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Sepsis – it is all about
the platelets

Dermot Cox*

School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
Sepsis is accompanied by thrombocytopenia and the severity of the

thrombocytopenia is associated with mortality. This thrombocytopenia is

characteristic of disseminated intravascular coagulation (DIC), the sepsis-

associated coagulopathy. Many of the pathogens, both bacterial and viral, that

cause sepsis also directly activate platelets, which suggests that pathogen-

induced platelet activation leads to systemic thrombosis and drives the multi-

organ failure of DIC. In this paper we review the mechanisms of platelet

activation by pathogens and the evidence for a role for anti-platelet agents in

the management of sepsis.
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Introduction

The development of a circulatory system was critical in the evolution of complex

organisms. However, this also created the vulnerability that loss of blood due to injury

could be fatal to the organism. Thus, it was essential that a system that could limit blood-

loss was also developed. Furthermore, as blood is also a very fertile environment for the

growth of bacteria, especially after a trauma, there was a need to develop a system to fight

infection. In the case of primitive organisms such as the Horseshoe crab, a single cell – the

haematocyte – fulfilled both these requirements. This cell could respond to bacteria and

fight the infection. Once stimulated they also clumped together sealing any leak. Thus, the

haematocyte mediated both the immune and haemostatic responses (1).

As organisms became more complex, so too did the regulatory systems. This simple

haematocyte evolved into multiple specialised cells such as leucocytes and monocytes. One

specific cell type – the megakaryocyte - became the sole cell type responsible for

haemostasis. While not directly involved in haemostasis the megakaryocyte fragments

into platelets, which are the key regulator and mediator of haemostasis.

Since megakaryocytes evolved from the haematocyte it is not surprising that not only

did they acquire the haemostatic properties of haematocytes, they also retained some of the

immune functions of the haematocyte. Thus, as well as being mediators of haemostasis

platelets are also part of the innate immune system.

The immune and haemostatic response to injury were conventionally considered as

distinct systems. However, recently it has become clear that the two are intimately linked.

The role of platelets in mediating the innate immune response to infection is known as
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immunothrombosis (2) and is a normal physiological response to

infection. Thrombus formation is a complex process that also

involves cells of the innate immune system and the role of the

innate immune response in thrombus formation is known as

thrombo-inflammation (3). Thus, infection activates the innate

immune system and if this innate immune response persists

(either because the pathogen is resistant or if it is an autoimmune

response) it results in enhanced thrombus formation (4, 5). Platelets

are the first responders to trauma (in part due to their high

concentration in plasma) and their activation leads to recruitment

of immune cells to the site of injury as well as the formation of a

clot. Thus, platelet activation acts to both prevent blood-loss and to

sterilize the site of injury.
Platelets and thrombosis

Platelets can be considered to have multiple distinct functions

that are often, but not necessarily, connected. These are adhesion,

aggregation, secretion, and platelet-leucocyte complex formation.

Platelets are highly responsive to many of the components found

at the site of injury. Thus, they have receptors for collagen, fibrinogen

and von Willebrand factor (vWF) all of which are to be found on the

damaged blood vessel. The primary function of the interaction with

these ligands is to immobilise the platelet to the damaged vessel under

both low shear (venous) conditions (collagen and fibrinogen

receptors) and high shear (arterial) conditions (vWF receptors) (6).

Platelets can also bind to bacteria that have attached to a surface.

Platelet adhesion mediated by these receptors usually results in

platelet activation facilitating thrombus formation, while also

ensuring that thrombus formation is restricted to the site of injury.

Platelets also express receptors for soluble ligands. These are all

G-protein coupled receptors and respond to ligands such as ADP,

adrenaline, and thrombin. Platelet activation by these ligands is

important in recruiting platelets to the site of injury and growing

the thrombus (7).

Once activated, platelets aggregate forming a thrombus, but

they also secrete the content of their granules. Platelets contain

multiple granule types including alpha- granules, dense granules,

and lysosomes. This platelet secretome is rich in bioactive molecules

including over 2,000 proteins (8), small molecules such as ADP and

serotonin and polyphosphates (9). While the platelet secretome

plays a role in thrombosis it is primarily involved in the non-

thrombotic roles of platelets.

While platelet-platelet interactions are a critical property of

platelets, activated platelets can also bind to leucocytes and

endothelial cells. This interaction can modify the function of the

target cell.
Platelets and the innate
immune system

While platelets play a critical role in haemostasis it has become

clear that they also play a role in the innate immune system. As

there are many dedicated immune cell types any immune function
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of platelets is likely redundant. However, as platelets are the first

responders to a cut (a primary cause of infection), they are perfectly

placed to help sterilise the wound and to coordinate the immune

response to the injury.

There is strong evidence to suggest that this happens clinically.

Serious infections are associated with thrombocytopenia (10) and

this thrombocytopenia is associated with outcome. Thus, in sepsis

the extent of thrombocytopenia is associated with severity of disease

and outcome (11–13). Furthermore, in severe viral infections (14)

such as Dengue (15), COVID-19 (16), Hantavirus (17), Hepatitis B

(18) and mononucleosis (19) the severity of the thrombocytopenia

is associated with outcome.

The cause of this thrombocytopenia is unclear, and it has been

proposed that it could be due to suppression of platelet production

by the megakaryocytes as a result of infection. There is certainly

evidence that megakaryocytes can be infected by viruses such as

Dengue virus (DENV) and influenza virus (20). However, the result

of this infection is complex. Megakaryocyte infection by DENV has

been shown to reduce megakaryocyte levels which would lead to

decreased platelet production (21). However, inflammation has also

been shown to increase platelet function and an increase in platelet

count has been seen in the initial response to COVID-19 (22) and

increased levels of IL-1 and CCL5 increase platelet production by

around 50% (23, 24). Ultimately, changes in platelet synthesis are

unlikely to be relevant as the lifespan of a platelet is approximately

10 days and even if infection entirely shut down platelet production

it would take 9 days for severe thrombocytopenia to occur, while in

sepsis it occurs rapidly. Furthermore, while thrombocytopenia

would create a risk of bleeding it is unlikely to be involved in the

pathogenesis of the infection and would only be a biomarker

of outcome.

Thus, it is likely that infection-associated thrombocytopenia is

due to platelet activation as this is likely to be rapid in onset and the

resultant large-scale thrombosis would have pathological

consequences. This level of platelet activation will result in

extensive thrombosis throughout the circulation. This is in fact

what happens in a condition known as disseminated intravascular

coagulation (DIC). DIC is a coagulopathy that is associated with

severe infections such as sepsis and COVID-19 and is characterised

by thrombocytopenia, platelet activation and systemic thrombosis

(25). If this thrombosis occurs in the microvasculature of multiple

organs, it will lead to ischemic damage. As this ischemic damage

expands, this leads to the multi-organ failure of severe sepsis.

The critical question is how the platelet activation arises. One

possibility is that platelets are innocent bystanders. Infection leads

to a highly pro-inflammatory environment that in turn could lead

to platelet activation. Evidence for this is that platelets can be

activated by some cytokines including IL-6 and IL-8 (26). Dengue

virus has been shown to induce IL-1b production which in turn

induces iNOS in platelets (27). Another possibility is that platelets

may interact with inflammed/infected endothelial cells leading to

their activation (28). It is important to note that not all platelet

activation is the same. Platelets have been shown to undergo a form

of activation known as pyroptosis (29), which can be considered to

be a cross between apoptosis (membrane blebbing and caspase

activation) and necrosis (cell swelling and lysis) (30). This is a pro-
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inflammatory response that involves inflammasome formation.

Pyroptosis is induced in platlelets by circulating S100A8/A9 (29).

Infection can lead to thrombin generation either through

activation of the contact system or generation of tissue factor. As

well as causing the formation of fibrin clots this thrombin will also

activate platelets. However, this is unlikely to be clinically relevant

and activated protein C (aPC) is a thrombin inhibitor and was

introduced for the treatment of sepsis (31), however, it was

ultimately removed from the market due to the lack of benefit

(32). Furthermore, while the use of anti-thrombins have some

benefit in both sepsis (33) and COVID-19 (34) their use has been

disappointing as DIC continues to be a major problem. This

suggests that while thrombin generation may occur during

inflammation/infection it is not the major driver of DIC in

humans not withstanding the benefit of these agents in animal

models of DIC.

Both thrombosis and inflammation are closely intertwined and

this connection is bi-directional, with inflammation leading to

increased thrombosis and vice-versa, and is known as

immunothrombosis (35). While the production of pro-

inflammatory cytokines or thrombin generation may play a

minor role in DIC it is clear that platelet activation in response to

infection is unikely to be incidental and is more likely to be a direct

response to infection.
Pathogen interaction with platelet
haemostasis receptors

Considering that platelets are the first responders to injury it is

reasonable that they would respond directly to any infecting

pathogen. It is no conicidence that nearly all of the bacteria that

are associated with sepsis have been shown to induce platelet

aggregation when added to platelet-rich plasma (PRP) which

presumably represents a direct interaction between pathogen and

platelets. Furthermore, bacteria such as S. aureus have multiple

different interactions with platelets (36).

There are two families of receptors on platelets that are involved

in the interaction with pathogens – receptors involved in haemostasis

such as GPIIb/IIIa and GPIb and immune receptors. The known

interactions of bacteria are summarised in Figure 1 and Table 1.
Glycoprotein IIb/IIIa

GPIIb/IIIa is the fibrinogen receptor that is unique to platelets.

It is the dominant protein on the platelet surface and plays a critical

role in platelet aggregation. It is a member of the integrin family of

cell adhesion molecules and binds many proteins in an RGD-

dependent manner. It also binds a fibrinogen-specific domain (g-
chain dodecapeptide). Binding of soluble ligands requires activation

of GPIIb/IIIa although resting GPIIb/IIIa can bind to immobilised

ligands (75).

GPIIb/IIIa mediates platelet adhesion to the sub-endothelial

matrix and to other platelets and it is the fibrinogen-mediated
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binding to other platelets that results in thrombus formation.

However, GPIIb/IIIa is also involved in platelet activation. GPIIb/

IIIa binding to the NGR sequence in immobilised fibrinogen results

in platelet activation and spreading (76). Furthermore, small

molecule GPIIb/IIIa antagonists have been shown to activate

platelets and the development of this class of drug was

discontinued due to increased platelet activation leading to

increased cardiovascular events (77).

GPIIb/IIIa is a key receptor for interacting with pathogens.

Staphylococcus aureus expresses multiple fibrinogen-binding

proteins including clumping factors A and B and fibronectin-

binding protein. Fibrinogen-coated S. aureus binds to platelet

GPIIb/IIIa and induces platelet activation (37). Similarly, strains

of Streptococcus pyogenes that express fibrinogen-binding M

proteins (M1, M3 and M5) can also induce platelet aggregation in

a GPIIb/IIIa-dependent manner (48). Other fibrinogen-binding

proteins that mediate platelet aggregation include Sdr G

(Staphylococcus epidermidis) (43), SpsL (Staphylococcus

pseudintermedius) (44, 55), and FOG (Group G streptococci)

(55). On the other hand S. aureus secretes extracellular fibrinogen

binding protein (Efb) which acts to inhibit platelet aggregation (41).

While GPIIb/IIIa is primarily the fibrinogen receptor and

mediates that FOG interaction via the g-chain dodecapeptide, it is

also an RGD-binding integrin and is capable of binding many

RGD-containing proteins. For instance GPIIb/IIIa is capable of

binding fibronectin via its RGD-binding site. S. aureus expresses a

fibronectin-binding protein (Fnbp) and binding of fibronectin to

this protein mediates an interaction with GPIIb/IIIa and triggering

platelet activation in a manner similar to fibrinogen-bound bacteria

(37). S. epidermidis Sdr G (43), S. aureus Isd protein (78) and S.

gordonii PadA (45) can bind directly to GPII/IIIa. DENV has been

shown to directly bind to GPIIb/IIIa (61). The RGD-binding ability

of GPIIb/IIIa creates another possibility. RGD-is a common peptide

motif found in matrix proteins and supports cell adhesion via one of

the many RGD-dependent integrins. Pathogens often express the

RGDmotif and use it as a virulence factor as it allows them to attach

to and subsequently infect host cells. Examples of pathogens that

use an RGD-containing protein to mediate adhesion to host cells

include Bordetella pertussis (filamentous hemagglutinin) (79),

Streptococcus agalactiae (scpB) (53), Mycobacterium tuberculosis

(Peptidyl Prolyl Isomerase A) (58), Borrelia burgdorferi (BBB07)

(59), Helicobacter pylori (CagL) (80). Candida albicans (Sap6) (81),

SARS-CoV-2 (82), Coxsackievirus A9 (VP1) (83) and HIV-1 (Tat

protein) (70) also express RGD-containing proteins. As GPIIb/IIIa

is capable of binding many RGD-containing proteins it is likely that

it can also bind RGD-containing pathogen proteins. Figure 1A

illustrates GPIIb/IIIa-mediated platelet activation by fibrinogen-

binding pathogens)
GPIb

After GPIIb/IIIa, the most highly expressed protein on the

platelet surface is GPIb which exists as a complex with GPIX and

GPV. GPIb is a receptor for von Willebrand Factor (vWF) and

this interaction mediates platelet adhesion to matrix-associated
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vWF but only under high shear conditions. This interaction leads

to platelet spreading and activation (84). Pathogens also use GPIb

to facilitate an interaction with platelets. One way to do this is by

the expression of vWF-binding proteins on the bacteria surface.
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H. pylori binds vWF and induces platelet aggregation in a GPIb-

dependent manner (56). This is unusual as high shear is not

necessary for this interaction. Thus, it is likely that when bound

to the surface of H. pylori vWF-undergoes a conformational
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FIGURE 1

Showing the main mechanisms of pathogen-induced platelet activation. (A) Bacteria such as S. aureus express proteins that bind fibrinogen which in
turn binds to GPIIb/IIIa. Simultaneously, IgG binds to the bacteria and also to FcgRIIa generating an activation signal. (B) Any bacteria can bind IgG
which in turn leads to the assembly of complement. The IgG binds to FcgRIIa and the complement to a complement receptor to generate an
activation signal. (C) Bacteria such as H. pylori express a protein that binds vWF, which in turn binds GPIb. IgG also binds to the bacteria and also to
FcgRIIa generating an activation signal. (D) Bacteria such as S. sanguinis express proteins (e.g. serine-repeat protein; srp) that can directly bind GPIb.
This generates an FcgRIIa-dependent activation signal. (E) Bacteria such as S. pneumonia express a protein that binds to Toll-like receptor (TLR) 2. In
conjunction with IgG engagement of FcgRIIa they can generate an activation signal. (F) DENV E-glycoprotein can bind directly to DC-SIGN and non-
structural protein (NSP)-1 can bind to TLR4. In conjunction with IgG binding to FcgRIIa this leads to the generation of an activation signal. (G) Some
viruses express proteins that bind to TLR (e.g TLR 2, 4 &7) leading to a platelet activation signal.
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TABLE 1 Summary of the known pathogen proteins that interact with platelets either through a direct interaction or via a bridging protein.

Pathogen Pathogen protein Binding protein Platelet receptor Reference

Staphylococcus aureus Clumping factor (Clf) A&B Fibrinogen GPIIb/IIIa (36)

Fibronectin binding protein (Fnbp) Fibronectin GPIIb/IIIa (37)

serine-aspartate repeat protein (SdrE) - ? (36)

Protein A vWf GPIb (38)

IsdB –– GPIIb/IIIa (39)

Peptidoglycan TLR-2 (40)

Extra cellular fibrinogen binding protein
(Efb)*

Fibrinogen Inhibits aggregation (41)

SraP ––– ? (42)

Staphylococcus epidermidis serine-aspartate repeat protein (SdrG) Fibrinogen
––

GPIIb/IIIa
GPIIb/IIIa

(43)

Staphylococcus pseudintermedius SpsL Fibrinogen GPIIb/IIIa (44)

Streptococcus gordonii Pad A –––– GPIIb/IIIa (45)

Hsa –––– GPIb (46)

GspB –– GPIb (47)

Streptococcus pyogenes M proteins Fibrinogen GPIIb/IIIa (48)

Streptococcus sanguinis serine-rich protein (srp) –– GPIb (49)

Streptococcus oralis Hsa –– GPIb (50)

Streptococcus pneumoniae ? ? TLR2 (51)

Streptococcus agalactiae ? ? TLR2 (52)

scpB-1 RGD-containing
protein

GPIIb/IIIa?? (53)

FbsA Fibrinogen GPIIb/IIIa (54)

Group G streptococci FOG Fibrinogen GPIIb/IIIa (55)

Helicobacter pylori ? vWf GPIb (56)

CagL RGD-containing
protein

GPIIb/IIIa?? (57)

Mycobacterium tuberculosis Peptidyl Prolyl Isomerase A RGD-containing
protein

GPIIb/IIIa?? (58)

Borrelia burgdorferi BBB07 RGD-containing
protein

GPIIb/IIIa?? (59)

Leptospira interrogans vwa-I&II ––– GPIb
Inhibition of
aggregation

(60)

DENV ? ––– GPIIb/IIIa (61)

? ––– GPIb (62)

E-glycoprotein ––– DC-SIGN (63)

Non-structural protein 1 ––– TLR4 (64)

SARS-CoV Spike protein ––– DC-SIGN (65)

SARS-CoV-2 Spike protein ––– ACE2

Spike protein ––– TLR4

Spike protein DC-SIGN

(Continued)
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change that allows it to interact with GPIb without the need

for shear.

Pathogens also express proteins that can directly bind to GPIb.

Examples of GPIb-binding proteins include serine-rich protein (srp)

A on Streptococcus sanguinis (49) and Hsa on Streptococcus gordonii

(46) and Streptococcus oralis (50). On the other hand Leptospira

interrogans secretes a vWF-like proteins (vwa-I&II) that bind to GPIb

and play a role in the haemorrhagic shock by blocking the GPIb-vWF

interaction (60). Dengue virus appears to interact with GPIb although

the mechanism is unknown (62). Figures 1C, D illustrate GPIb-

dependent pathogen-induced platelet aggregation.
Other receptors

ACE2 has been found to be expressed on platelets and mediates

SARS-CoV-2 binding (85). Severe fever with thrombocytopenia

syndrome (SFTS) virus (SFTSV) binds to platelet GPVI and induces

platelet activation. Furthermore, SFTSV can enter platelets and

replicate (66).
Pathogen interactions with platelet
immune receptors

As innate immune cells, platelets express multiple immune

receptors such as FcgRIIa and Toll-Like receptors (TLRs). While

these are not involved in haemostasis they do play a role in platelet

activation by pathogens. Many pathogens bind to GPIIb/IIIa or GPIb

which is critical in the activation of platelets, however, these interactions
Frontiers in Immunology 06
are insufficient to induce platelet activation. In all case platelet

activation and subsequent aggregation is FcgRIIa-dependent (74).
Aside from the haemostasis resceptors that mediate the unique

haemostasis functions of platelets, platelets also express multiple

receptors that are usually associated with immune function. These

include FcgRIIa, Toll-like receptors (TLR) and Clec-2. The immune

receptors are also involved in pathogen-mediated platelet activation.
FcgRIIa

It is clear that many pathogens can bind to, and activate,

platelets by interacting with the major platelet surface receptors,

however, while these interactions are necessary for platelet activaton

they are not sufficient, as signalling through FcgRIIa was also

essential in all cases. In haemostasis, direct activation of a platelet

receptor is sufficient to induce thrombus formation. However, in

immunology co-stimulation is the norm with multiple signals being

required for immune cell activation.

Fc receptors are a super-family of receptors that bind the Fc

portion of antibody. Each antibody class has its own Fc family (IgA/

FcaR, IgG/FcgR and IgE/FceR) that mediates immune cell

activation by immune complexes. While the best known reaction

is that of IgE complexes with FceR on basophils leading to

histamine release and anaphylaxis, by far the most widely

expressed FcR is the FcgR family (86, 87).

FcgR is a family of receptors whose primary function is to

mediate phagocytosis and thus their expression on phagocytic cells,

although surprisingly, they are also expressed on platelets. There are

three sub-families of FcgR – FcgRI, FcgRII and FcgRIII and these

differ in their affinities for the different IgG isotypes. The most
TABLE 1 Continued

Pathogen Pathogen protein Binding protein Platelet receptor Reference

Spike protein RGD-containing
protein

GPIIb/IIIa?

Severe fever with thrombocytopenia syndrome
(SFTS) virus

? –––– GPVI (66)

Cytomegalovirus ? ? TLR2 (67)

Encephalomyocarditis virus ? ? TLR7 (68)

HIV Gp120 –––– DC-SIGN (69)

Clec-2

Tat RGD-containing
protein

GPIIb/IIIa?? (70)

Ebola virus Ebola glycoprotein ––– DC-SIGN (71)

Hepatitis C virus Envelope protein –––– DC-SIGN (72)

Influenza Hemagglutinin Protein –––– DC-SIGN (73)

All pathogens ? IgG FcgRIIa (74)

? Complement Complement receptor
f

Direct interactions are indicated by the absence of a binding protein (-). ? indicates that the identity of the receptor is unknown.
* indicates a secreted product.
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important FcgR sub-family is FcgRII and it is compsoed of FcgRIIa
and FcgRIIb. Aside from cellular distribution, these 2 receptors

differ in their signalling. FcgRIIa, like other FcgR signals through an

immunoreceptor tyrosine-based activation motif (ITAM). ITAM is

characterised by a tyrosine residue separated from a leucine or

isoleucine by 2 amino acids (YxxL/I). ITAMs contain 2 of these

domains separated by 6-8 amino acids. Receptor activation leads to

phosphorylation of the tyrosines in ITAM by Src family kinases.

These phosphtyrosines then recruit the tyrosine kinase Syk, which

commences the signalling cascade. FcgRIIb, however, contains an
immunoreceptor tyrosine-based inhibitory motif (ITIM) that

recruits phosphatases and thus is an inhibitory receptor (88).

FcgRII all have an ITAM/ITIM domain as part of the

cytoplasmic tail of the receptor. Other FcRs such as FcgRI
interact with an ITAM-containing adapter protein known as FcRg
(89). FcRg also mediates signalling by the collagen receptor GPVI

on platelets (90).

FcgRIIa is the only FcR on platelets where it plays a key role as a

co-stimmulatory receptor for pathogen-induced aggregation (91). Its

primary function is to bind pathogen-bound IgG. Extensive work with

S. aureus showed that while binding to GPIIb/IIIa was critical in its

interaction with platelets, activation only occurs in the presence of

anti-S. aureus IgG which engages with FcgRIIa (92). As S. aureus is a
commensal, nearly everbody has significant titres of anti-S. aureus

IgG. In the case of H. pylori, which is not a commensal, platelet

activation only occurs with platelets from H. pylori-positive

individuals (56). Streptococcus bovis/Spreptococcus equinus complex

also induce platelet aggregation in a FcgRIIa-dependent manner (93).

Peptidoglycan from Bacillus anthracis can also induce platleet

activation in an FcgRIIa- and IgG-dependent manner (94). Viruses

can also cause platelet activation in an FcgRIIa-dependent manner.

DENV triggers platelet activation in an IgG and FcgRIIa-dependent
manner (95). These anti-DENV antibodies arise from a prior DENV

infection with a different serotype. Influenza H1N1 (96) and some

Bunyaviruses such as Crimea-Congo Haemorrhagic fever (97), also

induce platelet activation via FcgRIIa. Antibodies to Spike protein have
been found to lead to platelet activation in COVID-19 patients that

was FcgRIIa-dependent (98). Blocking FcgRIIa has been found to

prevent platelet activation by COVID-19 plasma in vitro (99, 100). In

all cases blockade of FcgRIIa with an antibody or depletion of specific

IgG inhibits platelet activation, confirming the role of the IgG- FcgRIIa
interaction in platelet activation.

Platelet FcgRIIa is not only involved in pathogen-induced platelet
activation but it is also involved in immune thrombocytopenia (ITP),

where antibodies to platelet antigens trigger the immune destruction

of platelets (101). This depletion of platelets in ITP is not the just the

usual immune destruction, as these antibodies trigger platelet

activation in an FcgRIIa-dependent manner. This is also found in

heparin-induced thrombocytopenia (HIT) where heparin binds to

PF4 on the platelet surface and in some individuals this complex can

become antigenic. Antibodies bind to the complex and also engage

FcgRIIa leading to platelet activation and consumption which

presents as a severe thrombocytopenia.

While FcgRIIa is critical in platelet activation by pathogens the

same is not true of IgG. Streptococcus sanguinis mediates platelet
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activation by engaging GPIb and the aggregation is inhibited by

antibodies that block FcgRIIa, however, this aggregation occurs in

the absence of IgG (102). This suggests that in this context, FcgRIIa
is acting as a co-receptor for GPIb. This may be explained by

evidence of co-localisation of GPIb with FcgRIIa (103).
A major challenge in investigating the role of FcgRIIa in

thrombosis is its restricted expression. FcgRIIa is not expressed in

mice and these are the primary animal model for both thrombotic

and infectious disease. Thus, pathogen-induced platelet activation

in mice occurs in an FcgRIIa-independent manner and is likely to be

quite different to that in humans. This is supported by evidence of

differences in gene expression between mice and humans in sepsis

and trauma. This species difference has clinical consequences with

activated protein C (APC) being approved for the treatment of

sepsis based on animal studies (31) and yet had to be withdrawn

from the market due to a lack of efficacy (32).
Toll-like receptors

TLRs are also expressed on platelet surface and these have been

shown to be involved in pathogen interaction with platelets (40, 104).

Most of the attention was focused on TLR2 and TLR4 as they are the

most widely expressed TLRs. There are conflicting data regarding the

functionality of these TLR in platelet function (105, 106).

Lipopolysaccharide (LPS) is a TLR4 agonist and LPS from E. coli

O157 fails to induce platelet aggregation even though E. coliO157 can

induce aggregation, which suggests that TLR4 is not functional (39).

The conflicting data appear to relate to the end point of any study.

Thus, studies that use aggreation as the end point see no role for

TLR4 while those that look at other markers of platelet activation do

see a role. In contrast, the TLR2 agonist Pam3Csk4 can induce

platelet aggregation (39), Streptococcus pneumoniae (51),

Streptococcus agalactiae (52) and cytomegalovirus (67, 107) induce

platelet aggregation in a TLR2-dependent manner. SARS-CoV-2

envelope protein has been shown to interact with TLR-2 (108).

Encephalomyocarditis virus has been shown to bind to and activate

platelets in a TLR7-dependent manner (68). SARS-CoV-2 has been

shown to bind to TLR-4 thereby activating platelets (109). A key role

for pathogen-binding to platelet TLR is to facilitate the platelet-

leucocyte interaction (110, 111) and it may play a role in endocytosis

of virions by platelets (112). TLR-4 has also been shown to induce

platelet pyroptosis in a TLR-4-dependent manner (29). Figures 1D, G

illustrate the role of TLRs in pathogen-induced platelet activation.
Lectins

Lectins are a family of receptors that recognise carbohydrates

but can also bind to proteins. C-type lectins are calcium-dependent

lectins that act as pathogen-recognition receptors (113). C-type

lectins such as DC-SIGN (Dendritic Cell-Specific Intercellular

adhesion molecule-3-Grabbing Non-integrin) and CLEC (C-type

lectin-like receptor) 2 are expressed on platelets. Clec-2 signalling is
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similar to FcgRIIa (90) although it only has a single YxxL/I domain

known as a hemITAM (114). DC-SIGN binds HIV (69), DENV (63,

115, 116), Ebola virus (71), Hepatitis virus (72), and influenza

H1N1 (117) and H5N1 (73), SARS-CoV (118) and SARS-CoV-2

(119, 120) and this binding is implicated in platelet activation.

CLEC-2 and 5A are also important in binding to viruses (121) such

as HIV (69).
Complement receptors

Complement formation in response to an infection is an

important feature of the innate immune system. Platelets can

become activated in response to complement. Furthermore,

complement-bound immune complexes can bind to both FcgRIIa
and complement receptors gC1q-R thereby triggereing platelet

aggregation (122). Once platelet-binding proteins have been

removed from both S. sanguinis (123) and S. aureus (92) they can

induce platelet aggregation in a complement- and FcgRIIa-
dependent manner. COVID-19 is associated with increased

complement formation (124, 125) and complement fragments

have been found in coronary micro-thrombi of COVID-19

patients after autopsy. SARS-CoV-2 can directly activate

complement formation via the alternative pathway (126) and

patients who died had higher levels of anti-N antibodies that

fixed complement (127). The glycosylation profile of the anti-

SARS-CoV-2 IgG also appears to be important with a low

fucosylated form being more pro-inflammatory (128) and more

pro-thrombotic (129). The role of complement in pathogen-

induced platelet activation is illustrated in Figure 1B.
Interactions of secreted bacterial
products with platelets

While direct interactions of bacteria with platelets are critical in

the subsequent platelet activation, bacteria also secrete many

products including toxins that have the potential to interact with

platelets (130). S. aureus secretes a number of substances that have

been shown to activate platelets including extracellular adherence

protein Eap, chemotaxis inhibitory protein of S. aureus (CHIPS),

formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the

autolysin Atl (131). S. aureus also secretes the prothrombin

activating proteins staphylocoagulase and vWf-binding protein

that can induce platelet activation through increased thrombin

production (132). There is also a family of pore-forming toxins

that act like the calcium ionophore (A23187) (133). These include

pneumolysin (S. pneumonia), Streptolysin O (Group A

streptococci) and a-toxin (S. aureus) (130). Shiga toxin is

produced by some strains of E. coli and plays an important role

in the pathogenesis of haemolytic uremic syndrome (HUS). Shiga

toxin acts in conjunction with LPS to activate platelets leading to the

generation of NETS (134). Staphylococcal superantigens and

staphylococcal superantigen-like protein (SSL) also activate
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platelets. SSL5 has been shown to activate platelets by binding to

GPIba and GPVI (135). S. aureus toxic shock syndrome toxin-1

(TSST-1) mediates platelet activation and apoptosis, although the

mechanism of TSST-1-mediated platelet activation is unknown

(136). Porphyromonas gingivalis secretes gingipains that can

mimic thrombin and activate platelets by cleaving protease-

activated receptors (PAR) (137–139).
Platelet-infected cell interactions

While in vitro, pathogen interactions with platelets can easily be

investigated, it is much more complex in vivo as multiple cell types,

especially endothelial cells also play a role. Both bacteria and viruses

can infect endothelial cells and platelets can play a role here.

Typically, resting platelets and resting endothelial cells do not

interact but activated platelets will bind to activated endothelial

cells. Furthermore, activated platelets will enhance endothelial cell

activation and vice versa (140, 141). S. aureus can bind to

endothelial cells using multiple virulence factors and once bound

they can attract platelets (142). Endothelial cells infected with

Cytomegalovirus (CMV) induce platelet adhesion and aggregation

that is vWF and GPIb-dependent (143). This immunothrombosis in

response to endothelial cell infection may play a role in the increase

in atherosclerosis and mortality post-infection (144).
Beyond thrombus formation

While the role of pathogen-platelet interactions in thrombus

formation is well established these interactions also lead to

activation of the immune system (145). The formation of

neutrophil extracellular traps (NETs) – a mesh of neutrophil-

derived chromatin fibres – plays an important role in trapping

and killing pathogens (146). Full NET formation requires the

formation of platelet-neutrophil complexes in a TLR4-dependent

process (147). S100A8/A9 binding to TLR-4 induces platelet

pyroptosis and these platelets are very potent at inducing

NETosis, furthermore NETs release S100A8/A9 which increases

platelet pyroptosis (29). Platelet-derived exosomes isolated from

sepsis patients have been shown to induce NET formation (148).

There is evidence that eosinophils (EET) and monocytes (MET) can

also form extracellular traps (149). Platelet-eosinophil interactions

are involved in EET formation (150, 151). Platelet-monocyte

aggregate formation is also implicated in sepsis (152) and the

have been shown to mediate killing of Klebsiella pneumonia

(153). In severe COVID-19 (154) and Dengue (155) activated

platelets activate monocytes and are implicated in disease severity.

Platelet activation by pathogens can also lead to release of

granule contents that are rich in cytokines and can influence the

immune response. DENV infection of platelets induces NO

production and IL-1b release (27). SARS-CoV-2 (156) and DENV

(157) have been shown to induce the release of multiple pro-

inflammatory cytokines from platelets.
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Pathogen-induced platelet activation:
clinical implications

The innate immune role of platelets in responding to infection

is not restricted to bacteria as they also play an important role in

responding to viruses (158–161). The ability of pathogens to

activate platelets has clinical implications. Infection is associated

with platelet activation, and this is part of the pathogenesis of many

infectious diseases. Platelet activation is associated with two types of

infection – localised infection (infective endocarditis) and systemic

infection (sepsis). Evidence for platelet activation being involved in

the pathogenesis of infectious disease opens the possibility of anti-

platelet agents in the treatment of some infectious diseases.

One of the best characterised interactions with viruses is the

DENV-platelet interaction. There are 4 serotypes of DENV.

Infection with any serotype leads to a minor infection with ‘flu-

like symptoms. The immune response soon clears the virus, and the

patient is immune from future infection. However, if the patient is

infected with a different DENV serotype there will be an immune

response from the pre-existing anti-DENV antibodies, although

these are not inhibitory antibodies for the new serotype. As a result,

there are antibody-coated DENV virions in the circulation. These

can interact with FcgRIIa on monocytes, leading to antibody-

dependent enhancement (ADE) of the infectivity of DENV (95).

The antibody-coated DENV virions can also bind to FcgRIIa on

platelets which leads to platelet activation, DIC and Dengue

haemorrhagic fever (DHF) (162, 163). Figure 1F illustrates

DENV-induced platelet activation.
Infective endocarditis

Infective endocarditis (IE) is due to infection of cardiac valves.

This can be infection of healthy valves or compromised valves. One

of the primary triggers for IE is rheumatic fever, which is an

inflammatory disorder that arises from untreated streptococcal

infection of the throat (164). One complication of rheumatic fever

is damage to the cardiac valves which makes then susceptible to

future infections. However, the use of antibiotics to manage

streptococcal throat infections has greatly reduced the incidence

of rheumatic fever. Another significant cause of IE is intravenous

drug use which likely leads to damage to cardiac valves creating a

susceptibility to infection. Finally, prosthetic cardiac valves are also

risk factors for developing IE (165, 166).

While many bacteria can cause IE most cases are due to

infection by staphylococci or streptococci, both of which are well

known to induce platelet aggregation. As a result, when the valve

becomes infected, platelets are attracted to the lesion, bind to the

bacteria, and become activated. Once activated they recruit more

platelets and form a thrombus. As the thrombus grows it can put a

strain on the valve causing the valve to fail. The thrombus can

become unstable due to the physical stress applied to it as the valve

opens and closes. This can cause the thrombus to fracture and

embolise which can lead to a stroke, myocardial infarction or

pulmonary embolism depending on where the embolus becomes

trapped (167). IE embolism has a high mortality rate.
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Platelets are recruited to the infected valve to manage the

infection. Once activated they secrete anti-microbial peptides to kill

the bacteria and recruit immune cells. However, if these bacteria are

resistant to the anti-microbial peptides they can continue to grow

and, as the bacteria are surrounded by platelets, the immune cells

cannot gain access to bacteria. Furthermore, by being surrounded by

platelets antibiotics may not work as they also cannot gain access to

the bacteria within the thrombus. Thus, if bacteria are resistant to

platelet-derived anti-microbial peptides the ability to activate and

recruit platelets is an effective survival mechanism.

The significant role for platelets in the development of infected

thrombi suggests a role for anti-platelet agents in managing patients

with IE (168, 169). However, the data have been mixed. Animal

studies have shown reduced thrombus size, but clinical studies have

been mixed with some showing benefit (170) and others no benefit.

However, it is worth noting that these studies were small and no

data on the causative agents or the role of antibiotics (169).
Sepsis

While IE is an example of a focal infection that triggers

thrombus formation, sepsis is a systemic infection and thus there

is no localised thrombus formation. However, platelets still interact

with the bacteria and become activated while in the circulation.

These activated platelets can clump together forming thrombi that

can occlude the microvasculature. This results in ischemic damage

to the surrounding tissue (this can be organs such as kidney, liver,

and brain). As platelet activation spreads so too does the ischemic

damage which, if it becomes extensive, can lead to organ failure.

Once bacteria gain access to the circulation, they interact with

platelets leading to their activation and consumption. In response to

this platelet consumption, there is an increase in platelet production

and thus in early-stage sepsis it is common to see an increase in

platelet count. However, soon the synthetic ability of the body is

overcome as the rate of platelet consumption exceeds the rate of

platelet production. At this point the patient begins to

develop thrombocytopenia.

The occurrence of thrombocytopenia is well established in

sepsis although its occurrence may simply be an association – a

secondary event to increased inflammation during sepsis- rather

than a causative factor in sepsis. However, there is a clear

association between the extent of thrombocytopenia and outcome

in sepsis. Furthermore, it is interesting to note that many cases of

culture-positive sepsis are due to infection with Staphylococci,

Streptococci and E. coli –all of which have been shown to directly

activate platelets. Thus, direct activation of platelets by bacteria is a

more likely cause of thrombocytopenia than secondary activation

due to increased inflammation.

The role of platelets in infection is a double-edged sword. Platelet

activation by bacteria leads to the release of anti-microbial peptides

(171) and also enhances the ability of monocytes to kill Klebsiella

pneumoniae (153) and thus platelets play an important role in

preventing sepsis. Thrombus formation acts to trap bacteria and

prevent dissemination of the bacteria (172) although there appears to

be an organ-specific effect on the ability to trap Salmonella
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Typhimurium (173). Thrombus formation occurred with S.

Typhimurium infection of mice in a platelet Clec-2-dependent

manner (174). However, specific deletion of platelet Clec-2 has

been shown to enhance inflammation and organ damage in a

caecal-ligation sepsis model (175). Depletion of GPVI but not Clec-

2 has been shown to increase bacterial load and decrease

inflammation in lungs after K. pneumoniae infection (176). There

is also evidence that platelets can aid in dissemination of bacteria

(Streptococcus pyogenes) (177). Thrombocytopenic mice have more

severe sepsis (polymicrobial sepsis) (178) with impaired survival after

K. pneumoniae (179) and Streptococcus pneumoniae (180) infection,

although it lead to more severe sepsis with S. aureus infection (181).

On the other hand, excessive platelet activation is critical to the

pathogenesis of sepsis. As far back as 1981 aspirin was shown to

reduce the impact of sepsis in mice (Salmonella enteritidis) (182, 183).

It has been shown to protect mice from S. aureus-induced sepsis

(184). Clopidogrel (185) and ticagrelor (186) were found to be

protective in a polymicrobial model of sepsis although clopidogrel

has also been shown to be of no benefit (187). In mouse studies of

influenza-induced pneumonia the use of an anti-viral agent in

conjunction with clopidogrel reduced mortality (188).

Thus, the above animal studies on sepsis have had contradictory

results. Depletion of platelets prior to sepsis generally leads to worse

outcome, although some studies have shown the opposite. Anti-

platelet agents have been shown to be beneficial in sepsis although

some studies found no effect. These conflicting studies make it

difficult to understand the role of platelets in sepsis. Some of the

differences can be due to the inducing agent – endotoxin versus live

pathogen. Even with live pathogen there can be differences in whether

a Gram-negative or Gram-positive pathogen is used, or whether it is a

polymicrobial infection or a single pathogen. However, it does appear

that the presence of platelets is important in protecting against sepsis

due to their role in innate immunity. Sepsis only arises if the pathogen

is resistant to the platelet anti-microbial peptides, or the dose of

pathogen is so high that it overcomes the innate immune system. So

not surprisingly platelet depletion can worsen sepsis outcomes

possibly by inducing sepsis in animals that would normally clear

the pathogen. However, if sepsis is established, the innate immune

role of platelets has failed. At this point the platelet becomes part of

the problem rather than the solution to the problem and thus, platelet

inhibition is likely to be beneficial.

If direct platelet activation by bacteria plays a critical role in the

development of multi-organ failure in sepsis, then anti-platelet

agents should improve outcome in sepsis. While some clinical

studies have found no evidence for reduced incidence of sepsis or

subsequent mortality (189, 190) with the use of aspirin, other

studies have shown benefit. Aspirin use prior to admission to

ICU has been shown to reduce sepsis mortality (191, 192) and

mortality from pneumococcal pneumonia (193). Lavie and co-

workers (194) and Du and co-workers (195) used propensity

matching to show that aspirin use reduced mortality in sepsis

(hazard ratio approximately 0.7). Meta-analysis (196) have shown

that prior aspirin and/or clopidogrel use was associated with a

reduction in sepsis mortality of around 10%. The interesting thing

about these studies is that patients with prior aspirin use are
Frontiers in Immunology 10
typically patients post myocardial infarction. Thus, patients with

significant underlying health issues who are on aspirin do better

than those with no underlying conditions.

The potential benefits of aspirin are not just restricted to

preventing sepsis. A serious infection that requires hospitalisation

(not sepsis) is associated with a significant increase in major

cardiovascular events (MACE) - hazard ratio for MACE for the

first month post-infection was 7.87 and for the following 19-years it

was 1.41 (197). The increase in MACE was also seen in Dengue fever

where the incidence rate ratio (IRR) of MACE in the 7-days post

DENV infection was 17.9, post-influenza 15.76 and in the control

group 0.91 (198). Risk factors for MACE post-infection were shown

to be evidence of organ damage, atrial fibrillation and at least 2 risk

factors of MACE (199). Similarly, the odds ratio for MACE in

COVID-19 patients was 6 (200). These results are not surprising as

MACE is due to platelet activation and subsequent thrombus

formation. The last thing that a patient at risk of an MI needs is

significant increase in platelet activation such as that which occurs

when pathogens interact with platelets. Thus, the use of aspirin in

patients with serious infection, especially in those with CVD risk

factors has a role in preventing MACE following the infection.

One of the reasons for the diversity in outcomes may be due to

timing of aspirin use. Just as in the animal studies, the presence of

healthy, fully functional platelets is necessary to fight infection and

thus instances of infection that may be resolved with the aid of

platelets may progress to sepsis. The ideal time to administer aspirin

would be when there is evidence that the infection has become

established, i.e., at the point where there is evidence that the

platelets have failed to contain the infection, but before there is

significant thrombocytopenia as it is difficult to preserve platelet

function if there are no platelets remaining.

However, there is a problem with using conventional anti-

platelet agents in sepsis. As thrombocytopenia progresses so too

does the bleeding risk. Anti-platelet agents also create a bleeding

risk. Thus, the use of anti-platelet agents may preserve platelet

number but increase the bleeding risk by impairing platelet

function. An alternative strategy is to prevent the pathogen from

activating the platelets. As FcgRIIa is the most significant platelet

receptor mediating pathogen-induced platelet activation it would be

the ideal drug target. It would prevent pathogen-induced platelet

activation without any impact on platelet function. There is

evidence to support this concept from studies using IVIg which is

known to act by inhibiting FcgRIIa (201). High dose IVIg, if given

early, improves outcome in severe COVID-19 infection (202). A

network meta-analysis found that IVIg reduced mortality of sepsis

in adults (odds ratio = 0.61) with an optimal dose of 1.5-2 g/kg

(203). In contrast the use of IVIg in neonatal sepsis has shown no

evidence of benefit (204, 205). However, it is worth noting that the

doses used in the neonatal studies (500 mg/kg) are much lower than

those found to be optimal in adults (1.5-2 g/kg). The American

Heart Association guidelines (206) recommend 2 g/kg IVIg for

children with Kawasaki Disease, noting that benefit is dose-

dependent, which suggests there was a significant under-dosing in

the neonatal sepsis studies. While IVIg is an FcgRIIa antagonist it

has low affinity for the receptor and thus high concentrations are
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required to get significant inhibition. Kawasaki disease is believed to

be triggered by an infection, although the identities of the causative

agents is unknown, and it is treated with a combination of aspirin

and IVIg – a strategy that would protect platelets from direct

activation of platelets by a pathogen (206). IVIg has been shown

to be effective in Crimea-Congo Haemorrhagic fever (97), Influenza

A (H1N1) (207) and COVID-19 (202, 208). A potential solution to

the low affinity of IVIg is to discover high affinity small molecules.

Small molecules have been discovered that have been shown to be

effective in animal models of immune complex disease (209).

A key step in NETosis is the release of DNA which plays a role

in trapping platelets (146). This has led to investigations on the use

of DNase in sepsis although with mixed results that may be due to

timing of DNase therapy (210–212). However, as platelet activation

is critical in NETosis (147), anti-platelet agents may be more

effective in regulating extracellular DNA.
Pandemic preparedness

COVID-19 has made the world realise that we are very

vulnerable to a potential pandemic. While this may come from a

known pathogen, the real threat comes from a novel pathogen –

possible one that recently jumped species. While there is interest in

discovering a pan-anti-viral inhibitor this seems unlikely as there

are so many different viruses and existing agents are specific to a

small number of viruses. An alternative approach is to target the

host – all pathogens must interact with the host to cause illness and

there is a much smaller repertoire of targets in the host.

With many pandemics, both bacterial and viral, death follows

from disseminated intravascular coagulation and multi-organ

failure. Covid-19 causes multi-organ failure and is a viral sepsis

(65). Influenza A, both seasonal influenza and pandemic variants

(H1N1 (1918 & 2009), H2N2 (1957) and H3N2 (1968)) can lead to

multi-organ failure (213). Other viruses with the potential to

become pandemics are the viral haemorrhagic fevers, including

Marburg, Ebola and Dengue all of which cause DIC and multi-

organ failure (214–216).

Just as anti-platelet agents have the potential to prevent DIC in

bacterial sepsis and reduce mortality, their use in viral sepsis has the

potential for similar benefit. The real advantage is that knowledge of

the pathogen is not necessary to provide benefit.
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Conclusions

Sepsis – both bacterial and viral – is associated with

disseminated intravascular coagulation (DIC). This coagulopathy

is characterised by extensive platelet activation that results in

thrombus formation in the microvasculature leading to multi-

organ failure. Ultimately it is this uncontrolled platelet activation

that is the cause of mortality in sepsis. Preliminary data supports the

idea of using anti-platelet agents to treat sepsis. These agents do not

cure sepsis; however, they do stabilise the patient preventing

progression to DIC. This buys time for the clinician to identify

the cause of the sepsis and to select the appropriate antibiotic.

Furthermore, it may prove beneficial in the 40% of sepsis cases that

are culture-negative (217) where antibiotics have no role.

As anti-platelet agents create a risk of bleeding an alternative

strategy is to discover agents that inhibit pathogen interaction with

platelets. The two key receptors are FcgRIIa and DC-SIGN and

inhibitors of these receptors have the potential to prevent pathogen-

induced platelet activation without an increase in bleeding risk.
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