Benjamini,

Krieger and Yekuyieli (40). False discovery rate of 0.05 and p-values

were reported to test the null hypothesis that the means are equal or

distributions were from the same population. The overlap R

package was used to calculate distribution overlap (41). PaCMAP

used the pacmap python package through CytoExploreR.

Multidimensional scaling was performed using the cmdscale

function from the stats (v3.6.2) R package to visually inspect the

improvement in group separability when running ML models using

the highest ranked populations. Heatmap dot plots were generated

through ggplot2, ComplexHeatmap and HeatmapR (42) R

packages. Log ratio (M) log average (A) (MA) plots were

constructed using the ggpubr, ggplot2 and ggrepel R packages.

Pythagorean trees and confusion matrices were made in Orange 3

software. Circular bar plots were made using ggplot2 in R. The R

version used was 3.6.2. Prism was also used for plotting data.
Results

Screening pipeline overview

To identify cancer-specific leukocyte surface marker changes, a

screening pipeline was established (Figure 1). This involved: a),

establishing tumors in mice; b), preparing spleen cells from tumor-

bearing mice and their non-tumor-bearing counterparts: c),

fluorescent barcoding of the spleen cells from each group with

distinct concentrations of CellTrace Violet (CTV) and/or

carboxyfluorescein succinimidyl ester (CFSE) vital dyes to give

distinct fluorescent groups; d), pooling the barcoded cells and

labeling them with a backbone of lineage marker-specific

antibodies to identify the main leukocyte populations; e),

aliquoting the pooled, barcoded and backboned samples equally

into wells of LEGENDScreen assay plates to label them with the

>250 PE-conjugated antibodies specific for cell-surface markers for

analysis by flow cytometry; and f), assessing the samples for cancer-

specific changes via an analysis pipeline.
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Tumor models and initial barcode/
backbone analysis

To assess how the leukocyte subpopulation profiles might

change in the presence of cancer, seven murine tumor cell lines

representing breast (including, 4T1 (24), 4T1.2 (25), 4T1Br4 (26),

AT-3-OVA (27)), colorectal (including CT26 (28) and MC38 (29))

and skin (including B16-F10 (30)) cancers were used to establish
Frontiers in Immunology 05
tumors in syngeneic strains of mice (B6 and BC), yielding a total of

nine groups (seven cancer and two no-cancer control samples). A

primary and secondary tumor was established on each hind flank

(left and right; to mimic disseminated disease) of each animal for

each cell line and grown for 17 days. The endpoint masses showed

variable degree of growth, with the tumors on the BC background

typically weighing more than those on B6 background (Figure 2A).

Although most animals had viable tumors, MC38 tumors had
B C

D

E

F

A

FIGURE 1

Multiparameter cell-surface marker screening pipeline overview. Tumor-bearing and no-tumor control groups had spleens (and/or blood) harvested
and prepared as single cells (A, B). Single cells were barcoded with vital dyes to allow for fluorescent discrimination and were then pooled
(C). Pooled cells were labeled with a backbone of antibodies to delineate the main leukocyte subsets (D). Cells were then aliquoted equally across
the wells of the LEGENDScreen plates for PE-conjugated antibody labeling and analyzed by flow cytometry (E). Data was then analyzed by decoding
barcoded groups, delineating leukocytes based on backbone antibody labeling, and assessing for disease-specific changes in LEGENDScreen
markers to identify new leukocyte phenotyping markers for profiling biomarkers for cancer presence (F).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1211064
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Simon Davis et al. 10.3389/fimmu.2023.1211064
negligible mass at the end point (Figure 2A). The weight of the

spleens extracted from these mice for the LEGENDScreen pipeline

also varied considerably between groups, lending support to the

theory that certain tumor types may promote spleen enlargement

(38) (Figure 2B).

After processing the leukocytes through the analysis pipeline,

we investigated how the standard lineage backbone antibody

labelling characterized the immune cells in the pooled spleens

and blood of the animals. The backbone panel comprised

primarily antibodies to delineate key leukocyte subsets. Manual

gates were created to identify ~24 main cell subsets (Figure S1). The

general population segregation was confirmed by overlaying the

manually gated populations on graphs of unsupervised Pairwise

Controlled Manifold Approximation Projection (PaCMAP)

dimensional reduction of all the backbone markers in 2-

dimensional space (Figures S2A, B). The marker expression of the

segregated populations was summarized by dot plot heat maps

annotated with pooled cell proportions (Figure S2C) and used to

confirm population name designations (Table S3). Manual gates

were also used to delineate the barcoded groups (Figure S1), and the

proportion of CD45+ live leukocytes comprising each of

the identified leukocyte subpopulations was calculated across the

groups (Figure 3). Major changes were seen in the leukocyte

composition of all animals with tumors on BC backgrounds in

both spleen and blood, whereas more a subtle change in the

leukocyte composition was observed in animals with tumors on a

B6 background. The major tumor-specific changes appeared to be

the proportional increases in myeloid cells, most notably monocytes
Frontiers in Immunology 06
and neutrophils, particularly in BC mice burdened with 4T1

tumor variants.
LEGENDScreen global changes

To resolve the leukocyte subpopulation differences at higher

resolution, we assessed each of the backbone antibody panel-

identified splenic leukocyte populations across all tumor groups

for changes in the median fluorescent intensities (MedFI) of the

>250 PE-conjugated LEGENDScreen antibodies (herein, termed

MedFI-PE) relative to background (no tumor) cell levels (Figure

S3). This was summarized in a dot plot heat map where an increase

in the dot size reflected an increase in the absolute MedFI-PE

change in tumor-bearing animals relative to the background control

(either increase or decrease). In addition, the plots showed increases

and decreases in the relative marker MedFI-PE from the

background by the dot color tending toward darker red or darker

blue, respectively (Figure S3). This global analysis demonstrated

that while most of the cell surface markers showed little change in

the presence of cancer, certain leukocyte population markers

underwent clear changes across several tumor types (Figure S3).
LEGENDScreen CT26 and 4T1 changes

To narrow the scope of the LEGENDScreen data and inform the

next step in the experimental validation, our analysis focused on
BA

FIGURE 2

Tumor and spleen masses in animals used in the screening pipeline. Tumors were established subcutaneously in the right- (day-0) and in the left-
(day-3) hind flank of syngeneic mice [cell lines 4T1, 4T1.2, 4T1Br4, and CT26 injected in BALB/c mice (BC), and cell lines AT3-OVA, MC38 and B16-
F10 injected in C57BL/6 mice (B6)] and grown for 17 days. At endpoint, tumors (A) and spleens (B) were excised and weighed. All data points are
presented with overlayed boxplots from n = 3-5 mice. P-values are shown comparing means of data from tumor-bearing mice with their no-tumor
control (Nil) counterparts. To compare the means between non-tumor controls (Nil), CT26- and 4T1-burdened cohorts, data were transformed
using the formula Y=Log(Y+1) to help normalize distributions and equalize variance (to meet the assumptions of the statistical tests), and then
assessed by 2-way ANOVA.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1211064
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Simon Davis et al. 10.3389/fimmu.2023.1211064
two cancer types with consistent growth and diverse immune

perturbation. These were the CT26 colorectal cancer model,

which generated relatively mild immune perturbation, and the

4T1 breast cancer model, which generated marked immune

perturbation (18). In addition, markers associated with metastatic

potential were assessed using the 4T1 metastatic variant, the 4T1.2

line (25) (Figure 4). To focus on the strongest cancer-associated

marker changes, a threshold was set to display markers that were
Frontiers in Immunology 07
within the top 30% of the increased or decreased MedFI-PE change

relative to background no-tumor controls (Figure 4). This was an

arbitrary range set to filter for the most extreme changes in surface

marker labeling. For quality control, the expression of each marker

after subtracting the MedFI-PE of isotype control antibodies

(Figure 4, left bar plot) was also determined, which revealed that

all markers had a positive signal above matching isotope control

binding except CD357 and CD28 markers, which had negative
B

A

FIGURE 3

Spleen and blood leukocyte frequencies determined using backbone panel markers. Spleen (A) and blood (B) cell samples were analyzed as
described in Figure S2 and assessed for changes across the different tumor-bearing and no-tumor control groups. In upper panels (i): PaCMAP plots
for each group are shown for 50,000 live singlet CD45+ leukocytes per plot with a PaCMAP key to show subpopulation position with color overlays
delineating each population present from spleen (A) or blood (B). In the lower panels (ii) of (A, B), the percentage of total live singlet CD45+

leukocytes comprising each live singlet leukocyte subpopulation was also calculated and shown below the respective PaCMAP plots. For spleen, the
delineation of each group was achieved by decoding the barcoded groups based on manual gating (Figure S1).
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FIGURE 4

LEGENDScreen surface marker changes in leukocytes from CT26, 4T1 or 4T1.2-bearing animals. Leukocytes from tumor-bearing and no-tumor
control animals (as described in Figure S2) were analyzed by the LEGENDScreen pipeline as described in (Figure S3). Changes in leukocyte surface
marker expression from CT26, 4T1 or 4T1.2-burdened animals relative to background no-tumor controls were plotted as a heatmap dot plot with
dot size reflecting absolute change in MedFI-PE (scaled -1 to 1; being 0=unchanged, -1 to 0=decrease, 0 to 1=increase, relative to no-tumor
counterpart control) and color reflecting an increase or decrease in MedFI. Markers in the top absolute 30% changed from no tumor background
controls are shown. Hierarchical clustering using Euclidean distance was used to group the markers and the relationships summarized using a
dendrogram. The 8 most related marker clusters were partitioned and labeled. The expression of each marker was also plotted after subtracting the
MedFI-PE of a matched isotype control antibody from its average MedFI-PE (left bar plot annotation). The sum of all absolute MedFI-PE changes (S|
I|) was also calculated across the groups for each marker (right bar plot annotation). Finally, enumeration of each CD45+ leukocyte subpopulation
based on either % of total CD45+ leukocytes or total cell number (#) was calculated per spleen (top annotations) or per milligram (mg) of spleen
(bottom annotations) and included log2 fold changes (logFC) from no-tumor control (Nil) levels. Results are from pooled samples of n=3 per group.
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fluorescence relative to their isotype antibody controls, suggesting a

technical anomaly. CD357 and CD28 markers were thus excluded

from further analysis. Among the remaining surface markers, CT26

tumors clearly induced fewer marker changes than 4T1 tumors

(Figure 4). While the tumors from 4T1 and their metastatic variant

4T1.2 resulted in a similar number of marker changes, some of these

were clearly variant-specific, potentially relating to the metastatic

tendency. Since only up to 6 additional antibodies could be added to

the backbone antibody panel for further studies given the flow

cytometer instrumentation restrictions, the sum of all absolute

MedFI-PE changes was calculated across the groups for each

marker to identify those with the greatest cumulative changes

(Figure 4, right bar blot). To ascertain the cell population

numbers associated with marker changes, enumeration of each

cell population based on % of total CD45+ leukocytes and total

leukocyte population per spleen (Figure 4 top annotations) and cell

leukocyte population amounts per milligram of spleen (Figure 4

bottom annotations) were also calculated. These demonstrated that

CD24, CD45RB, and CD44 had relatively strong changes across all

tumor types, rendering them the preferred candidates for panel

inclusion. Also notable was CD62L downregulation on CD8+ T cells

in 4T1 and 4T1.2, but not CT26, models; CD66a upregulation on

myeloid subpopulations in 4T1 and CT26, but not 4T1.2, models;

and surface IgD downregulation on B cells in the metastatic 4T1.2

model but not its parental line, 4T1. This combination of markers

therefore might reflect the changes that are broadly associated with

cancer presence, specific to cancer type and its metastatic potential.

While there were several other marker changes in the models, many

of these were already in the backbone panel, and others, while

potentially of value, were not included in the expanded labelling

panel due to restrictions on the total number of markers based on

flow cytometry infrastructure. The expression of these markers on

the leukocyte populations in which they underwent the most

apparent change was also displayed in raw histogram format

(Figure S4). This demonstrated that the degree of the changes

ranged from subtle to obvious between the CT26, 4T1 and no-

tumor control groups.
LEGENDScreen informed leukocyte-
profiling in CT26 and 4T1 bearing animals

With the inclusion of CD24-, CD45RB-, CD44-, CD66a-,

CD45RB-, and IgD-specific antibodies to the existing leukocyte-

profiling backbone panel, we analyzed the blood leukocytes from

animals bearing CT26, 4T1 or no tumors across three independent

experiments. While the tumor growth was variable, all mice in the

CT26 and 4T1 groups had palpable tumors by the endpoint (Figure

S5A). Manual gating was used to identify leukocyte populations

across all experimental groups (Figures S5B, C); gated populations

overlaid onto a 2-dimensional PaCMAP embedding (Figures S6A,

B); and phenotype assessed on a dot plot heat map displaying

MedFI of marker expression and population proportions (Figure

S6C). Up to 39 populations were identified with the inclusion of the

additional antibodies (Figures S6B, C, Table S4). Separating the

animal groups into no-tumor control (Nil), CT26 and 4T1 models
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(Figures 5A, B) showed obvious proportional (Figure 5B) and total

count (Figure 5C) changes in the delineated blood leukocyte

populations across the groups. There were obvious fold changes

in the counts of numerous leukocyte subsets in both tumor types

relative to normal levels, which was more pronounced in animals

with 4T1 tumors (Figure 5C). The counts of nine populations of

myeloid cells were significantly increased by >2-fold above control

in CT26 samples (Figure 5D); the increases were more dramatic in

4T1-bearing mice with most myeloid cells showing a significant >2-

fold increase above no-tumor control and CT26-bearing animals

(Figures 5E, F). In addition, the 4T1-bearing mice had significant

>2-fold increases in most counts of lymphoid populations

compared to the other groups (Figures 5C, E, F). In both tumor

models, NK cell subpopulation counts were significantly decreased

at >2-fold levels compared to the no-tumor control animals, and

4T1 also showed a decrease in CD62L+ CD45RB+ CD8+ T cells

compared to the other groups (Figures 5D–F). This illustrates the

wide scope of the blood leukocyte count changes and their

complexity in relation to the cancer growth, which also highlights

the utility of adding markers to identify the leukocyte population

changes based on a screening approach.
Finding cancer-defining leukocyte
biomarkers by assessing
distribution overlap

While fold changes and p values can help test the group

similarities in leukocyte counts, we sought to generate a statistic that

reflects the populations that are most capable of distinguishing

between the tumor-bearing and healthy groups. This would be

particularly useful in identifying the blood cell biomarkers that

correlate with the presence and type of cancer in a clinical setting.

For this, we assessed pairwise the measures of differences in the blood

leukocyte population between CT26- and 4T1-bearing and no-tumor

groups, including the metrics based on standard fold changes

(Figure 6A, |LgFC| column) and p-values (Figure 6A, -Lg (p)

column), but also an overlap statistic (41) to measure the overlap of

the blood count distributions of a given leukocyte population between

groups (Figure 6A, OV & 1-OV columns). The rationale here is that

the distribution of a particular leukocyte count that showed the least

overlap between groups would be better at distinguishing the groups.

Leukocyte counts with the largest fold change and smallest overlap

between groups would be an ideal biomarker for distinguishing

cancers and could be presented as a single statistic, with the ratio of

fold change divided by overlap (Figure 6A, |LgFC|/OV column). From

this analysis, the top distinguishing population counts appeared to be

from the monocyte subsets that had large |LgFC|/OV values

(Figure 6A). Among these monocyte populations, the counts of

monocytes that expressed higher levels of CD62L (Mo F+L+;

monocytes expressing SiglecF and CD62L) had large fold changes

and small p-values (larger -log2(p)) between the groups, and notably

had minimal count overlap between the tumor-bearing groups and

no-tumor controls, thus representing a suitable marker to distinguish

cancer presence. In addition, monocytes that downregulate CD62L

(Mo F+L- monocytes expressing SiglecF and lower levels of CD62L)
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FIGURE 5

Blood leukocyte subset changes due to cancer presence. Blood leukocyte populations from CT26- and 4T1-bearing mice and no-tumor controls
(Nil) were identified as described in Figure S5. Live singlet CD45+ leukocytes from each group were analyzed using PaCMAP dimensional reduction
of a total of 50,000 cells per group collated from 5 separate mice per group (A). Leukocyte populations were identified by manual gating (Figure S5)
and overlaid in a reference PaCMAP plot of collated groups [(B), first panel]. Leukocyte subset compositions were calculated by dividing
subpopulation counts by total number of live CD45+ leukocytes for each group [(B), second panel)]. Total numbers of leukocytes per 5 mL of blood
were calculated as described in the Methods and presented as log2 count [(C), top panels]. Fold changes of each population in cancer-bearing
animals over the mean levels of no-tumor controls were also calculated [(C), bottom panel]. Log ratio (M), log average (A) (MA) plots showing log2
average counts per 5 µL of blood against log2 fold changes in counts were plotted for each pairwise group comparison and statistically significant
leukocyte count changes in the groups colored red for upregulated (Up) counts or blue for downregulated (Down) counts relative to the no-tumor
reference group [Nil (D, E) or CT26 (F)]. The nine highest ranked leukocyte count changes, based on smallest p value, are labelled. Dotted lines
indicate 2-fold changes (2 FC). Samples were from a total of 15 animals per group, except for the 4T1 group which had 14 (due to the loss of one
replicate), spread across 3 independent experiments. Statistical significance was assessed using two-way ANOVA on Log10(Y+1)-transformed data
corrected for multiple comparisons using the two-stage step-up method of Benjamini, Krieger and Yekuyieli (37) and a false discovery rate of 0.05.
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FIGURE 6

Metrics for identifying blood leukocyte subsets to delineate groups. Blood leukocyte population counts from CT26- and 4T1-bearing mice and
healthy no tumor controls (Nil), were identified as described in Figure 5. In plot (A) leukocyte counts were compared pairwise between the groups
(as indicated along the x-axis) to generate several statistics including: fold change of count means, represented as absolute value of the log2 of the
fold change (|LgFC|); adjusted p values to test the probability the distributions are from the same population, represented as the -log2 of the p value
(-Lg(p), i.e. the larger the value the smaller the p-value); the proportion of overlap of the distributions (OV) which was also represented as the 1-OV
(i.e. the larger the value the less overlap); and the fold change divided by proportion of overlap represented as log2 of the absolute fold change
divided by OV (|LgFC|/OV). In addition, the rank of importance (ML Rank) of each leukocyte population from Random Forest (RF Rank) and CATBoost
(CTbst Rank) ML models in classification of the groups was displayed. A cumulative group discriminating score for each leukocyte subset was
generated by adding -Lg(p), Lg|FC|/OV and ML ranks together, which is displayed as a right bar plot annotation. The subsets were organized in 9
groups based on Euclidean distance hierarchical clustering across all metrics summarized as a dendrogram. Each metric was scaled from 0 to1 (from
low to high) for each pairwise group comparison or ML rank except for -Lg(p), which was scaled across all comparisons. Plot (B) shows the blood
cell counts of the two monocyte subsets with least overlap between the groups. Plot (C) shows the relationship of the counts of the two monocyte
subsets for each individual highlighting group segregation. Plot (D) shows a Random Forest-based decision Pythagorean tree (43), which shows the
relative amount of classified individuals as box volume, purity based on color (both of which are summarized by pie charts, being Nil = green, red =
CT26 and blue = 4T1) and the subpopulation used to split the data at each node. Plots (E-G) show confusion matrices for group predictions using
CATboost ML models. CATBoost and Random Forests models used 100 trees and were trained on 66% of randomly sampled data and tested on the
remaining data and this repeated 100 times using non-replicable training.
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also displayed similar statistical trends, but these were for

distinguishing 4T1-bearing mice from both CT26-bearing and no-

tumor control mice (Figure 6A). These two monocyte populations,

therefore, harbor the potential to distinguish all groups. Indeed,

plotting the counts of these populations (Figures 6B, C) showed a

clear pathway to distinguish no-tumor animals from cancer-bearing

animals and also differentiate between the two cancer types based on a

decision tree analysis (Figure 6D). To highlight this further, these two

monocyte populations were used alone or together to train and test a

decision tree ML model to assess the capacity to predict the presence

and type of cancer from blood leukocyte profiling (Figures 6E–G). The

counts of monocytes expressing higher levels of CD62L (Mo F+L+)

could classify the presence or absence of tumors but could not

distinguish the tumor type (Figure 6E). The counts of monocytes

expressing lower levels of CD62L (Mo F+L-) could distinguish 4T1

tumor from the other groups (Figure 6F). Using both monocyte

populations, all groups could be distinguished (Figure 6G),

highlighting the utility of overlap statistics in rapid identification of

the group-delineating populations.
Finding cancer defining leukocyte
biomarkers using machine learning models

Overlap statistics measure differences in distributions pairwise,

and therefore would be best suited to identify key distinguishing

features between a few groups. In cases where larger number of

groups are being defined or they have larger distribution overlap,

more complex models might be required. To establish a generic

approach for detecting leukocyte population counts that are most

useful for group classification, we used a decision tree-based feature

ranking built in the Random Forest and CATBoost tree-based ML

models (Figure 6A ML rank column). While the monocyte

population remained one of the highest ranked features according

to the model ranking, several other leukocyte populations of

significance were also identified. A cumulative ranking profile

based on Random Forest rank, CATBoost rank, p values and the

fold-change over overlap ratio was generated to illustrate the overall

feature importance across the measures (Figure 6A right bar plot

annotation). To narrow down the most important features, we

created a learning curve to score the classification performance as a

function of diminishing leukocyte groups added to the model, and

removed the lowest CATBoost ranked populations first (Figure 7A).

As can be seen, the model performed above 95% of all performance

measures with 3 or more top-ranked features. However, there

appeared to be variability in performance depending on the

number of features, wherein the performance dropped with a

large number and enhanced from 8 to 6 top-ranked populations,

suggesting that the top 6 features (Figure 7B) might be the most

informative. Of note, these 6 populations did not include monocyte

(Mo F+L-) or neutrophil (N B-6a+; neutrophils expressing low

levels CD45RB and higher levels of CD66a) populations that scored

the highest on our cumulative ranking profile (Figure 6A right bar

plot annotation). Given that these two populations are potentially

key leukocyte biomarkers for group segregation, we added them to

the top 6 CATBoost ranked populations, making a total of 8
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populations consisting of various monocyte, neutrophil, CD8+ T

cell and B cell subsets (Figure 7B). To better understand how these 8

populations may perform in cancer classification in one another’s

presence, they were compared against all populations for their

segregating capacity by multidimensional scaling (MDS) analysis

aimed at summarizing the metric distances across all of the 8

leukocyte subsets in a 2-dimensional space (Figure 7C). This

demonstrated that the selected 8 populations improved group

separation relative to all populations, particularly of the CT26

from the no-tumor control (Nil) groups. Indeed, the final

CATBoost model trained with the blood counts of these 8

leukocyte populations yielded definitive prediction of all 3 groups

(Figure 7D). A summary of how the counts of each population

change across the groups and act as a collective biomarker profile is

displayed as their log2 fold change relative to one another

(Figure 7E). This clearly illustrates the differential changes in the

myeloid (annotated Mye) and lymphoid (annotated Lym)

populations in different types of cancer. Thus, our screening

pipeline approach has allowed for identification and selection of

cancer-specific leukocyte biomarker signatures that are predictive of

the cancer presence and its type from a single blood sample.
Discussion

Accurate classification and staging of cancer is fundamental to

its prognostication and management. Conventionally, these have

been facilitated by histological investigations and the TNM (tumor-

node-metastasis) staging system for over 70 years (44). It is clear,

however, that cancers are highly heterogeneous and patients with

the same cancer and stage could have widely varying disease

trajectories (45). Novel biomarkers that can predict the disease

and treatment outcome in each individual would enable highly

personalized disease management. ML approaches have the

potential to realize such goals by utilizing complex biomarker

phenotypes (1). Our study has established a fundamental

platform for discovering cancer biomarker patterns through ML-

based decision-making processes in a pre-clinical setting. Our

tailored pipeline has focused on linking the presence of cancer

and its type with the immune cell phenotypes in subcutaneous

mouse cancer models, and has characterized several leukocyte

markers that are altered in the presence of specific tumors. These

correlations may be used to subset “cancer-specific” leukocyte

population profiles. In our study, monocyte counts with

differential CD62L expression were strongly associated with

specific cancers, and populations of neutrophil, T cell, NK cell

and B cell subsets were dramatically altered in tumor-bearing

animals; these were then used to train the ML model by the

pipeline-identified leukocyte subset counts from as little as 5µl of

blood. The trained MLmodels were able to predict the presence and

type of cancer with high certainty within the data constraints,

suggesting that this approach has utility.

Our pipeline offers several distinct advantages for biomarker

discovery. Firstly, it can be easily adapted for use in clinical practice

as it focuses on the systemic leukocyte changes from a single draw of

blood. Collection of a serum biomarker is less invasive and more
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1211064
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Simon Davis et al. 10.3389/fimmu.2023.1211064
cost-effective than a tissue biopsy, suitable for longitudinal

monitoring of the disease trajectory, and harbors a wealth of

information for biomarker discovery (46–48). Secondly, our

screen has utilized fluorescent barcoding to differentiate between

the diseased and non-diseased control group samples that are

pooled together (19–22), which reduces the inter-sample labeling

error rate and acquisition variability. It is also more resource- and

labor-efficient as it allows large screens to be performed in a shorter

timeframe and enhances analysis workflow by enabling direct

comparison between the controls and test samples (19–22, 49).

Thirdly, due to the multiplex nature of flow cytometry, our pipeline

allows for extensive initial leukocyte phenotyping using a backbone

of lineage-defining fluorescently-conjugated antibodies. This, in

turn, facilitates the screen to focus on further cell subsets at

higher resolution. Importantly, the screening pipeline can be

easily adapted to analyze human blood cell subsets by altering the

backbone antibody panel and the LEGENDScreen kit, similar to the

techniques that are already in use in mass cytometry (50). Our

screen could be improved further by multiplexing the screening
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antibodies within one sample rather than conjugating each

screening antibody to one fluorochrome (in this case PE) in

separate wells/samples. This would allow higher screening

throughput and facilitate multiplex phenotyping, which is the

major benefit of single cell flow cytometric analysis. To achieve

this, several fluorescently distinct screening antibodies could be

grouped into a single well and/or the analysis could be

supplemented with modern ML techniques to impute marker co-

expression across all the screen markers, as recently reported

through a pipeline termed InfinityFlow (51).

The premise of our screen is that the blood leukocyte phenotypes

undergo specific alterations as tumors develop and grow. Our study

has used subcutaneously injected cell lines to form tumors which

replicate established tumors. They do not replicate natural

vascularization, metastasis, architecture, immune infiltrate, or

growth of spontaneous human tumors (52). However, our study

highlights that the pipeline can identify blood leukocyte changes that

associate with tumor presence and type, suggesting the pipeline has

potential for adoption in human patients. This is in keeping with the
A
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FIGURE 7

Selection of leukocyte subsets whose counts act as a biomarker for specific cancer detection. Blood leukocyte population counts from CT26- and
4T1-bearing mice and no-tumor controls (Nil), were obtained as described in Figure 5. CATBoost ML models were trained on decreased leukocyte
subsets based on their CATBoost importance rank in group classification (as shown in Figure 6A CTbst rank) or on a selected group of 8 populations
(the top 6 CATBoost ranked, and the top 2 cumulative ranked populations based on [as shown in Figure 6A right bar plot annotation)] (A). These 8
populations (Selected pops) are listed in (B). The selected populations were compared to all leukocyte populations via MDS to assess how the
groups’ distances changed (C). The final CATBoost model was trained on the counts of the selected 8 populations using 66% of randomly sampled
data and tested on the remaining data (D). A summary of the selected population blood count log2-fold changes (gray counts and arcs) between the
groups is shown in circular bar plots highlighting the lymphocyte (Lym) and myeloid cell (Mye) population changes and illustrates their utility as a
collective cancer biomarker (E).
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established evidence that cancer progression in human patients can

result in significant systemic leukocyte changes (53). Such changes

are thought to be a consequence of cancer-induced inflammatory

responses that play critical roles in tumor initiation, promotion,

progression and metastasis while evading immune-surveillance

(54). The resultant perturbation in many leukocyte subsets/

progenitors such as the changes in the hematopoietic stem cells,

dendritic cell phenotype, T cell subset function and NK cell functions,

as well as increase in immature monocyte and neutrophil counts and

regulatory T and B cells, are thought to be crucial features of cancer

(53). Our study supports the potential utility of cancer-induced,

ubiquitous blood leukocyte changes as informative biomarkers for

disease surveillance. Various populations of blood leukocytes across

multiple lineages were altered in our cancer models, with the

predominant increase being in the myeloid cell subsets.

In line with our observations, there have been several studies

examining the standard full blood counts (FBC) for cancer-specific

alterations (46, 53). These studies reported correlations between the

neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios with

the cancer treatment outcomes (46, 53). While the standard clinical

FBC are currently available for disease outcome prediction in ML

models, they might not account for the phenotypic alterations

involved in many of the potential leukocyte changes. Techniques

using tailored multi-parameter approaches to leukocyte phenotyping

such as our flow cytometry-based pipeline enable examination of the

leukocyte phenotypes at much higher resolution. Indeed, many of

the main leukocyte markers detected in our pipeline to be altered in

the presence of cancer have clear functional roles. For example,

downregulation of CD62L (55) and upregulation of CD44 (56) are

well-known markers for leukocyte activation and have important

roles in cell trafficking. IgD, another marker from our pipeline, is

expressed on naïve B cells and functions as an antigen-specific B cell

receptor for cell activation while also modulating B cell anergy (57).

The other pipeline-identified markers CD45RB (58), CD66a (59, 60)

and CD24 (61) are also known to modulate leukocyte signaling, and

their expression levels may be associated with the functional state of

leukocytes. Interestingly, the two monocyte populations that were

most selective in separation of our cancer and control groups were

delineated by CD62L. The cancer models used in this study were

typified by significant increases in the counts of monocytes

expressing higher levels of CD62L. Monocytes have diverse roles

in tumor development (62), both directly and indirectly as the source

of tumor-associated macrophages or dendritic cells, and

phenotypically align with monocyte-myeloid-derived suppressor

cells that are thought to play key roles in tumor progression (63)

Intriguingly, a recent report has identified CD62L+ monocytes being

recruited to inflammatory sites through high endothelial venules

(64) that are common in cancer vascular networks (65), and several

reports have identified changes in the monocyte CD62L expression

in inflammatory disease states (66–68). Therefore, one could

speculate that these cells may influence tumor progression via

modulation of inflammatory responses (69, 70), which renders

them a potential target for future therapies.

One downside of phenotyping cells using functional markers is

that the changes in their marker expression are often detected as cell

population shifts rather than splits into distinct sub-populations.
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Delineating functional cell subsets based on such marker changes

may be more subjective and potentially prone to inter-experimental

variability, whereas an ideal biomarker should be easily and

objectively obtainable. In order to reduce the subjectivity, we

incorporated a pre-defined control (no-tumor) sample in each

analysis as a reference. However, this approach becomes less

practical in the clinical setting due to the inherent heterogeneity

of the human population compared to the homogeneous animal

clones that were used in our pre-clinical study (71). To improve the

clinical translatability, increasing efforts are being made for careful

standardization of protocols across institutes, including machine

calibration with standardized fluorescent particles, frozen cell

normalisation standards, and standardization of sample handling

and processing to reduce the technical variability. Encouragingly,

evidence to date suggests that this approach is feasible (72, 73). To

improve translatability, the number of clinical samples required for

ML training will no doubt be much higher than that collected in

animal clonal models, to take into account human variability.

In conclusion, our study has highlighted the potential utility of a

leukocyte marker-based screening pipeline aimed at characterizing

cancer-specific leukocyte marker changes. The screen facilitates

phenotyping of cancer-specific leukocyte populations, the counts

of which can be used for ML model training to predict the cancer

presence and type within the constraints of the dataset.

Furthermore, it has the potential to identify novel cancer-

associated leukocyte subsets for further mechanistic investigation.

The pipeline can be easily adopted for biomarker detection in

clinical samples, which we hypothesize will form the foundation

of ML models to aid clinical decision-making in the future.
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