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Peptide-based vaccine for
cancer therapies

Luigi Buonaguro and Maria Tagliamonte*

Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”,
Naples, Italy
Different strategies based on peptides are available for cancer treatment, in

particular to counter-act the progression of tumor growth and disease relapse. In

the last decade, in the context of therapeutic strategies against cancer, peptide-

based vaccines have been evaluated in different tumor models. The peptides

selected for cancer vaccine development can be classified in two main type:

tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are

captured, internalized, processed and presented by antigen-presenting cells

(APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are

recognized by a specific TCR of CD8+ T cells, which are activated to exert

their cytotoxic activity against tumor cells presenting the same peptide-MHC-I

complex. This process is defined as active immunotherapy as the host’s immune

system is either de novo activated or restimulated to mount an effective, tumor-

specific immune reaction that may ultimately lead to tu-mor regression.

However, while the preclinical data have frequently shown encouraging

results, therapeutic cancer vaccines clinical trials, including those based on

peptides have not provided satisfactory data to date. The limited efficacy of

peptide-based cancer vaccines is the consequence of several factors, including

the identification of specific target tumor antigens, the limited immunogenicity

of peptides and the highly immunosuppressive tumor microenvironment (TME).

An effective cancer vaccine can be developed only by addressing all such

different aspects. The present review describes the state of the art for each of

such factors.

KEYWORDS

peptides, TAA, TME, molecular mimicry, immunopeptidome, combinatorial strategies,
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1 Introduction

In 1991, van der Bruggen et al, Ludwig’s researchers in Brussels, published in Science a

groundbreaking study on tumor antigens. They described for the first time that cytotoxic T

cells can selectively recognize a tumor antigen expressed by the human melanoma (MAGE

Ag) (1). This article represents a pillar oftumor immunology introducing the concept that

such specific antigens may be used to design and develop an effective active

immunotherapy. Since the discovery of MAGE, the field has moved forward rapidly.

Scientists have discovered many other tumor antigens, of which many are being tested as
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targets for immunotherapy and in particular for therapeutic

peptide-based cancer vaccines (2, 3).

Active immunotherapy is aimed either at amplifying the existing

antitumor immune response by nonspecific proinflammatory

molecules/adjuvants or at eliciting a specific de novo host immune

response against selected tumor antigens by cancer vaccines. In

particular, peptide-based cancer vaccines are able to activate the

effector adaptive immune response as well as to provide long-term

acquired immunity against a “foreign” tumor antigen. Indeed, cancer

cells can be distinguished from normal cells by either upregulation/

overexpression of endogenous proteins or mutation of those

proteins. As a result, any mutated or differentially expressed

protein in cancer cells can potentially represent a vaccine target. In

particular, the antigens derived from overexpressed self proteins in

tumor cells are defined tumor-associated antigens (TAAs) andmight

be shared among patients with the same tumor (4) (5, 6). To this class

of antigens belong cell lineage differentiation antigens, which are

normally not expressed in adult tissue (7, 8); and cancer/germline

antigens (also known as cancer/testis) (9). Since TAAs are also

expressed by normal cells, they may be subject to immunological

tolerance and therefore may be poorly immunogenic. In contrast,

antigens arising from cancer-related nonsynonymous mutations or

other genetic alterations in cancer cells, named tumor-specific

antigens (TSAs), are not expressed on the surface of normal cells

and are specific to each type of tumors (10–12). Consequently, TSAs

are not subject to central and peripheral immune tolerance and are

able to trigger a specific and effective T cell response against cancer

cells (13).

The transformed cells are recognized by the immune system

through immunosurveillance. Indeed, new antigens, including

tumor antigens, are constantly presented by antigen-presenting

cells (APC) to B and T lymphocytes of the adaptive immune

response. The APCs can express the peptides through the MHC

class I molecule for presentation to CD8+ T cells, or MHC class II

molecule for presentation to CD4+ T helper cells. The latter may

differentiate in two major subtypes, Th2 and Th1, involved in

inflammatory response as well as in potentiating and sustaining

the activity of CD8+ T cells (CTLs), respectively (14). Consequently,

activated CD8+ T cells recognize cancer antigens expressed on the

surface of tumor cells and initiate the release of apoptotic factors

such as Perforin, Fas Ligand and Granzymes, leading to cell-

mediated cytotoxicity (15). In this regard, the basic principles for

a successful therapeutic vaccination against tumors include delivery

of large amounts of high immunogenic antigens to APCs, induction

of strong and sustained CD4+ T helper cell and CD8+ cytotoxic T

lymphocyte (CTL) responses, infiltration of the TME as well as

durability and maintenance of the immune response. In particular,

strategies for improving activation and maturation of APCs, aiming

at a more efficient antigen presentation to elicit an optimal T cell

response, are actively pursued by several groups. Such strategies are

mostly focused on the identification, selection and validation of

novel adjuvants able to stimulate and enhance the magnitude and

durability of antigen-specific T and B cell responses (16).Several

therapeutic peptide-based vaccine strategies and formulations have

been evaluated in different tumor types in the last 2 decades.

However, only modest effects have been reported with an overall
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rate of clinical benefit of around 20% (17, 18). MUC1 represents a

paradigmatic example of a TAA, highly expressed by

adenocarcinomas, which has been evaluated in several human

clinical trials with poor efficacy. In particular, MUC1 was targeted

to dendritic cells, demonstrating the induction of highly specific

immune response in preclinical and in human clinical trials (19).

Subsequently, the ligand mannan used to target antigens in the

mannose receptor lead to maturation of dendritic cells and

activation via the Toll-Like Receptor 4 (20–24). The National

Cancer Institute Translational Research Working Group has

listed MUC1 as the second promising target in cancer research

from 75 tumor-related antigens (25). The distinctive biological

structure of MUC1 and its aberrant glycosylation in cancer cells

make it a recognized tumor-specific antigen on epithelial tumor

cells (26, 27). In particular, MUC1 consists of both a C-terminal

fragment (MUC1-C), highly conserved region, and an N-terminal

fragment (MUC1-N), which contains the variable number tandem

repeat (VNTR) region. The latter has been described to play a

critical role in the MUC1 immunogenicity.

Therapeutic MUC1−based vaccines have been tested in

numerous early stage clinical trials (28); ClinicalTrials.gov https://

clinicaltrials.gov/ct2/show/NCT02134925, but none of them has

shown the expected anti-tumor effect in patients. In particular,

these studies indicate that both the VNTR (MUC1-N) and non-

VNTR (MUC1-C) regions contribute to immune evasion by cancer

cells, which needs to be taken into consideration and addressed

during the further development of MUC1-based cancer vaccines

(29–31).

To date, the only FDA-approved therapeutic cancer vaccine is

Provenge® (Sipucleucel-T) for patients with castration-resistant

prostate cancer (32). However, a modest increase in overall

survival is observed together with a partial tumor regression. In

addition to Sipucleucel-T vaccine, other peptide-based cancer

vaccines are developed for prostate cancer, such as Cancer-

associated membrane carbohydrates, including ganglioside

(GM2), mucin 1 (MUC1), globo H and Thompson–Friedenreich

antigen. Overall, five approaches - GVAX, DCVAC/PCa, a multi-

epitope peptide vaccine, sipuleucel-T and PROSTVAC (33) - have

been investigated in randomized phase III trials. They all showed

safety and partial immunological activity but no effective clinical

efficacy (34).

Such a poor efficacy of the therapeutic cancer vaccines developed

for prostate cancer is common to most of the vaccines developed for

other cancers. This is the consequence of a series of events that facilitate

tumor development. Among these, the immunosuppressive TME plays

a central role in cancer cell immune escape, inhibiting the activation of

a specific T cell immune response against tumor cells (35). Moreover,

during the tumor growth, the constant pressure from the adaptive

immune system, coupled with the genetic instability of cancer cells,

can select cellular sub-clones with reduced immunogenicity able to

evade the immune recognition and destruction. Such low

immunogenic sub-clones are often affected by loss of antigen

presentation, due to a defective antigen- presenting machinery (36),

hampering the recognition of tumor antigens by conventional (CD4+

and CD8+) and unconventional T cells (37). Moreover, chronically

stimulated CD8+ T cells infiltrating the TME may acquire an
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‘exhausted’ state characterized by loss of cytolytic activity, reduced

cytokine production and reduced proliferation capacity.

To circumvent such adverse components of TME and improve

their efficacy, cancer vaccines should be combined with

immunomodulatory drugs (namely immunocheckpoint inhibitors,

ICIs) to counterbalance the intra-tumor immune suppressive

factors (38–40).

In the present review, we provide an overview of biological

mechanisms underlying peptide-based vaccine platform developed

in the last years for cancer therapy. We also describe the

identification, characterization and design of such antigens, their

formulation, as well as different combinatorial strategies to optimize

their antigenicity and overcome the immune evasion for more

specific and effective immune response.
2 Peptides for cancer
vaccine development

2.1 Peptide MHC interaction

The immunodominance is a key aspect to consider when

planning a vaccination strategy, in particular when the vaccine

formulation is based on few and short specific epitopes. In

particular, the immunodominance of T cell determinants results

from several factors: 1) intrinsic characteristics of the epitope, e.g.

the binding affinity to MHC molecules; 2) the presence of

appropriate MHC molecules and T cell receptors at the individual

level; and 3) competition between different epitopes of a given

protein antigen for the available MHC binding sites. The

combination of all such factors will give rise to distinct

immunodominant epitopes selectively driving the T cell response.

Thus, to maximize the efficacy of a vaccine based on a mix of

peptides, it is relevant to ensure a balanced T cell response for all the

peptides included in the mix. Otherwise, the less immunogenic

epitopes would elicit an inefficient anti-cancer T cell response, with

a resulting immunological escape of tumor cells.

Epitope specificity for T cells is mediated by the T-cell receptor

(TCR), which binds peptides presented in the “peptide binding

groove” of class I or class II major histocompatibility complexes

(MHCs, also known as human leukocyte antigen, HLA, for

humans). Whole proteins are internalized and proteolyzed by

APCs and the resulting short peptides are loaded onto MHCs and

presented on the APC surface. Consequently, specific TCRs may

bind such peptide−MHC complexes (pMHC). Peptides binding the

same HLA show a signature characterized by specific aminoacid

residues at the positions interacting with the MHC groove (anchor

residues). In particular, HLA-A2 - restricted epitopes show the xL/

IxxxxxxV/L signature, where L/I and V/L represent the anchor

residues (L: Leucine; I: isoleucine; V: Valine). Indeed, their side

chains are oriented toward the interior of the peptide-binding

groove and mediate the anchoring of the peptide to the MHC

molecule (41, 42). The residues in the other positions of the epitope

point toward the TCR and mediate the specificity of the interaction

between the T cell and the target pMHC complex.
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However, although the peptides adopt an optimal conformation

in the groove of the MHC, there is no guarantee for their

immunogenicity. Therefore , in order to improve the

immunogenicity of a candidate antigen it is necessary to increase

both the binding and the affinity to the MHC groove and to the T

cell TCR, as described below.
2.2 Short versus long synthetic peptides

The sequence length of peptide vaccines is important to

promote a strong immunogenic response. Typically, peptides can

be either short (8 – 11 amino acids) or long (11 – 30 amino acids)

for presentation in MHC class I or II molecules, respectively.

Short peptides represent the nominal epitope capable of binding

the class I MHC molecules. They are attractive for vaccine

development as they are easy to synthesize and cheap to produce

in clinical grade. However, short peptides may bind to MHC of

non-professional APCs, including B and T lymphocytes, which lack

the secondary signaling machinery and cannot provide the full

range of costimulatory signals required for complete T cell

activation. Moreover, such non-conventional antigen presentation

takes place in non-inflamed lymph nodes and in the absence of a

strong pro-inflammatory context (43). This would lead to a poor T

cell response or immune tolerance (43). Short peptides are strictly

HLA-type restricted and consequently have to perfectly match the

patient’s HLA, limiting their use to a specific subset of patients (44,

45). Furthermore, they are susceptible to fast exopeptidase-

mediated degradation, which dramatically reduces their half-life

(46, 47).

Nevertheless, short peptides represent exactly the natural HLA

ligands on tumor cells and offer the possibility for precise

immunomonitoring analyses (48–51).

Alternatively, vaccines can be based on synthetic long peptides

(SLPs). They cannot bind directly the MHCmolecule and needs to be

internalized and processed by professional APCs for presentation on

both class I and class II MHC molecules. Consequently, SLPs can

activate also the CD4+ TH cell response, providing helper factors

(interferon g [IFN-g], tumor necrosis factor a, IL-2), essential for
sustaining the cytotoxic CD8+ T cell responses and inducing the

immune-mediated tumor cell killing (52–54) (18). Lastly, they offer

the possibility of including binding or recognition motifs for

improved immunogenicity (55, 56).

Several early clinical trials based on SLPs have shown a good

safety profile and promising results. For example, in three

independent studies, SLP vaccination, based on HPV16 E6/E7

antigens, induced high levels of specific cytotoxic T lymphocytes,

positively correlated with clinical benefit in premalignant disease

(57, 58) and late-stage cervical cancer (59). In particular, the efficacy

of SLP vaccine was potentiated when combined with

immunomodulatory drugs (anti-PD-1 immune checkpoint and

platinum-based chemotherapy) (59, 60).

Overall, an important condition for success of a cancer vaccine

is the induction of a robust and sustained of both specific CD8+ and

CD4+ T cells response as well as the increase in the CD4+:Treg

ratio, to counteract the immunosuppressive TME.
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2.3 Tumor associated antigens vs tumor
specific antigens

In the last years, shared tumor antigens, also called Tumor

associated antigens (TAAs), have been mostly adopted for cancer

vaccine development. These include ‘self-antigens’ such as

differentiation antigens (e.g., tyrosinase, gp100, MART-1), cancer/

testis antigens (e.g., MAGE-A1, MAGE-A3, NY-ESO-1, and

PRAME) and overexpressed antigens (7–9, 61–65). These

antigenic candidates have the advantage of being shared between

patients with the same tumor type, but the disadvantage of being

expressed also by normal cells. Consequently, they may elicit either

a limited immune response, due to self-tolerance, or a potent

autoimmune response, if the self-tolerance is broken. Therefore,

the appropriate balance between such two extremes needs to be

reached when peptide-based vaccines are based on TAAs (65).

More recently, attention has turned to ‘neoantigens’, that

comprise mutated antigens arising in tumors by non-synonymous

somatic mutations, insertions/deletions (INDEL) in the coding

regions, frameshifts as occurring in microsatellite-instability-high

tumors (66) and human endogenous retroviruses (67). Moreover,

post-translational modifications such as phosphorylation (68),

glycosylation (69) or methylation contribute to express new

antigens on tumor cells. These types of antigens, also named

tumor specific antigens (TSAs), are distinct from the

corresponding wild-type self-antigens and are not affected by

immunological tolerance. Therefore, a robust specific T cell

response against these antigens can be elicited (70, 71). However,

TSAs are strictly private to each individual cancer patient and their

identification is laborious as well as expensive (13). Moreover, they

are subject to immunoediting and escape. Therefore, the neoantigen

repertoire is dynamic and may evolve in the course of tumor

progression, requiring a pool of neoantigens in vaccine

formulation for efficacy.
3 Identification and design of tumor
antigens for cancer vaccine

3.1 Isolation of human leukocyte
antigen (HLA) ligands

The separation of peptides from HLA molecules is usually

accomplished by acid elution using HLA-specific antibodies. This

process does not destroy the structure of the peptides, which are non-

covalently bound to HLA molecules. However, acid elution of HLA-

presented peptides can also be performed by simply incubating living

cells in medium with a low pH and harvesting HLA ligands from the

supernatant (72). The major disadvantage of the latter is that the

harvested supernatant contains many other materials from the cells,

which may interfere with the subsequent analysis. Surgically resected

tumor tissues are the most suitable source, providing the whole array

of the ligands presented by the cancer cells in vivo. Passages in vitro

culture are not recommended in order to avoid possible changes in

the HLA ligand repertoire, due to adaptation to cell culture

conditions. Whenever possible, the tumor tissue should be ideally
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coupled by a sample of non-tumor tissue from the same organ for

selecting only tumor-specific peptides.

In addition, blood can represent a potential source of soluble

HLA molecules (sHLA), which can be regularly found in both

healthy and diseased individuals, deriving from death or living cells

or exosomes. In cancer patients, such blood-derived sHLA

molecules have also been shown to contain peptides matching

those identified in cancer cells. Therefore, in case of poor

availability of tumor tissue, a “liquid biopsy” could provide useful

information for cancer diagnosis and monitoring as well as

identification of antigenic targets useful for developing

therapeutic interventions (73, 74).
3.2 Immunopeptidome for human
leukocyte antigen ligands identification

One of the methods of choice used for this purpose is based on a

comprehensive analysis of the HLA ligandome of cancer cells (also

termed immunopeptidome) to pursue tumor antigen discovery

(75). It allows to identify and validate the “natural” presentation

of new or well-known TAAs by the majority of primary tumors

compared to normal tissues (Figure 1A) (76, 77).

HLA molecules are precipitated from the tissue’s samples and

HLA-bound peptides are eluted for MS analysis (78, 79). In

particular, using high-performance liquid chromatography with

very narrow long columns, peptide-HLA complex mixtures

(pMHC), are separated before injection into the ionization

chamber of the mass spectrometer.The ionized peptides are

separated according to their mass-to-charge ratio in the mass

filter, and then analyzed in the mass detector for their actual

mass. Starting from the mass-to-charge ratio of the fragments it is

possible to calculate the original peptide sequence. However, the

probability of an incorrect assignment (false discovery rate) is high

(80–82). A principal challenge here is the complexity of data

analysis. Prior to applying the identified peptides for vaccine

development, they should be validated by comparison with

synthetic, isotope-labeled peptides on the same equipment (83).

The MS identification of peptides should be always coupled

with exome and transcriptome analyses to match the genetic and

phenotypic results. The analysis of the HLA ligandome allowed to

uncover another “universe” of sources for HLA ligands, derived

from untranslated or not completely translated sequences. Such

HLA ligands, named “cryptic peptides” (84) can be derived from

noncoding RNAs, introns, or short open reading frames (85). Some

of such non-conventional antigens can be consider cancer-specific

(86). In order to identify the latter antigens, the proteogenomic

approach has been defined by combining conventional proteomics

with next-generation sequencing (NGS) (Figure 1B). In particular,

merging WGS and RNASeq analyses with Ribosome profiling

(Ribo-seq), it is possible to identify an excess of novel translated

unannotated open reading frames. They can be derived from

alternative out-of-frame ORFs, untranslated regions (UTRs) or

long non-coding RNAs. Such non-coding transcripts could

generate peptide sequences that are missing in conventional

protein sequence repositories. Therefore, only the combination of
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genomics and proteomics on the same target cancer cells can lead to

the identification of novel and more immunogenic HLA ligands,

expanding the repertoire of targetable epitopes for cancer

immunotherapy (86–88).
3.3 Human leukocyte antigen ligand
prediction tools

Relevant efforts have been committed to developing computational

methods capable of accurately predicting peptide binding to both

MHC-I and MHC-II [reviewed in (89)]. Indeed, the analysis of the

HLA ligandome has shown a great limitation in sensitivity for

identifying mutated neo-antigens, especially in tumors with low

mutational burden (90–92). Therefore, prediction algorithms are

crucial for mutated neo-antigens discovery upon transcriptomic

analysis (93). A global bioinformatics consortium was established in

2016, namely Tumor Neoantigen Selection Alliance (TESLA), which

includes scientists, from academia, industry, and non-profit groups.

Through predictive algorithms and machine learning, the most

immunogenic neoantigens can be identified for stimulating strong

immune responses (94). The TESLA consortium defined standardized

predictive algorithms for neoantigens discovery, allowing to create

more cancer immunotherapy treatments specific to each patient

(https://www.synapse.org/#!Synapse:syn21048999).

In particular, the identification of large numbers of ligands

retrieved from mass spectrometry (MS) experiments and their

analysis for sequence similarities has allowed the development of

algorithms based on machine learning (ML) methods for prediction

of the ligand affinity to a specific MHC molecule [reviewed in (95)].
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Each tool is based on different prediction methods [i.e. structure-

based (SB) (96), motif matrix (MM) (97, 98), sequence motif (SM),

quantitative affinity matrix (QAM) (99, 100), artificial neural

network (ANN) (101, 102), support vector machine (SVM) (103,

104)]. Moreover, the choice of a specific tool is based on the

characteristics of the antigen (TAA vs TSA) and the MHC

molecule they bind (class I or II or both). These tools are able to

address the distinction between MHC binders and non-binders as

well as the prediction of the binding affinity of a peptide to MHC

molecules. However, these methods are not yet proficient in

deterministically estimating whether a given peptide is an epitope

or not (105).

Among these tools, NetMHCpan is frequently used for MHC

class I molecules and NetMHCIIpan for MHC class II (106). Both

algorithms cover MHC molecules from a number of different

species and many HLA alleles. Over the years, they have been

continually improved (107, 108), but there are still many caveats in

their prediction accuracy, especially for less frequent class I HLA

alleles and for class II binding peptides (109).

In very recent studies, it has been reported that peptide

presentation by MHC is strongly correlated with mRNA

expression of the ligand’s source protein, underlying the

importance of direct correlation between the source protein

abundance and MHC epitope predictions (110–115). For this

reason, the epitope predictions can be further improved by

considering also the abundance of peptides’ source proteins.

Based on such assumption, the Antigen eXpression based Epitope

Likelihood-Function (AXEL-F), together with TGCA expression

data, has been shown to improve the prediction of neoantigens that

are recognized by T cells (116).
B CA

FIGURE 1

Antigen discovery strategies. Tumor antigens are discovered by (A) Mass Spectometry analysis of eluted peptides; (B) integrated multi-omics
screening; (C) in silico prediction. TAAs are wt epitopes over-expressed in cancer cells compared to normal cells. TSAs are mutated neo-antigens.
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4 Strategies for enhancing peptide
immunogenicity: peptide vaccine
formulation, delivery systems and
immunogenic optimization

4.1 Formulation of peptide-based vaccines

Peptide-based vaccines represent the easiest strategy for

eliciting the most focused anti-tumor T cell response, but an

appropriate formulation needs to be developed. Indeed, in order

to elicit a robust effector T cells response, peptide-based vaccines

must deliver a sufficiently high dose to avoid the induction of T cell

anergy (117). Moreover, free peptides are characterized by

unfavorable pharmacokinetic properties, including short half-lives

and low stability in vivo, which significantly reduces their

immunogenicity To overcome such limitations, they need to be

formulated with adjuvants (118).

Only a few adjuvants have been approved for human use to date

(119), but several new molecules are under pre-clinical and early

clinical development, including cytokines, saponins, mineral salts,

emulsions, bacterial exotoxins, virosomes, liposomes, and immune-

stimulating complexes (120). Several studies have revealed the

central role of adjuvants in stimulating the innate immunity and,

downstream, the antigen-specific adaptive T cell response. In

particular, the ideal target for vaccine adjuvants is represented by

the pattern recognition receptors (PRRs) of the innate immune

system [reviewed in (121)]. Adjuvants which improve the

inflammation, the delivery of antigens to DCs and their uptake

and presentation to T cells, as well as increase their stability, include

aluminum salts, nanoparticles, lipid vesicles, oil- and water-based

formulations, and bacterial exotoxins. Among these, only alum has

had limited use in cancer vaccines due to moderate activation of

Th1 and CD8+ responses (122). On the contrary, oil-in-water

emulsions has been shown to activate humoral and Th1 and Th2

immune responses, enhancing recruitment of granulocytes and DCs

and the antigen uptake (123). Montanide, a mineral oil-based

emulsion, is the most commonly used adjuvant, increasing the

delivery of antigens to DCs and presentation to T cells. It has been

and continues to be used in peptide cancer vaccine formulations in

melanoma and renal carcinoma clinical trials (124).

Several TLR ligands have been extensively assessed as vaccine

adjuvants in preclinical as well as human clinical setting, showing

their ability to elicit a balanced humoral and cellular immune

response [reviewed in (125)]. TLRs comprise a family of 10

receptors (126–128) each of which is capable of recognizing

unique pathogen-associated molecular patterns (PAMPs). These

will activate downstream genes critical to promote innate immune

responses and enhance immunity against the microbe (129). TLR

agonists can be incorporated into peptide-based therapeutic cancer

vaccines to induce Th1 type cellular proinflammatory cytokine

production, such as type I IFNs, and the efficient activation and

specific expansion of antigen-specific CTL (51, 130–136). Among

these, TLR4 ligands are known to enable a potent activation of

APCs (137). Moreover, the TLR-9 agonist synthetic CpG

oligodeoxynucleotide (CpG-ODN) was approved for the first time
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by the United States Food and Drug Administration for application

in humans, in the Heplisav-B hepatitis B vaccine (138).
4.2 Delivery systems

Another key factor for the success of a peptide-based cancer

vaccines is the capability of reaching the TME before degradation

and being efficiently uptaken by APCs. For these aims, PLGA and

Liposomes represent two examples of drug delivery systems, which

have been approved by FDA after several years of experimental

testing with a proven track-record in safety and biodegradability.

(Food and Drug Admistration (FDA). (2021). Available at:

www.fda.gov (139). Both delivery platforms can protect peptides

from degradation and control their release to the spleen and lymph

nodes, which contain a higher proportion of cross-presenting DCs

(140, 141). In these sites, the particles are efficiently processed by

DCs inducing a strong and sustained CD4+ T helper cell and

cytotoxic T lymphocyte (CTL) responses (142). Indeed, their

cationic charge and small size, efficiently promote a strong

attraction and active uptake by DCs (143, 144). Besides PLGA

and liposomes, other nanoparticles are tested as antigen delivery

system, such as micelles, mesoporous silica nanoparticles (MSNs),

gold nanoparticles (AuNPs) and virus nanoparticles. The delivery

and the intra-cellular trafficking of nanoparticles have been

optimized by selected modification of their surface (e.g., charge,

structure, dimension and hydrophobicity) (145, 146) and by

incorporating cell-penetrating peptides, APC-specific cellular

epitopes or immune-stimulant lipid moieties (147).

Some of the nanoparticle vaccines have been evaluated in

clinical trials for different cancers [reviewed in (148–150)].

Among all, liposomes have been extensively used due to their

versatility, including Tecemotide— liposomes (151, 152), AS15—

lipids (153), DepoVax— liposomes (154), Iscomatrix (155),

Cholesteryl pullulan (CHP) nanogels (156), and virus-like

nanoparticles. However, although these trials have shown

induction of specific antigen immune response, none of them

have resulted in a statistically significant survival benefit. Such

unsatisfactory results need to be thoroughly analyzed in order to

identify strategies for improvements.

Furthermore, exosomes exhibit features for application as

adjuvant carriers, such as optimal size, biocompatibility, stability

in systemic circulation, and target-specific delivery (157). Zitvogel

et al. (158) described that tumor peptide-pulsed dendritic cells

(DCs) released DEXs (exosomes derived from dendritic cells)

presenting tumor antigens on the membrane, which induced in

vivo CTL priming and consequent tumor growth suppression. Such

pillar study was the first to support the development of a novel cell-

free vaccine using exosomes and subsequently confirmed by other

groups (159). Moreover, DEXs have been shown to stimulate cells

of the innate immune system, such as natural killer cells, and the

production of INF-g (160). DEXs show several advantages over

DCs: higher stability, due to their lipid composition, and higher

number of peptide-MHC I and –MHC II complexes on their surface

(161–163). In addition, Wolfers and colleagues have reported that

the Tumor Derived Exosomes (TDEs) represent a source of T-cell
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cross-priming, which are able to induce a CTL anti-tumor

responses in vitro and in vivo (164).

Overall, these results highlight the novel use of exosomes as

adjuvanting carriers for a future cancer vaccine development.
4.3 Peptide modification to improve the
immunogenicity of antigenic targets

In order to improve the immunogenicity of tumor antigens,

peptides can be modified to increase their (165)affinity and binding

to the presenting MHC-I (166). Analogue peptides are designed by

substituting amino acid residues in the epitope sequence to improve

antigenicity and immunogenicity (167). Such modified peptides

(heteroclitic peptides) have been shown to induce a more potent

CD8+ T cell response, and break the immunological tolerance (86,

167–170). Nevertheless, Tor B Stuge et al., have demonstrated that

although vaccination with heteroclitic peptides may induce strong T

cell responses, the recognition efficiencies of the wild type peptides

may significantly vary. Indeed, most of such immune responses

show a poor cytotoxic effect against melanoma cells expressing the

wild type epitope (165).

A different approach for improving the immunogenicity of

natural TAAs is to generate heteroclitic peptides with mutations

in the TCR-binding residues (42, 171). In this regard, our group has

shown that heteroclitic peptides modified in the TCR-binding

residues of melanoma specific Trp2 TAA can improve control of

tumor growth in a mouse model (172). In particular, the

modification of TCR-facing amino acids, significantly improve

the recognition by PBMCs of the HPV E7 wt epitope expressed

on TC1 mouse lung tumor cell lines. Consequently, heteroclitic

peptides are able to elicit even stronger immune response, cross-

reacting with the parental wild type peptide. CTL elicited by the

heteroclitic peptides show potent lytic activity on target cells

expressing the wt peptide as well as control of tumor growth in

vivo (173).
4.4 Antigenic molecular mimicry between
microorganisms’ antigens and TAAs

Another strategy for improving the immunogenicity of tumor

antigens is to identify novel universal shared antigens able to

overcome the immune tolerance and elicit an effective T cell

immune response. In this respect, non-self antigens derived from

microorganisms (microorganisms-derived antigens, MoAs) with

high sequence and structural homology with TAAs (molecular

mimicry) can be highly useful.

The probability of homology between MoAs and human

antigens and an overlapping peptidome representation is high

and can result in a cross-reacting CD8+T cell responses. Indeed,

similar epitopes can be targeted by the same CD8+ T cell receptor

(TCR), given that a single TCR is cross-reactive with at least 10 (6)

different MHC bound peptides (174, 175). Therefore, two unrelated
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antigens are very likely recognized by the same TCRs if the

structural conformation of the entire epitopes is saved, sharing

the same or conserved TCR facing central residues (176). This

process may drive the fate of cancer development, progression and

eventually response to therapy.

Preliminary evidences for T cells cross-reacting with microbial

antigens and the homologous TAAs have been reported (177–

179). A more general evidence of molecular mimicry between

TAAs and viral or microbiota-derived antigens has been reported

by our group (176, 180–182).

Overall, if tumor cells express a TAA similar to non-self MoA, it

is possible to recall memory CD8+ T cells cross-reacting with tumor

antigens, able to control the tumor growth. This may at last

represent a relevant selective advantage for cancer patients and

may lead to a novel preventive anti-cancer vaccine strategy (183).
5 Combinatorial strategies

The limited efficacy of cancer vaccines is consequent to

immune-evasive mechanisms developing in the TME. These can

be effectively targeted by combining different strategies based on

immunotherapy and conventional anticancer therapies, such as

standard or metronomic chemotherapy (MCT) and radiotherapy

(184–186) as well as the combination of Immune checkpoint

inhibitors (ICIs). Indeed, the immunosuppressive TME leads to a

limited infiltration of cancer-specific cytotoxic T lymphocytes and/

or their functional anergy/exhaustion, resulting in a reduced efficacy

of cancer vaccines.
5.1 Chemotherapy and vaccines

Numerous preclinical and clinical studies have been conducted

in recent years to evaluate the efficacy of combinatorial strategies in

enhancing the efficacy of the cytotoxic immune response induced by

cancer vaccines.

Standard and metronomic chemotherapy, such as oxaliplatin

and doxorubicin, induce positive immunomodulatory effects in the

TME and can enhance the antitumor immune responses elicited by

cancer vaccines, by inhibiting the immunosuppressive cells (i.e.,

Tregs and MDSCs) and increasing interferon gamma (IFN-g)
secreting CD8+ T cells. Moreover, it induces immunogenic cell

death (ICD) in cancer cells, with the release of danger signals able to

polarize dendritic cells (DCs) and activate an antitumor T helper 1

(Th1) responses. Consequently, the immunogenicity of tumor cells

is modulated, becoming more susceptible to T-cell-mediated lysis

(187–189). Additionally, chemotherapy increases the tumor

mutational burden leading to the release of an increased load of

neoantigens into the TME (190–195). Several pre-clinical studies,

including from our group, have confirmed and demonstrated the

immunomodulatory effects of standard and metronomic

chemotherapy in potentiating the efficacy of a cancer vaccine (38,

196, 197). However, when the same protocols have been transferred
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in the clinical setting, partial results and non-lasting effect have been

observed (49, 198, 199).The possible reasons for such failure are: (1)

the choice of chemotherapy drugs, their correct dose, schedule and

combination; and (2) the selection of patients’ cohort. Therefore,

additional work is required to fully decode the pharmacological and

immunological interactions between peptide-based anticancer

vaccines and chemotherapy.
5.2 Radiotherapy and vaccines

Similar to chemotherapy, also radiotherapy (RT) can

significantly increase the efficacy of vaccines. Indeed, it induces

significant changes in the TME, with the release of both antigens

from tumor cells and pro-inflammatory mediators. Overall, these

effects increase tumor immune infiltration and trigger the innate as

well as adaptive immune system (200, 201). The latter effect drives

the systemic antitumor immunity which underlies the so-called

“abscopal effect,” consisting in the capacity to eradicate distant

metastasis (202–206). Overall, immunologically ‘cold’ tumors are

converted into ‘hot’ tumors. Moreover, RT is considered an “in situ

vaccination”, because induces DNA damage, altered gene

transcription and tumor neoantigen expression. Several studies

have shown an increased anticancer immune responses when RT

is administered both before and after a tumor-specific therapeutic

vaccine. In particular, in human papillomavirus (HPV)- driven

cancer models it has been shown that the combination of

radiotherapy with vaccination strategies based on HPV E7

induces more efficient, DC maturation and peptide- specific T cell

responses (207, 208).
5.3 Immune checkpoint inhibitors
and vaccines

Immune checkpoint inhibitors (ICIs) are able to unleash the T

cell response in the TME (209) and can reprogram the activation of

T cells functionally exhausted by the chronic exposure to an antigen

(117, 210, 211). Unleashing of antitumor T cells by ICIs represents

the optimal strategy to complement anticancer vaccines. Indeed,

anti-tumor T cells induced by the cancer vaccines would be more

effective in a favorable TME generated by the ICIs. In particular, the

immunomodulatory effect of ICI has been evaluated in a preclinical

setting, showing the induction of CTL activation and the inhibition

of immunosuppressive cells (MDSC and Tregs) (ref). In addition,

several clinical trials have assessed cancer vaccines combined with a

checkpoint inhibitor, such as anti-CTLA-4, PD-1, or PD-L1

(https://clinicaltrials.gov/ct2/results?term5cancer1vaccines+%

261immune+checkpoint+inhibitors&Search=Apply&recrs=

a&age_v=&gndr=&type=&rslt).

In details, the most significant results were observed in two

clinical trials with T-VEC and sipuleucel-T vaccines, where the

combination with ICIs induced higher antitumor activity and
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objective response rate (ORR) compared to the ICIs alone (212,

213). The combination of SLP vaccine ISA101 and anti-PD-1

immune checkpoint nivolumab was shown to be well tolerated in

24 patients with HPV-16–positive cancer. Moreover, the efficacy of

combinatorial strategy appeared superior to that of nivolumab

monotherapy (59). Other clinical trials have assessed the

combination of ICI and cancer vaccines with contrasting efficacy

data. Additional studies are required to identify the most

appropriate clinical settings for optimal efficacy.
5.4 IDO Inhibitors

Indoleamine 2,3-dioxygenase (IDO) 1, an enzyme catabolizing

tryptophan to kynurenine, generates immunosuppression in TME

and his over-expression is correlated with tumor progression (214).

In particular, several preclinical studies have shown that over

expression of IDO1 correlates with an increase of Tregs and

MDSC cells, and upregulation of PD-1 in cytotoxic T cells (215).

In different tumor settings (i.e. colon cancer, cervical cancer,

melanoma) high level of IDO1 was associated with poorer

outcomes (216, 217). For these reasons, therapeutic strategies

based on IDO1 inhibitors combined with a cancer vaccine, could

be a promising approach. Indeed, small-molecule inhibitors of IDO

1 as well as peptide vaccines derived from IDO were tested in early

phase clinical trials in combination with ICIs, demonstrating the

safety and promising immune and clinical responses

(NCT05155254) (218, 219).
6 Conclusions and future prospective

Over the years, various efforts have been made in developing

cancer peptide vaccines, but their effectiveness has been limited.

Several reasons are responsible for such failures, including the

selection of poor immunogenic target antigens and the strong

immunosuppressive TME. Strategies to address and overcome

each of such aspects are currently pursued in the field.

Derivatives of TAAs are designed (e.g. heteroclitic peptides,

homologous non-self antigens) and TSAs are selected to improve

the antigen immunogenicity. The latter include both mutation-

derived as well as unconventional antigens, which, however,

represent a great technological challenge and are currently of

limited feasibility on a large scale. Likewise, combination

treatments (e.g. vaccines with chemotherapy or radiotherapy or

ICIs) are evaluated to counterbalance the immunosuppressive TME

(Figure 2). In addition, inefficient delivery systems, patients’

selection and loss of MHC class-I may contribute to failures, but

these aspects are beyond the scope of the present review article (144,

220). Consequently, several issues remain to be solved.

Indeed, although a significant number of early stage clinical

trials,based on peptide-based vaccines, are currently recruiting
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around the World (nr. 64 as of November 2022), a single trial is

beyond phase II (NCT03284866) (https://clinicaltrials.gov/ct2/

results?term=peptide+cancer+vaccine&recrs=a&age_v=&gndr=&

type=&rslt=&Search=Apply). This confirms the limited efficacy of

peptide-based cancer vaccines.

Therefore, further studies are necessary to clarify how to

identify new efficient strategies able to give to peptide-based

cancer vaccines a new horizon.
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