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The mature lymphocyte population of a healthy individual has the remarkable

ability to recognise an immense variety of antigens. Instead of encoding a unique

gene for each potential antigen receptor, evolution has used gene

rearrangements, also known as variable, diversity, and joining gene segment (V

(D)J) recombination. This process is critical for lymphocyte development and

relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively

referred to as RAG. RAG serves as powerful genome editing tools for

lymphocytes and is strictly regulated to prevent dysregulation. However, in the

case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity

and severe combined immunodeficiency (SCID). This review examines functional

protein domains and motifs of RAG, describes advances in our understanding of

the function and (dys)regulation of RAG, discuss new therapeutic options, such

as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods

for determining RAG activity and target specificity.

KEYWORDS

BCR - B cell receptor, TCR - T cell receptor, rearrangements of immunoglobulin and T
cell receptor genes, gene therapy (GT), thymus, bone marrow, Recombination
activating genes
1 Introduction

Throughout an individual’s lifetime, the immune system is exposed to numerous foreign

antigens that must be promptly cleared before they can inflict substantial damage. While the

innate immune response is often capable of handling such intruders without requiring

additional support, there are instances where the adaptive immune response must coordinate

a more elaborate defence strategy. To accomplish this, T and B lymphocytes from the adaptive

immune responsemust be equipped to launch a response against any possible foreign agent that

may invade the body.
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Rather than encoding separate genes for each possible antigen

receptor, the immune system has “invented” a mechanism of DNA

rearrangement, known as V(D)J recombination. This mechanism

allows for the antigen recognition gene segments of lymphocytes to

be modified, creating one of the largest biological information banks in

the world, capable of generating a vast repertoire of trillions of possible

combinations (1). At the heart of this process lie RAG1 and RAG2,

collectively referred to as RAG.

The RAG complex is a unique endonuclease that is responsible for

inducing intentional DNA double-strand breaks (DSBs). RAG does so

specifically around certain nonamer and heptamer sequences referred to as

recombination signal sequences (RSSs) that flank the V, D and J segments

in the genome (1, 2). By excising different variants of V(D)J segments,

RAG (along with DNA repair mechanisms) creates coding joints that code

for specific B-cell receptor (BCR) or T-cell receptor (TCR) gene segments.

Thereby, generating clonal diversity (see Figure 1) from a relatively short

piece of DNA when taking into perspective the number of different

receptor possibilities (1, 2). As a result of its critical role in the V(D)J
Frontiers in Immunology 02
recombination process, RAG is indispensable for lymphocyte

development. Loss-of-function mutations in RAG can completely block

lymphocyte development at an early stage, leading to SCID (3, 4). On the

other hand, dysregulation of RAG has been associated with autoimmunity

and RAG-mediated oncogenic fusion genes that promote blood-borne

cancer formations such as acute lymphoblastic leukaemia (ALL) (5).

Therefore, the regulation of RAG is of the utmost importance to prevent

dysregulation and adverse outcomes.
2 RAG protein and the recombination
process from germline to coding joint

2.1 RAG protein structure and functional
domains

The RAG1 gene is situated on chromosome 11p13 of the human

genome and encodes the RAG1 protein which comprises 1.043
B

A

FIGURE 1

V(D)J recombination for the TCR a and b chains and the BCR light and heavy chains. (A) V(D)J recombination for the a (left) and b (right) chains for
the TCR in T lymphocyte development. (B) V(D)J recombination for the light (left) and heavy (right) chains for the BCR (and immunoglobulins) in B
lymphocyte development. V, Variable; J, joining; C, constant; D, diversity; L, leader; AAA, poly-A-tail. Created with BioRender.com.
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amino acids (aa) (6–8). The RAG1 protein can be subdivided into

the N-terminal non-core region (aa 1-384), the core region (aa 384-

1.008), and a short C-terminal non-core region (aa 1.008-1.040)

(see Figure 2A) (2, 7, 8). The N-terminal non-core region contains

nucleolar export and import domains, as well as a zinc dimerization

and RING domain (2, 8–10). The nucleolar export and import

domains regulate RAG1 protein levels as it moves in and out of the

nucleus, where it exerts its function on the genome (11). The zinc

dimerization domain (ZDD) comprises zinc-binding motifs in the

form of zinc finger sequences that allow for homodimer formation

(2, 12). The RING domain has a function in histone H3

monoubiquitylation and plays a role in V(D)J recombination

activity (2, 10). Additionally, the N-terminal region is essential for

full RAG1 activity with recombination enhancing domains and is

shown to interact with several more proteins, including

transcription and nuclear localisation factors, as well as non-

homologous end-joining (NHEJ) components (2, 11, 13, 14).

The catalytic centre of RAG1 is located in the core region, which

comprises the nonamer binding domain (NBD), the dimerization and

DNA binding domain (DDBD), and the central domain holding the

catalytic core. The central domain includes the heptamer binding

region and shares a zinc binding domain (ZBD) with a C-terminal

domain (CTD) within the core region (2, 7, 8). The NBD recognises

and interacts with the nonamer sequence of the RSS, providing part of

the specificity for RAG activity (2, 15–17). The DDBD has a role in

binding DNA and provides another homodimerization domain for

RAG1 (7, 8). The central domain holds motifs responsible for nicking

ssDNA and recognising and interacting with the heptamer RSS (2, 8,

18, 19). The CTD functions as a dsDNA binding domain, although it

does so non-specifically, relying on other domains and motifs for

specificity (2, 8, 18, 20). Shared between the central domain and CTD, a
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ZBD is located which holds two zinc binding regions that interact with

RAG2 (2, 8, 21, 22). Finally, the C-terminal non-core region, though

small, has been reported to inhibit hairpin formation and modulate

binding and cleavage activity together with the C terminus of RAG2 (2,

8, 23).

The RAG2 gene is also located on chromosome 11p13, encoding

the RAG2 protein comprising 527 aa (2, 7, 8, 24). Similar to RAG1,

RAG2 can be divided into two distinct regions: the core region (aa 1-

351) and the C-terminal non-core region (aa 352-527) (see Figure 2B)

(2, 7, 8). The core region of RAG2 contains a six bladed b-propeller
shaped by six Kelch-like motifs, which enables efficient DNA cleavage

and establishes a connection with RAG1 (2, 7, 8, 21). The non-core

domain comprises a hinge and a plant homeodomain (PHD) (7, 25,

26). The hinge domain provides RAG2 with a flexible connection

between the core region and the PHD. This flexibility is essential for

RAG’s recombination activity, as research indicates that neutralisation

of the hinge region, which is relatively acidic, increases genomic

instability (8, 26). Within the hinge domain reside two functional

regions important in recombination: the immunoglobulin k (Igk)
demethylation motif and autoinhibitory motif (8, 27, 28).

Demethylation of the Igk locus by RAG2 may contribute to allelic

exclusion, limiting additional local recombination (8). The

autoinhibition motif is regulated by binding of histone H3 on lysine

4 containing a tri-methylation (H3K4me3) (28). Relief of

autoinhibition by H3K4me3 triggers DNA cleavage and

recombination by the PHD in RAG2 (8, 28–30). At the C-terminal

non-core region of RAG2, degradation of RAG2 is promoted by

phosphorylation, and additionally by ubiquitination by Skp2

ubiquitin ligase in a cell-cycle dependent manner (2, 8, 31, 32).

In the absence of DNA, RAG1 is predominantly present in a

homodimer form, while RAG2 can exist as a monomer, dimer or
B

A

FIGURE 2

Protein domain map of RAG1 and RAG2. (A) RAG1 protein domain map divided in an N-terminal non-core, core and C-terminal non-core region. (B)
RAG2 protein domain map divided in a core and C-terminal non-core region. RAG1, Recombination-activating gene-1;ZDD, zinc dimerization
domain; NBD, nonamer binding domain; DDBD, dimerization and DNA binding domain; ZBD, zinc binding domain; CTD, C-terminal domain; RAG2,
Recombination-activating gene-2; PHD, plant homeodomain. Numbers indicate amino acid positions. Inspired by Schatz and Swanson (2) and
Christie et al (8). Created with BioRender.com.
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even unresolved larger forms (33). Together, RAG1 and RAG2 form

a “Y” shaped heterotetrametric structure comprising two

heterodimer arms of RAG1 and RAG2 (25, 33). RAG1 forms the

base of the “Y” shape, with RAG2 located on the upper tips, and the

catalytic centre situated in the middle of the “Y” joint (25, 33). For a

complete detailed and in-depth view of the exact (crystal) structure

of RAG we refer the reader to seminal work by Kim et al., 2015 (25).
2.2 Site recognition by RAG is mainly
determined by chromatin features
and RSSs

The recombination process begins with recognition of a suitable

cleavage site. As one can imagine, the recombination process is an

impactful genome editing mechanism that may cause serious problems

if left unchecked. Thus, it only occurs at its intended sites, the V(D)J

regions in the genome, and specifically in developing T and B

lymphocytes. RAG exerts its function on the genome at sites where

it detects signs of transcriptionally active chromatin and recognises the

specific RSSs nonamer and heptamers (30, 34, 35). As noted above,

RAG2 requires histone modification H3K4me3 in order to lift the

autoinhibition of its PHD to catalyse RAGs function (28, 29).

Additionally, H3K27 acetylation (H3K27ac) has been found to

correlate with RAG binding to DNA (2, 8, 36). Interaction with

H3K27ac was found to be RAG2 independent and seemed more

dependent on N-terminal regions of RAG1, however, no clear evidence

has proved this point yet (8, 36). Small sections within the V(D)J

coding segments show highly active chromatin, promoting the

recruitment of RAG to these sites, likely via the aforementioned

histone interactions (2).

Furthermore, RAG cleavage activity is greatly dependent on

nonamer and heptamer RSS recognition and binding by RAG1 NBD

and the heptamer binding region in the central domain (2, 8). The

NBD recognises the nonamer sequence ACAAAAACC, which binds

strongly to this region with several highly conserved base pairs (bp) (8,

37, 38). The relatively weaker binding site of the heptamer CACAGTG

only has the first 3 bp which are highly conserved and essential for

DNA cleavage by RAG (8, 37, 38). Between the RSS nonamer and

heptamer lies the spacer, which is always 12 or 23 bp long. RAG may

only bind efficiently to one 12RSS and one 23RSS, not two 12RSSs or

two 23RSSs. This is referred to as the 12/23 rule (1, 2, 8). It has been

debated betweenmultiple publications whether the 12RSS or the 23RSS

pair is bound first or second by RAG prior to DNA cleavage (35, 39–

41). Perhaps a more appealing model of 12/23 binding is one found

from chromatin accessibility studies with histone modifications greatly

influencing RAG binding capacities. This model suggests that the

binding order of 12/23 has to do with the accessibility of the

chromatin the sequence is located in (2, 35, 42). However, other

factors are likely involved, such as the exact nonamer and heptamer

sequences, which may vary apart from the highly conserved

nucleotides. Even variations in the spacer sequence have been

reported to influence RAG binding affinity (2, 8, 37, 38, 43–45).

However, not all RSS are located solely between the V(D)J segments.

The so-called cryptic RSS (cRSS) are commonly present throughout the

rest of the genome (8, 46). RAG’s variation in recognising RSSs can lead
Frontiers in Immunology 04
to different DSBs throughout the genome, causing genome instability.

One example is a RAG-mediated DNA break in the c-Myc gene where

only the 3 conserved bp (CAC) of the heptamer are enough for RAG to

bind the sequence there with the heptamer binding region (8, 46). These

off-target effects of RAG may lead to seriously threatening fusion genes

with the risk of leukaemia’s as a result (5, 47–49).
2.3 Recombination from germline DNA to
coding joint

The recombination process of DNA can be roughly divided into

two phases, the DNA cleavage and joining phase. The first phase is

initiated after RAG has gained access to the DNA via transcriptionally

active histone modifications. RAG binds the first 12- or 23RSS

heptamer and nonamer, forming a single RSS complex and

subsequently recruits the second RSS (the 12RSS if the first was a

23RSS and vice versa) forming a paired complex (50). The heptamer

sequences besides the 12 and 23 spacers flank the 3’ of the V segment

and the 5’ of the J segment (when coding for a light chain, not

containing the D segment, see example in Figure 3), and the nonamer

sequences are positioned in between the heptamer sequences (see

Figure 3). Once firmly in place, RAG induces a conformational change

in the bound 12/23RSSs together with high mobility group box 1/2

(HMGB1/2), nicking the DNA on the 5’ single strand near the

heptamer sequences, promoting an efficient double stranded cleavage

initiated by RAG (see Figure 3) (2, 8). This cleavage creates two

covalently sealed (hairpin) coding ends (at the V and J segments sites)

and two blunt signal ends (at the heptamer ends).

After RAG has cleaved the DNA between the heptamer sequences

and the V and J segments, the second recombination phase is initiated,

the joining phase. Here, RAG dissociates from the coding ends, whilst

holding on to the signal ends, giving space for NHEJ repair enzymes.

Firstly, Ku70 and Ku80 heterodimers recognize the DSB site and bind

to the lose DNA ends (51, 52). Once bound, Ku70/80 recruits DNA-

dependent protein kinase catalytic subunit (DNA-PKcs), which forms

a holoenzyme together with Ku70/80 (51, 53, 54). Initially, the Ku/

DNA-PKcs complex blocks any other factor from binding to the

damaged DNA site. However, DNA-PKcs in the presence of DNA

damage will be trans-phosphorylated by ataxia-telangiectasia mutated

(ATM) and further be auto-phosphorylated, providing access to other

factors to the DSB site (51, 55, 56).

Factors such as Artemis, a 5’ to 3’ endonuclease, now have access to

the DSB site and are phosphorylated by DNA-PKcs (51, 57). Artemis

opens the hairpin by introducing a single strand break in the DNA

behind the first to third nucleotide of the coding ends of the V and J

segments (see Figure 4A) (51, 58). This break generates one to three

palindromic nucleotides (P nucleotides) as two strands which were first

complementary are now in the same strand (1, 59). Hereafter, terminal

deoxynucleotide transferase (TdT), a unique enzyme only present in

developing lymphoid cells, attaches two to five (on average) random

nucleotides which are not originally in the germline DNA on each

coding end on the P-nucleotides, generating additional diversity to the

junction (1, 60, 61). These nucleotides are called N nucleotides, because

they were not encoded in the germline DNA. Complementary

nucleotides at the ends of the coding ends pair and unpaired
frontiersin.org
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nucleotides are removed by exonucleases (51). Artemis is considered to

be involved in the removal of unpaired nucleotides as it possesses

exonuclease activity besides endonuclease activity (51, 58). However, its

role in the removal of these unpaired nucleotides is still unclear (51, 58).

Once unpaired nucleotides have been removed, DNA polymerase µ

and l (Pol µ and Pol l) fill in the single strand DNA gaps by DNA

synthesis (51). In the development of B lymphocytes, it has been shown

that Pol µ is involved in the synthesis of the light chain junctions and Pol

l in the synthesis of the heavy chain junctions (61). It has yet to be

investigated whether in T lymphocyte development the same distinction

can be made for the use Pol µ or l in the synthesis of the a and b (or g
and d) TCR chain junctions. After all nucleotides are filled in, ligation is

initiated by a complex of DNA ligase IV, X-ray repair cross-

complementing protein 4 (XRCC4), XRCC4-like factor (XLF) and

PAXX, completing the coding joint between the V and J segments (as

by the example in Figures 3, 4) (1, 51, 62–65).Meanwhile, the signal ends

of the two cut off heptamers are repaired in a similar manner with NHEJ

and form the signal joint (see Figure 4B) (1).
3 Recombination is restricted and
regulated by a complex locus, various
transcription factors, and cyclin
dependent kinases

3.1 The complex locus and transcriptional
regulation of the RAG genes

Multiple tiers of regulatory elements orchestrate the regulation

of RAG gene expression (66, 67). Extensive research conducted on

the RAG locus has unveiled several cis-regulatory elements (68).

However, the mere presence of these cis-elements falls short in
Frontiers in Immunology 05
elucidating the strictly controlled expression pattern of the RAG

genes during lymphocyte development (68). Various studies have

indicated that BCR signalling in immature B lymphocytes represses

RAG gene transcription by means of phosphoinositide 3-kinase

(PI3K) and protein kinase B (Akt) (69–73). Diminished PI3K and

Akt activity, mediated by B cell linker (BLNK) adaptor protein,

leads to reduced levels of forkhead box O1 (FoxO1) and Fox3a

phosphorylation (72, 73). In T lymphocytes, suppression of RAG

gene expression has been observed to be indirectly regulated by

linker for activation of T cells (LAT) and lymphocyte cytosolic

protein 2 (LCP2) (74). Additionally, activation of Akt inhibits the

nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), thereby

exerting a negative influence on RAG gene expression (75).

Further investigations have demonstrated that the RAG2

promotor exhibits greater specificity for lymphoid cells compared

to the RAG1 promotor (68, 75, 76). Various lymphoid-specific

transcription factors, including paired box 5 (PAX5), MYB, SP1,

lymphoid enhancer binding factor 1 (LEF1), nuclear transcription

factor Y (NF-Y), CCAAT enhancer binding protein (C/EBP),

GATA binding protein 3 (GATA3), and NFATc1, have been

identified to bind to the RAG2 promotor (68, 75, 76).

Moreover, it has been established that distant regulatory

elements are essential for interacting with the RAG promotors to

facilitate transcription (68). These regulatory elements vary between

B and T lymphocytes (68). Upstream of the RAG2 promotor,

approximately 23 kb away, lies the enhancer sequence Erag,

which substantially enhances RAG expression in B lymphocytes

(77). E2A, Foxp1, and FoxO1 are capable of binding to the Erag,

thereby likely regulating enhancer activity (68, 77). Furthermore,

two cis-elements situated 32 and 87 kb downstream of the RAG2

promotor have been found to govern RAG gene expression in T

lymphocytes (78). Nestled between these cis-elements, an anti-

silencing element (ASE) was found that counteracted silencing
FIGURE 3

Phase 1 of recombination, DNA cleavage. Recombination example between V (green) segment 30 and J (yellow) segment 1 in a light chain,
removing V segments 31 to 38. RAG (purple) binds to the first heptamer (cyan)/nonamer (blue) 23RSS (dark grey). Hereafter, binds the 12RSS (light
grey) and initiates the first steps of DNA cleavage utilising HMGB1/2 (red). V, Variable; J, joining; RAG, recombination-activating gene (complex);
HMGB1/2, high mobility group box 1/2. Created with BioRender.com.
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elements in the RAG locus at certain stages of T lymphocyte

development (79). A common transcription factor in both B and

T lymphocytes is Ikaros, which is thought to be an important

regulator of RAG gene expression and function (80, 81).
3.2 Ikaros is an important regulator of
RAG1 and RAG2 gene expression and
protein function

An active regulator of the RAG complex is thought to be the

transcription factor Ikaros (80). Ikaros has been described as a

regulatory protein for TdT and is required for normal foetal T

lymphocyte development, as well as in adult thymic development for
Frontiers in Immunology 06
pre-T lymphocyte TCR formation, and T lymphocyte differentiation

choice to CD4 or CD8 (80, 82–86). Interaction of Ikaros with RAGwas

shown in murine B lymphocytes where hypomorphic Ikaros pro-B

lymphocytes expressed lower levels of RAG1 and RAG2, additionally,

Ikaros knockout lymphocytes even completely lacked RAG1 and RAG2

expression (80, 87, 88). Later studies found that Ikaros is not only

required for RAG1 and RAG2 expression, retroviral expression of

RAG1 and RAG2 in Ikaros knockout B lymphocytes were unable to

form functional V-DJ heavy chain rearrangements (80, 88, 89). Further

studies suggests that Ikaros may be involved in light chain

rearrangement in B lymphocytes as well as in allelic exclusion (80,

90–92). These studies together suggest that Ikaros is required for the

expression and function of RAG genes and protein as well as allelic

exclusion in the development of B lymphocytes.
B

A

FIGURE 4

Phase 2 of recombination, DNA joining. (A) NHEJ example between a V (green) segment and J (yellow) segment after RAG mediated DNA cleavage.
Ku70/80 (purple/red) is recruited to the double stranded break. Hereafter, DNA-PKcs (blue) is recruited, and trans/auto-phosphorylated. DNA-PKcs
activates Artemis (light blue), which in turn opens the hairpins at both coding ends (cleavage location indicated by the black arrows) generating P
nucleotides. TdT (cyan) then introduces N nucleotides to the P nucleotides. Strands are paired and unpaired nucleotides are removed by
exonucleases. The DNA is then synthesised by either Pol µ or Pol l and is then further ligated by DNA ligase IV (purple), supported by XRCC4
(yellow), XLF (dark purple) and PAXX (cyan). (B) Overview of the starting germline DNA to the end of the DNA cleavage and joining phases of
recombination of a V and J segment. ATM, ataxia-telangiectasia mutated; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; TdT, terminal
deoxynucleotide transferase; XRCC4, X-ray repair cross-complementing protein 4; XLF, XRCC4-like factor; RAG, recombination-activating gene
(complex); HMGB1/2, high mobility group box 1/2. Created with BioRender.com.
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3.3 The recombination process is restricted
to the G1 phase of the cell cycle through
rapid degradation towards the S phase

Multiple studies have shown that the recombination process is

restricted to the G1 phase of the cell cycle in developing

lymphocytes (31, 32, 93–96). RAG2 is the most studied of the

two RAG proteins in this regard (97). It has been shown that RAG2

is undetectable throughout the S, G2 and M phase in dividing cells,

however, during the G1 phase RAG2 accumulates and is degraded

again before the S phase is initiated (32, 93). In the absence of

RAG2, RAG1 aggregates in the nucleus. This aggregated form of

RAG1 has an extremely low recombination activity (94). With the

accumulation of RAG2 during the G1 phase, RAG1 is rescued from

aggregation and forms functional RAG complexes with RAG2,

allowing effective V(D)J recombination to take place (93, 94).

Nearing the end of the G1 phase, degradation of RAG2 has been

shown to be regulated post-transcriptionally through

phosphorylation of Thr-490 by cyclin A/cyclin-dependent kinase

2 (cyclinA/Cdk2) (31, 93, 95, 96). A study further showed that in

vitro addition of cyclin-dependent kinase inhibitor 1 (p21), an

inhibitor for all cyclin-dependent kinases (CDKs) and a regulator

of the G0 and 1 phase, prevented degradation of RAG2, further

confirming the cyclin dependency of RAG2 (32, 98).

Phosphorylation of RAG2 Thr-490 by cyclinA/Cdk2 is followed

by ubiquitination by Skp2-SCF E3 ubiquitin ligase, a known

regulator for G1-S transition (31, 32, 99).

Studies concerning regulation of RAG1 have demonstrated that

DNA damage-binding protein 1 (DDB1) and cullin-4A (CUL4A)

associated factor 1 (DCAF1) are necessary to control physiological

levels of RAG1 in its protein form (97, 100, 101). RAG1 degradation

is likely ubiquitin-dependent through proteasome degradation via

CUL4A E3 ubiquitin ligase complexes (97). In mice, disruption of

DCAF1 let to partial reduction of D-J recombination, whereas

recombination of the V-DJ and V-J genes became severely

impaired, resulting in a developmental block for B lymphocytes at

the pro-B-to-pre-B lymphocyte stage (100). Similar to Skp2-SCF E3

ubiquitin ligase in regulation of RAG2, subunit CUL4A of the E3

ubiquitin ligase complex is a regulator of G1-S transition (102). All-

in-all, these studies suggest that both RAG1 and RAG2 protein are

regulated to function exclusively during the G1 phase and are

marked for degradation through proteasomes during transition

into the S phase of the cell cycle.
4 Detection methods for
recombination activity and specificity

4.1 Cell-free DNA-RAG interaction
methods for binding affinity and DNA
bending kinetics

Using relatively simple assays like a DNase foot printing or

electrophoretic mobility shift assay (EMSA) one can determine

RAG binding to DNA or even specific (c)RSS sequences (103, 104).

The DNase foot printing assay works on the principle that DNA
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bound by protein is protected from degradation by DNases (103).

When RAG is bound to a given labelled DNA, specific sequences

can be protected from DNase degradation. When these conditions

are loaded onto a gel electrophoresis, the protected fragments can

be observed (105). EMSA relies on a shift in molecular size when

protein, in this case RAG, binds to a given DNA sequence (106).

This shift in molecular size can be made visible on an

electrophoresis gel, indicating an interaction (106).

However, DNase foot printing and EMSA only provide

information on DNA binding of RAG. More advanced DNA-

protein interaction measuring methods can be used, such as

single-molecule fluorescence resonance energy transfer (smFRET)

or single-molecule colocalization (smCL) assays. Besides

information on specific DNA ((c)RSSs) binding, smFRET and

smCL provide insight on the DNA bending kinetics of RAG

(107). Using smFRET one can measure the bending of RAG

target DNA by designing fluorescent donor and acceptor probes

which recognise the 5’ and 3’ regions of the heptamer respectively

(107). Interaction of RAG with the labelled region will induce a

conformational chance in the DNA, bringing the donor and

acceptor in closer proximity of each other (107). This proximity

change of the donor and acceptor probes can be measured in FRET

efficiency (107). With smCL RAG itself is fluorescently labelled

besides a labelled sequence probe for the heptamer sequence (107).

When RAG binds the labelled heptamer their colocalization and

dwell time can be directly observed using total internal reflection

fluorescence (TIRF) microscopy in real-time (107). All-in-all,

DNase foot printing, EMSA, smFRET and smCL provide good

information on DNA-RAG interaction concerning binding affinity

to given DNA and DNA bending kinetics for the latter

two methods.
4.2 In vitro detection of signal joints and
flow cytometric analysis of lymphocyte
development

The methods mentioned above are all in vitro cell-free methods,

which may not always provide all the necessary information.

Measuring RAG activity in cells adds crucial cellular context of

other interacting proteins that can provide valuable additional

insights. However, direct measurements of RAG in cells presents

challenges. RAG is so evolutionary conserved that it is difficult to

obtain antibodies that can specifically mark RAG for flow cytometry

or cytometry by time flight (CyTOF). Moreover, RAG is primarily

located in the nucleus, and intranuclear staining, along with surface

staining using flow cytometry, can be quite challenging. An

alternative approach is to use PrimeFlow™ , an in situ

hybridization assay, to demonstrate RAG gene expression in flow

cytometry. However, this approach does not provide information

on the RAG protein, only RNA.

Indirect effects of recombination are easier to detect, such as

lymphocyte development. Using flow cytometry, one can follow the

developmental stages of lymphocytes and observe hindrances or a

complete arrest of development when RAG is mutated or disrupted

(108, 109). Recombination activity can be indirectly measured by
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(q)PCR of the signal joints from in vitro cultures. Furthermore, cells

can be transduced with an inverted reporter gene (such as green

fluorescent protein (GFP)) flanked by 12- and 23RSSs, along with

RAG1 and RAG2, if the cells do not express RAG endogenously (94,

110, 111). Active RAG can perform recombination at the 12- and

23RSS flanking the reporter gene, generating a readable signal from

the now-active reporter gene in the signal joint (94, 110). Moreover,

this method can determine the recombination efficiency of different

(c)RSSs by modifying the flanking RSSs of the inverted reporter

gene (94, 110).
4.3 Indirect methods for measuring
recombination activity in an in vivo setting

In an in vivo setting, the closest approximation to a real

recombination scenario is achieved. However, measuring RAG

activity directly in vivo is very challenging and has yet to be

accomplished. Indirect measuring of the recombination activity is

available in the form of the TCR excision circle (TREC) assay,

following lymphocyte development in the bone marrow, thymus

and peripheral blood through flow cytometry, repertoire analysis,

and serum Ig quantification (108). These methods can be applied,

for example, on mice, where RAG-deficient mice are available and

serve as good negative controls and targets for RAG gene therapy

(108, 112).
4.4 New-born screening for early SCID
diagnosis using TREC assay

Clinical outcome for SCID has been greatly enhanced with early

diagnosis and treatment (113). At birth, SCID affected infants often

appear in good health, as a consequence the condition is diagnosed

later, often when the infant already has multiple infections and

presents with secondary organ damage (113–115). In 2010 the

Department of Health and Human Services (HHS) in the USA

recommended screening for SCID to be included in the new-born

screening, and from 2018 and forward, all new-borns are screened

for SCID throughout all states of the USA (116). Since the advice of

the HHS, multiple countries like Taiwan (2012), Israel (2015),

Iceland, New Zealand, Norway (2017), The Netherlands (2018),

Switzerland, Sweden, Germany (2019) and Denmark (2020) have

implemented SCID in their new-born screening programs

(117, 118).

SCID is diagnosed using the TREC assay, a simple but effective

PCR of the signal joint (113, 119, 120). TRECs are the signal joints

that form after recombination (see Figure 4B) and therefore are

abundantly present in recently formed T lymphocytes. Because

TRECs are not replicated during cell division, they are divided over

one of two daughter cells after division, and therefore only present

in a fraction of the peripheral T lymphocytes. A TREC analysis,

provides quantitative information on the replication rate of these

cells (119). In healthy new-borns, TRECs represent about 10% of

the peripheral T lymphocytes, and they in turn reflect thymic

formation of naïve T lymphocytes (119, 121).
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5 Dysregulation of RAG is associated
with cancers, autoimmunity and
immunodeficiency

5.1 Potency of oncogenic genomic
alterations in dysregulated recombination

Dysregulated recombination has been shown to cause genomic

instability in lymphoid cells (5, 47–49). Some translocations,

amplifications and deletions in ALL could be traced back to

recombination, as (c)RSS could be detected near breakpoints in

the DNA (5, 122). In comparison to other non-lymphoid

malignancies like breast, prostate and pancreatic cancers, these (c)

RSS were not observed near translocations, amplifications or

deletions present in their representative malignant cells (5, 122).

However, these genomic alterations may not be the actual cause of

malignancy in lymphoid cells, but a result of previous oncogenic

alterations leading to further instability of the cell through RAG

dysregulation (122).

Mutations in RAG itself may alter its activity. Failure to mark

RAG2 for degradation by cyclinA/Cdk2 through mutation of its

substrate, Thr-490, has shown to disconnect recombination activity

from the G1 phase of the cell cycle, inducing lymphoid

malignancies in p53 deficient mice (31). Furthermore, mutations

in the autoinhibitory region of RAG2 may lift the histone

recognition signal for activation, triggering increased off-target

activity of RAG (8, 28). Besides dysregulations in RAG itself,

dysregulation of NHEJ after DSB by RAG may result in genomic

instability. In vivo murine studies have shown that RAG activity in

p53 and NHEJ deficient mice resulted in genomic instability and

leukemogenesis, often presenting with aneuploidy, amplification

and chromosomal translocations (123–126). However, potentially

oncogenic translocations caused in mice deficient for different

components of NHEJ were not equal (123). Deficiencies in Prkdc

(DNA-PKcs) did not result in a translocation between Ig heavy

chain on chromosome 12 with c-Myc on chromosome 15, which

were recurrent in mice deficient in p53 and KU80, LIG4 or XRCC4

(126, 127). All-in-all, dysregulation of RAG and/or NHEJ increases

the likelihood of oncogenic genomic alterations, however

dysregulation of recombination may not always be the cause for

lymphoid malignancies, but a result of already preleukemic

conditions in a cell (122).
5.2 Partial recombination deficiency may
allow inclusion of self-reactive antigen
receptors

Immunodeficiencies with partial recombination activity due to

hypomorphic RAG mutations have been shown to carry risk for

generating autoantibodies (128–131). When recombination is not

completely impaired, functional lymphocytes can still develop,

although restricted and not always in normal quantities (128–130,

132, 133). And just like during normal lymphocyte development,

auto-reactive receptors are formed. In normal development these

receptors are either edited, deleted or the cell becomes anergic (1). In
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the case of receptor editing, recombination is directly involved by

trying other combinations of V(D)J segments if they are still possible

to make (134). With partial recombination activity, this process may

be impaired as well, resulting in an impaired tolerance selection if

elimination or anergy fails (130). Studies have shown that partial

recombination activity influences B lymphocyte tolerance in the

periphery through generating a severely restricted B lymphocyte

repertoire. These restricted B lymphocytes can become stimulated

in an inflammatory environment which is often present in the form

of infections for recombination impaired individuals, increasing the

risk for autoimmunity (130, 135).
5.3 Majority of RAG mutations cause
abnormal lymphocyte development,
resulting in phenotypically
heterogenous SCID

A complete or greatly deficient recombination machinery

severely hampers lymphocyte development at an early stage,

resulting in SCID (3, 4, 128, 136). SCID represents a heterogenous

group of immunological disorders characterised by abnormalities in

the function and development of T lymphocytes (and B lymphocytes,

however not in all forms of SCID) (128, 137). Mutations in RAG

make up a large part of SCID cases in humans (3). The most severe

phenotypes of RAG deficiencies include T- and B-lymphocyte

negative SCID, Omenn syndrome (OS), gd T+ SCID and atypical

SCID (128). Other RAG deficient immunodeficiencies with different

clinical phenotypes cover: combined immunodeficiency associated

with granulomas and/or autoimmunity (CID-G/AI), idiopathic

CD4+ T cell lymphopenia, common variable immunodeficiency,

IgA deficiency, selective deficiency of polysaccharide-specific

antibody responses, hyper-IgM syndrome, and sterile chronic

multifocal osteomyelitis (138–144). Specific mutations in RAG

determine the phenotype of the disease, for a detailed list of known

disease causing mutations in RAG we would refer the reader to an

excellent review by Notarangelo et al., 2016 (128).

Amorphic mutations in RAG cause a complete loss-of-function

in recombination, causing T and B lymphocyte negative SCID. T

and B lymphocyte negative SCID can have two distinct phenotypes,

one associated with a RAG deficiency, and one with a NHEJ

deficiency. In the case of NHEJ deficiency, besides patients being

severely immunocompromised, they also are radiosensitive due to

the lack of NHEJ in DNA damage repair from ultraviolet light or

ionizing radiation sources (128, 145).

OS is caused by hypomorphic mutations in RAG and still shows

some recombination activity (146). OS is characterised by generalised

erythroderma, lymphadenopathy, hepatosplenomegaly, eosinophilia,

severe hypogammaglobulinemia with elevated levels of IgE, and

multiple organs infiltrated with activated T lymphocytes (128, 147,

148). It is speculated that T lymphocytes in these patients are skewed

towards T helper 2 lymphocytes, causing elevated levels of serum

interleukin-5, it is however unclear how this skewing is initiated

(128). Furthermore, distinct restrictions in TCRs may induce

autoimmunity, causing T lymphocyte infiltrations in multiple

organs (128, 148, 149). One explanation may be that specific
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mutations may alter V(D)J recombination in a particular way,

favouring certain RSS above others (20, 128). In some conditions of

autologous T lymphocytes without typical OS phenotype, the disease

is referred to as atypical SCID (3, 150–152).

Some cases of hypomorphic RAG show relatively normal

numbers of gd T lymphocytes despite the patients having ab T

lymphocyte lymphopenia (153, 154). This so called gd T+ SCID

phenotype has been associated with cytomegalovirus (CMV)

infection and does not present itself with the characteristic

features of OS (128, 153, 154). It has been suggested that the

expansion of gd T lymphocytes is antigen-driven by the CMV

infection, causing peripheral clonal expansion of these cells (153,

154). Patients with gd T+ SCID phenotype often develop

autoimmune reactions despite having minimal levels of B

lymphocytes, however they do respond to some vaccines and

infections (154). All-in-all RAG deficiencies can present themself

in many different phenotypes depending on the nature of the

mutation in RAG or NHEJ components, or the environmental

exposure to pathogens, resulting in life-long and life threatening

immunodeficiencies, often combined with autoimmunity (128).
6 Gene therapy for RAG-SCID

6.1 Gene therapy-based precision medicine
as most suitable therapeutic intervention
for RAG deficient SCID

For SCID, the curative treatment exists in the form of

haematopoietic stem cell (HSC) transplantation, however, a well

matched donor is not always available. Proper HLA matching

decreases the chances of Graft versus Host Disease (GvHD) as

mismatched HLA in an allograft transplant often results in Graft

versus Host Disease and other comorbidities (155). An autologous

bone marrow transplant with corrected genes, also known as

autologous gene therapy, would be the ideal cure for these diseases.

Ex vivo gene therapy treatment allows for control and selection before

transplanting the treated cells back to the patient. This form of gene

therapy may be achieved in different ways, through retro- or lentiviral

vector transduction with corrected genes (gene addition) or by gene

editing in which the affected locus is corrected through the use of

nucleases, nowadays most frequently Clustered regularly interspaced

short palindromic repeats (CRISPR)/Cas.

Upon infection of a host cell, retroviruses integrate their genetic

information more or less permanently in the host genome (156).

Retroviruses have thus been seen as a natural gene delivery system

and were actually used in the first recorded case of successful

human gene therapy in the 1990s (157, 158). Besides a few of the

viral DNA domains and long terminal repeat (LTR) elements, a

large part of the viral genetic information can be replaced by

exogenous DNA, up to 8 Kbp (159). The virus can be further

modified by pseudotyping, replacing the envelope gene encoding

for envelope glycoproteins with envelope genes of other viruses,

changing the infectable host cells (159). Upon infection, integration

is only possible during cell division, one of the downsides of a

gamma-retroviral vector. Due to their specific integration proteins,
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integration by gamma-retroviral vectors is most likely to take place

in euchromatin rather than heterochromatin, risking insertional

mutagenesis which has led to cases of acute leukaemia in gamma-

retroviral vector treated patients (159–165). However, since the first

use of gamma-retroviral vectors, safety has been improved with

insulator sequences that modulate promotor activity and the

development of self-inactivating (SIN) vectors (166–169).

Close relatives to the gamma-retroviruses are lentiviruses and

they too can be considered a good tool for gene delivery in gene

therapy (and other applications) (159). Lentiviruses are

considered to be more complex than gamma-retroviruses and

thus are more complex to modify for specific gene delivery

strategies. However, they come with more advantages as well.

Lentiviruses come with additional regulatory genes that allow for

integration in non-dividing cells (170, 171). Appropriate

pseudotyping and modification of lentiviruses has resulted in

space for up to 9 Kbp of exogenous DNA and the ability to

effectively target and transduce difficult-to-transduce cells such as

HCS, lymphoid cells, some myeloid cells, neurons and others (159,

172–175). Additionally, lentiviruses have low LTRs inducible

promotor activity due to SIN modifications, and tend to

integrate further away from start sites of cellular promotors,

lowering the risk of insertional mutagenesis and oncogenicity

compared to gamma-retroviruses (159, 160, 176).

In the ideal situation however, one should actually repair the

mutated gene instead of inserting an additional one. Gene editing by

CRISPR has great promise in this regard. Using CRISPER/Cas9, a DSB

can be introduced in the mutated gene with a single guide RNA

(sgRNA). This break can then be repaired through the cells homology-

directed repair (HDR) mechanisms using donor DNA with

homologous arms to the DSB site. This mechanism of gene editing

can transport up to 4,7 Kbp of exogenous DNA and can be delivered

via adeno-associated virus (AAV), which can be modified to target

HSCs effectively (177–181). Because this method of gene editing relies

on HDR, it can only be executed in dividing cells (182). Furthermore,

CRISPR/Cas9 is not error-free, although great advances are beingmade

to eliminate off-target activity (183–186). However, some studies using

ex vivo gene editing with CRISPR/Cas9 transported in AAV with a

donor sequence, triggered immune responses, negatively influencing

the stemness of HSCs and reducing their long-term seeding after

transplantation (178, 179, 185, 187–189). In addition, CRISPR also

shows on target side effects, due to its imprecise nature and can

generate indels at distances up to several hundred bps around the

desired site, possibly disrupting normal gene regulation (190, 191).

Especially for a locus that is subject to strict negative control, such as

the RAG locus, these safety considerations are of utmost importance.

Besides gene editing through HDR, a modified Cas9 has been

engineered with base editing enzymes, reverse transcriptase’s and

prime editing enzymes (177, 192, 193). These CRISPR/Cas9 fusion

mechanisms can edit single nucleotides, add insertions up to 44 bp, and

delete up to 80 bp at 5 to 50 bp away from the target site (193). All-in-

all, CRISPR-based gene editing caries great potential for gene therapy

applications, however, further improvements in safety regarding off-

target editing and delivery of the machinery need to be made in order

for these methods to be safely implemented in clinical gene therapy.
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6.2 Ongoing lentiviral-based clinical trial
for RAG1-SCID shows great promise in
immune reconstruction

As introduced above, SCID is a prime candidate to be treated by

autologous stem cell based gene therapy. Indeed, the first successful

gene therapy efforts were done with retroviral vectors for treating X-

linked-SCID which is caused by mutations in the IL2RG gene (191).

Based on the initial success, a similar approach was proposed to

treat RAG1-SCID. While this kind of RAG1 gene therapy showed

good efficacy in the mouse models, the occurrence of leukaemia due

to insertional mutagenesis, forced the field to move to SIN LV

vectors (164, 194). For some types of SCID, these vectors became

quickly available, however for RAG1-SCID this proved to be a

formidable challenge due to the high expression of RAG1 in very

strictly defined lymphoid progenitor populations (195, 196). We

first reported successful LV preclinical work with the spleen focus-

forming virus (SFFV) promotor, which was later replaced by the

more clinically acceptable myeloproliferative sarcoma virus

enhancer, negative control region deleted, dl587rev primer-

binding site substituted (MND) promotor, which has been used

before in clinical trials for gene therapy (109, 112, 197). Since then,

preclinical studies on lentiviral-based gene therapy for RAG1-SCID

has advanced to a phase I/II clinical trial (NCT04797260) in 2021

(108, 109, 112, 198). These preclinical murine studies used RAG1

deficient mice and performed gene therapy with a lentiviral SIN

vector containing codon optimised RAG1 (coRAG1). The treatment

showed successful reconstruction of T and B lymphocytes in

peripheral blood and developing lymphocytes seeded central

lymphoid organs (109). And when challenged with foreign

antigens, treated mice showed an antigen-specific immune

response (109). Importantly, a relatively high level of coRAG1

expression was essential for successful recombination, as low

levels of coRAG1 due to inefficient transduction resulted in OS-

like T lymphocyte phenotypes (198, 199). After passing regulation

standards, the lentiviral coRAG1 vector moved on to a phase I/II

clinical trial, and as the clinical trial progresses, we eagerly await the

results for the human in vivo setting. Thus far, two patients have

been included and a third one will be transplanted with corrected

autologous stem cells soon.

Recent work using HSC based gene therapy for cerebral adreno-

leukodystrophy (CALD) using a similar MND promoter has

showed 3 cases of myelodysplastic syndrome out of 70 patients

treated showing the risk of insertional mutagenesis that is associated

with this kind of therapy (197). For RAG1 LV gene therapy we

tested 7 different promoters as high RAG1 expression is required to

restore T cell development (108, 112, 198, 200). In safety assays, the

MND-coRAG1 vector has not shown signs of insertional

mutagenesis (112, 200). We have also opted for transduction

efficiencies with approximately one integration per target cell,

instead of VCNs of 5 to 10 that were aimed for in the CALD

trial, where indeed 3-5 viral integration sites per dysplastic clone

were found (197). Further follow up will show whether the

perceived lower change of xeno-toxicity events in the RAG1 SCID

trial holds up.
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For RAG2-SCID, we have developed SIN LV vectors that

correct RAG2-deficiency in mouse models (200). The vector is

currently being produced good manufacturing practices (GMP)

grade to facilitate clean room testing leading up to a phase I/II

clinical trial anticipated early 2024 (an overview of other current

developments in RAG gene therapy is provided in Table 1).
7 Conclusion

In summary, RAG plays a crucial role in the intricate process

of recombination and lymphocyte development, leading to the

generation of immune diversity. Thanks to extensive research, we

have gained a more comprehensive understanding of RAG’s

functional domains and motifs, and how it initiates the

recombination process (2, 8). Furthermore, investigations into

RAG have uncovered regulatory links to chromatin features, RSS,

transcription factor Ikaros, the G1 phase of the cell cycle, and

developing lymphocytes (2, 8, 28, 31, 80). Dysregulation of these

components has been linked to diseases l ike cancer ,

autoimmunity, and SCID (2, 8, 128). However, with the

emergence of precision medicine in the form of gene therapy,

the possibility of treating diseases like SCID is now becoming a

reality (108, 112). The current innovative methods for detecting

and measuring recombination activity by RAG hold promise for

advancing research on RAG deficiencies, gene therapy and related

fields. However, the development of direct intranuclear measuring

of RAG protein would be a significant addition to these methods,
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enabling even more precise and accurate measurements of

recombinat ion ac t iv i ty . Furthermore , the cont inued

development of error-free CRISPR gene editing, efficient

transduction delivery systems, and safe viral vectors will further

enhance the potency of gene therapy, providing hope for patients

suffering from a wide range of genetic disorders. As these

technologies continue to evolve, it is likely that the future of

gene therapy will be characterised by even greater precision and

efficacy, paving the way for a new era of personalised medicine.

The first gene therapy trial for RAG1-SCID (NCT04797260)

is currently underway, and the outcome is eagerly anticipated

(108, 112). With existing literature providing strong support for

further development of gene therapies for forms of SCID and

other genetic disorders, advanced culture systems such as

artificial thymic organoids (ATOs) can further facilitate this

research by allowing for the use of patient material in culture

and reducing the need for animal experimentation. However,

creating effective and safe gene therapy for SCID poses

significant challenges, given the powerful genome editing tools

involved. As such, meticulous regulation is necessary to ensure

the successful implementation of gene therapy for RAG in SCID.

By carefully balancing innovation with regulatory oversight, we

can continue to make strides towards safe and effective gene

therapies that have the potential to transform the lives of

patients with genetic disorders.
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TABLE 1 Overview of the current developments on RAG gene therapy.

RAG1/2-
SCID

Gene therapy
strategy

Vector/endo-
nuclease

Stage

RAG1 Gene addition MLV/RV In vivo mice
(194)

RAG1 Gene addition LV In vivo mice
(109)

RAG1 Gene addition LV In vivo mice
(199)

RAG1 Gene addition LV Phase I/II
(108, 112)

RAG2 Gene addition MLV/RV In vivo mice
(201)

RAG2 Gene addition LV In vivo mice
(202)

RAG2 Gene addition LV In vivo mice
(203)

RAG2 Gene editing CRISPR-Cas9/
rAAV6

In vitro iPSCs
(204)

RAG2 Gene editing CRISPR-Cas9/
rAAV6

In vitro
HSPCs (205)

RAG2 Gene editing CRISPR-Cas9/
AAV6

In vitro
HSPCs (206)
MLV, Moloney leukemia virus; RV, retro virus; LV, lentivirus; rAAV6, recombinant adeno-
associated virus serotype 6; HSPCs, hematopoietic stem and progenitor cells; iPSCs, induced
pluripotent stem cells.
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