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Pregnancy requires the process of maternal immune tolerance to semi-

allogeneic embryos. In contrast, an overreactive maternal immune system to

embryo-specific antigens is likely to result in the rejection of embryos while

damaging the invading placenta, such that the likelihood of adverse pregnancy

outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing

excessive immune responses and regulating immune homeostasis. When

stimulating Tregs, specific antigens will differentiate into memory Tregs with

long-term survival and rapid and powerful immune regulatory ability.

Immunomodulatory effects mediated by memory Tregs at the maternal-fetal

interface take on critical significance in a successful pregnancy. The impaired

function of memory Tregs shows a correlation with various pregnancy

complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent

pregnancy losses). However, the differentiation process and characteristics of

memory Tregs, especially their role in pregnancy, remain unclear. In this study, a

review is presented in terms of memory Tregs differentiation and activation, the

characteristics of memory Tregs and their role in pregnancy, and the correlation

between memory Tregs and pregnancy complications. Furthermore, several

potential therapeutic methods are investigated to restore the function of

memory Tregs in accordance with immunopathologies arising from memory

Tregs abnormalities and provide novel targets for diagnosing and treating

pregnancy-associated diseases.
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1 Introduction

“Immunological memory” refers to an immune response occurs

after the first contact with a specific antigen during the

immunization process. When stimulated by the identical antigen

again, immunological memory is capable of quickly initiating

secondary immunity and inducing a stronger immune response

(1). Memory lymphocytes comprise memory B, T, and natural killer

(NK) cells which induce stable transcriptional, epigenetic, and

metabolic changes besides the rapid expansion of antigen-specific

cells (2–4). Notably, T regulatory cells (Tregs) are a specialized

subset of CD4+T cells characterized by the expression of the X-

chromosome-encoded lineage-specific transcription factor,

forkhead box protein p3 (Foxp3) (5).

Sir Peter Medawar described a fetus as an allograft developing in

an immunocompetent maternal host (6). Before conception, the

maternal immune system is exposed to paternal antigens in the

semen (7). During embryo implantation, paternal antigens carried

by trophoblasts of the placenta come into direct contact with the

immune cells at the maternal-fetal interface. It is noteworthy that

paternal antigens remain in the maternal peripheral circulation,

which has been reported in subsequent pregnancy and even several

years after parturition (8, 9). An overreaction of the maternal

immune system to paternal (embryo-specific) antigens may result

in rejection and damage to the embryo and adverse pregnancy

outcomes. Regulatory T cells (Tregs) are capable of mediating

immunomodulatory effects at the maternal-fetal interface, which

take on critical significance during embryo implantation and

subsequent pregnancy maintenance (10). Down-regulated

paternal antigen-specific Tregs in peripheral blood show a

correlation with multiple pregnancy complications, comprising

preeclampsia (PE), preterm birth, as well as spontaneous abortion

(11–16). Paternal antigen-specific Tregs persisted at high levels

after delivery in mice models and continued to exert tolerance to

paternal antigens. When the mice are pregnant again, Tregs are

proliferated rapidly and exert stronger maternal-fetal immune

tolerance under the effect of paternal antigen-specific Foxp3+T

cells retained from the previous pregnancy, suggesting

that Foxp3+T cells during pregnancy exhibit a memory

immunoregulatory function (17).

The relevance of memory Tregs to pregnancy outcomes and

complications has aroused wide attention and explored over the

past few years. Our previous study revealed that the frequency and

regulatory capacity of memory Tregs in the peripheral blood of

recurrent pregnancy loss (RPL) patients were compromised,

suggesting that paternal antigen-specific memory Tregs play an

important role in sustaining the pregnancy. Consequently, the

disruption of memory Tregs may be implicated in the

pathogenesis of RPL (18). Following the mouse and human

research, this review illustrates mTreg subtypes, their role in

immune tolerance in pregnancy and the dysregulated function,

and several mTreg subtypes present in a wide variety of pregnancy

complications. Furthermore, controversies about memory Tregs

and possible therapeutic methods targeting memory Tregs

are discussed.
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2 Immune memory function of Tregs

2.1 Memory subsets of Tregs

Tregs fall into thymus-derived Foxp3+ Tregs (tTregs)

differentiated from thymic precursor T cells and peripheral naïve

CD4+ T cell-derived Foxp3+ Tregs (pTregs) in accordance with the

source (19–21). Naive T cells stimulated by TGF-b and IL-2 are

capable of producing Foxp3+ Tregs in vitro that are termed induced

Tregs (22). However, Treg subtypes are not limited to their sources

but to their surface markers and functions (e.g., T helper-like Tregs,

CD8+ Tregs, and Tregs with memory phenotypes) (23–25). It is

noteworthy that memory Tregs fall into CD45RA+ naive Tregs and

CD45RO+ memory Tregs following the expression of the cell

memory surface marker CD45RO in humans (26). CD45RO+

memory Tregs are considered a subgroup of Tregs with activation

and functional differentiation since they outperform naive Tregs in

the immune regulation and migration ability for local

immunotropism (27).
2.2 The differentiation regulation of
memory Tregs

As depicted in Figure 1, memory Tregs primarily originate from

naive Tregs. They should be further stimulated by continuous TCR

signal for exerting a high-effectiveness immunosuppressive function

in vitro and expressing activation markers (e.g., CD25, GITR, CD95,

ICOS, CTLA-4, and Ki67) (28–30). In a physiological polyclonal

environment, the activation status of individual Tregs may be

affected by the affinity and availability of TCRs to their cognate

antigens and the strength and duration of TCR signaling (31).

Nevertheless, TCR signaling strength does not exert any effect on

the resting/activated Tregs ratio, whereas it controls the activation

of Tregs (32).

Differentiation of mTreg is regulated by the transcription

factors BACH2 and BLIMP-1 (encoded by PRDM1) (31). The

above-mentioned two key transcription factors display a clear,

mutually exclusive expression pattern. BACH2 mRNA is highly

expressed in naive cells and gradually declines during the

differentiation to a memory phenotype, accompanied by a gradual

increase in PRDM1 expression. The dynamic interplay between

BACH2 and BLIMP-1 was more pronounced in in-vitro validation

experiments, supporting their role as master regulators of

transcriptional programs associated with activation of human

Treg differentiation in response to antigenic stimulation (33).

The differentiation of memory Tregs may depend on mTOR

signal, and such a process may cover a wide variety of factors (e.g.,

metabolic processes). With the development of CD8+ T cells,

effector cell differentiation is more significantly dependent on

aerobic glycolysis, whereas memory cell differentiation relies on

fatty acid oxidation (34). However, the energy requirement for

Tregs is not dependent on glucose transporter-1, whereas it

preferentially relies on high lipid oxidation levels. mTOR serves

as a critical regulator of T cell metabolism that can integrate
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nutrient sensing pathways and signaling pathways involved in T cell

differentiation, growth, survival, and proliferation (35). TCR,

costimulatory molecules, and various cytokines tune the mTOR

signal via the upstream PI3K/Akt pathway to content the energy

demands associated with T cell activation (36). Moreover,

autophagy is active in Tregs while supporting their lineage

stability and survival fitness. Tregs-specific deletion of the basic

autophagy genes ATG7 or ATG5 will trigger the loss of Tregs.

Deficiency in autophagy can up-regulate the metabolic regulators

mTORC1 and c-Myc, as well as glycolysis, such that Tregs function

is impaired (37). Autophagy in extravillous trophoblast (EVT) cells

is reduced in PE patients compared with healthy pregnant women.

The invasion and vascular remodeling of autophagy-deficient EVT

cells are notably reduced under hypoxic conditions, which may play

a certain role in the pathogenesis of PE (38). Previous research has

suggested that the inhibition of mTOR during T cell activation can

facilitate the production of long-lived Tregs with memory-like

phenotype in mice while up-regulating Foxp3 expression (39, 40).

Aryl hydrocarbon receptor (AHR) inhibitor is up-regulated in

CD45+RA- Tregs, suggesting that Tregs may be differentiated into

memory phenotype by regulating AHR activity, reducing the

differentiation of naive CD4+ cells to Th17 cells (28).

Besides, CNS2 contains the Treg cell-specific demethylation

region (TSDR) of effector Tregs (41). The TSDR demethylation

signature of Foxp3 serves as an effective predictor of dendritic

protein function and immunosuppression. While CNS2

demethylation begins after the initiation of Foxp3 transcription,

Foxp3 may be involved in this process. Indeed, CNS2-deficient

Tregs achieve down-regulated Foxp3 expression. Thus, initial

transcriptional activation of Foxp3 and subsequent CNS2

demethylation take on critical significance in establishing a

faithful epigenetic memory of Foxp3 expression and ensuring

Tregs lineage commitment (42). Furthermore, Foxp3 DNA

methylation is reduced on Tregs, and Foxp3 reactivation leads to
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the up-regulation of CTLA-4, such that the Tregs function is

normalized. CTLA-4 has been reported to be hypermethylated at

the specific positions on Tregs of rheumatoid arthritis patients, such

that the CTLA-4 expression is down-regulated (43).
2.3 Function of memory Tregs

During the inflammatory resolution phase of acute lung

infection with influenza in a mouse model, Tregs, activated and

expanded 50-fold, begin to shrink continuously and develop a pool

of memory cells ultimately. The above-described memory Tregs

rapidly expand 10-fold upon reinfection and secret considerable

anti-inflammatory cytokine, IL-10 to suppress tissue damage and

inflammation arising from recall expansion of memory CD4+ T

cells (44).

Despite the relatively stable proportion of Tregs in the CD4+ T

cell population throughout a person’s life, the proportion of

memory Tregs varies. Nearly 80% of the Tregs in the umbilical

cord blood of neonates are naive Tregs, probably because neonates

only receive antigens from the mother through the placenta before

birth. With age, the proportion of memory Tregs in the Tregs

pool gradually increases due to stimulation by various external

antigens, so CD45RO+ memory Tregs account for the vast majority

in old age (45, 46). As indicated by existing research, almost all

Tregs in adult skin express CD45RO, the proportion of Tregs

expressing CD45RO in fetal skin is significantly down-regulated

by comparison (47, 48).

When self-antigens persistently stimulate tissues, the first

responders rushing to the scene are not effector T cells (Teffs) but

Tregs (27). As an important subgroup Tregs, memory Tregs also

have stronger local tropism and migration ability than naive Tregs

(49). Memory Tregs can rapidly migrate to non-lymphoid tissues,

such as lung and liver, to control local tissue immune damage (50).
FIGURE 1

The differentiation process of memory Tregs and their function in pregnancy.
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Epigenetic regulation of memory Tregs is complex since naive

Tregs originating in the thymus or the periphery acquire immune

memory function after antigenic stimulation. In kidney transplant

patients, Foxp3 demethylation shows a significant correlation with

the proportion of memory Tregs, and circulating memory Tregs in

organ transplant tolerant patients express higher levels of CD39 and

GITR and higher levels of Foxp3 demethylation and stronger

suppressive function (51). The TSDR demethylation of

CD25intCD45RA- memory Tregs is less stable than that of naive

Tregs since their demethylation is reduced notably and

accompanied by down-regulated Foxp3 expression 2 weeks after

expansion. Thus, the immunosuppressive capacity of amplified

CD25intCD45RA- memory Tregs is reduced, whereas it is nearly

consistent with that of naive Tregs (52).
2.4 Molecules related to memory
Tregs function

Chemokine receptor type 7 (CCR7)- memory cells are capable

of migrating to inflamed tissues and displaying immediate effector

functions. CCR7+ memory cells lack immediate effector function,

whereas they can efficiently activate dendritic cells and differentiate

into CCR7− effector cells when re-stimulated (53). Accordingly,

memory cells with CCR7+ and CCR7− are defined as central and

effector memory cells, respectively (54).

In accordance with CD31 expression, Tregs can fall into CD31+

recent thymic emigrants and CD31- mature subgroups (55).

Moreover, this subtyping can be applied to the classification and

functional judgment of memory Tregs.

Human leukocyte antigen (HLA)-DR belongs to the HLA class

II molecules, which is expressed on the surface of various immune

cells and can be considered an activation marker of Tregs (56).

HLA-DR-positive Tregs express a high level of Foxp3, such that

many studies have divided memory Tregs into DR+ memory Tregs

and DR- memory Tregs subsets by HLA-DR.

GITR refers to a member of the tumor necrosis superfamily, can

directly activate effector CD4+ and CD8+ T cells, thereby promoting

antitumor immune responses (57, 58). Patients with slow

progression of type 1 diabetes have the increased frequency of

memory Tregs and considerable GITR expression in peripheral

blood, whereas the immunosuppressive function of memory Tregs

is significantly impaired (59).

PD-1 refers to an immunosuppressive molecule of the CD28

family ubiquitously expressed on immune cells (60). The dynamic

balance of memory Tregs can be inhibited by PD-1, while anti-PD-1

treatment prevents the buildup of memory Tregs (61). Wang et al.

suggested that RPL patients had a lower proportion of PD-1+

memory Tregs in their peripheral blood than healthy pregnant

women, suggest fetal antigen stimulation can cause increased

expression of PD-1 and affect the proliferation, accumulation, or

function of memory Tregs (18).

CD80/CD86 are B7 ligands that can compete with CTLA-4 for

binding to CD28 (60, 62). Dominik et al. suggested that the most

active mTreg clusters had significantly increased expression of

CD80 and CD86, and both CD80+ and CD86+ memory Tregs
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showed normal Foxp3 and Helios expression profiles. In addition,

CD80 and CD86 were also observed to be co-expressed with Tregs

activation markers CTLA-4 and HLA-DR (33).
3 Memory Tregs in normal pregnancy

Tregs take on critical significance during pregnancy as the

maternal immune system requires immune tolerance to the semi-

allogeneic fetus (63–65). Tregs circulate in maternal peripheral

blood, and they are capable of converging in basal decidua and

parietal decidua at the maternal-fetal interface during pregnancy

(66, 67). Tregs involved in the regulation of autoimmunity and

tolerance to the fetus by suppressing the maternal immune response

(68). Tregs-mediated immune tolerance emerges in the pre-

implantation phase of early pregnancy, and decidual Tregs

continuously expand in the first and second trimesters, such that

subsequent pregnancy maintenance is significantly facilitated till

they decline before delivery (68–70). Memory Tregs are the main

component of the reproductive system of healthy women (parous

and nulliparous combined), with memory Tregs accounting for

about 70% of the Tregs pool in peripheral blood and 97.9% in

endometrium (71). Existing research on mice suggested that

maternal Tregs targeting fetal-specific antigens are produced

extrathymic and then recruited onto the maternal-fetal interface

by CNS1 dependent manner with high priority (72, 73). Chen et al.

suggested that Tregs were rapidly recruited to uterine draining

lymph nodes during pregnancy and activated on the first day

after embryo implantation through the mice model. They

express the activated/memory Tregs (amTregs) subset markers

CD44highCD62Llow and at least in part autoantigen-specific (74).

In addition, as depicted in Figure 1, naive Tregs in the peripheral

blood of healthy pregnant women display a notable tendency to

differentiate into memory Tregs, which takes on vital significance in

the maintenance of pregnancy. Besides, the initiation of delivery is

correlated with the significant breakdown of this differentiation

tendency to memory Tregs (75). Miriam et al. suggested that

during the first trimester of pregnancy, the proportions of thymus-

immigrant regulatory T cells (CD31+ naive Tregs) and CD31+

memory Tregs were significantly decreased, while CD45RA-CD31-

memory Tregs were correspondingly enhanced (76). Abnormal Tregs

proportion and function breaks the adaptive immunity to the fetus,

leading to a wide variety of pregnancy complications (e.g., RPL,

PE and gestational diabetes (GDM)) (77–79). There are

dynamic changes among the subpopulations of the Tregs pool

during pregnancy, especially in the 10-20th week of gestation,

where the abnormal differentiation of naive Tregs to memory Tregs

shows a correlation with the pathogenesis of PE (75, 80).
3.1 The activation of memory
Tregs in pregnancy

The proportion of memory Tregs subgroups takes up the major

position of Tregs pool in the peripheral blood or endometrium of
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reproductive women, and memory Tregs outperform naive Tregs in

the immune regulation function, which undoubtedly takes on

critical significance in the success of pregnancy (Figure 1) (46,

71). Compared with the powerful functions of memory Tregs,

considerable mysteries should further be explored in their

formation, activation, and maintenance during pregnancy.

The maternal immune system is stimulated by paternal antigens

in semen during copulation while developing immune tolerance (7,

81, 82). After mating between sterile female mice and 2W1S+ male

mice, the number of 2W1S+ Tregs is up-regulated at a lower level

than normal pregnant mice, suggesting the formation of paternal

antigen memory Tregs carried by semen (17).

In general, the expression of Foxp3, the stability of lineage, and

the expression of numerous landmark genes in Tregs are dependent

on TCR signaling (32). However, the stimulation of TCR signaling

alone is insufficient to maintain the function of Tregs and exert an

effective immune regulation function (83). IL-2 is capable of

supporting Tregs with survival signals while increasing their

immunosuppressive effects, and IL-2 has been confirmed as a

vital factor for the activation of memory Tregs (84, 85). Memory

Tregs express high levels of IL-2Ra and IL-7Ra. Unlike IL-2-

dependent pTregs and tTregs in secondary lymphoid tissue, skin-

resident memory Tregs are activated by IL-2, and then their

maintenance is determined by IL-7 (85, 86). However, the

dependence of memory Tregs on IL-7 has only been confirmed in

the skin, and no conclusive evidence has been reported during

pregnancy. In a mice model, blocking IL-10R significantly

suppresses the ability of memory Tregs to inhibit memory CD4+

T cell recall expansion and the accompanying immunopathological

variations in vivo, suggesting that IL-10 may play a certain role in

and enhancing the immune regulation of memory Tregs (44).

Besides the above-mentioned factors that may affect the

memory function of immune regulation, memory Tregs may

show a correlation with the “pregnancy-induced microchimerism”

existing in maternal (87). During pregnancy, the close bond

between mother and child contributes to a bilateral exchange of

small numbers of cells across the placenta (88). Fetal cells with

semi-allogeneic gene enter into maternal blood circulation during

pregnancy, and the above-mentioned cells persist long after delivery

(89). As indicated by recent findings, the presence of the above-

described microchimeric cells expressing fetal-specific antigenic

features does not arise from coincidence, whereas it is deliberately

retained in the maternal while ameliorating the outcome of re-

pregnancy by promoting the adaptation to paternal genetic

material (90).

During subsequent pregnancies, with the Tregs pool generally

maintaining a homeostasis, the proportion of memory Tregs varies

since the pregnancy progresses and functions differently at the

respective stage. Impaired fetal tolerance in the first trimester may

trigger spontaneous abortion, some minor fluctuations may result

in preterm birth or fetal growth restriction, and interruption of fetal

tolerance in the third trimester may cause the occurrence of PE/

eclampsia or even stillbirth (91). Compared with non-pregnant

women, the proportion of HLA-DR+/- memory Tregs in peripheral

blood is increased rapidly during the first 7 weeks of pregnancy. The

above-mentioned phenomenon is most likely to rapidly enhance
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the maternal immune tolerance function to complete the vital

procedure of embryo implantation. Subsequently, memory Tregs

tend to be decreased, whereas they remain at a high level (46). As

the fetus leaves the mother after parturition, fetal-specific antigens

in maternal peripheral blood are decreased rapidly with the

termination of maternal-fetal exchange, whereas they do not vanish.
3.2 Memory Tregs and second pregnancy

The re-pregnancy process after the first delivery may be most

benefited from the immune regulation of memory Tregs, since their

memory function contributes to a rapid response to the re-

emergence of fetal-specific antigens. Moreover, the fetal

resorption rate after partial FOXP3+ cell ablation in re-pregnant

mice is notably lower than first pregnancy (17). Thus, in a

prospective cohort study with 763,795 pregnant women recruited,

the risk of PE during the first pregnancy is 4.1%, and the risk is

reduced to 1.7% during the second pregnancy (92). As indicated by

the above result, the first pregnancy process can significantly protect

the second pregnancy, whereas this significant protection will not

be constant. This protective effect can be efficient only when the

paternal antigens of the two pregnancies remain unchanged. If the

partner changes in second pregnancy, the efficiency of this immune

regulation will decline significantly (93). Notably, if a woman has

PE during the first pregnancy, the risk of PE during the second

pregnancy is not reduced (94). Furthermore, the risk of preterm

birth in re-pregnancy is significantly elevated if the first pregnancy

exhibits pregnancy complications or adverse pregnancy outcomes

(93). The susceptibility to pregnancy complications in re-pregnancy

is increased with the course of the first pregnancy, and it is very

likely that a complex mechanism exists behind them.

Maternal CD8+ T cells begin to expand systematically and

initiate immune rejection under the effect of paternal antigen

stimulation during the first pregnancy; such expansion continues

even after parturition (95). During the second pregnancy of mice,

maternal memory CD8+ T cells are not expanded when stimulated

by fetal antigens again. The expression of PD-1 and LAG-3 on the

surface of the above-mentioned cells is up-regulated, and their

immune rejection function are exhausted (96). Besides, decidual NK

cells (dNK) can exhibit special innate memory capabilities for first

pregnancy, such that the above-described cells are termed

“pregnancy-trained dNK cells”. Memory dNK cells achieve the

high expression of NKG2C and ILT2 during re-pregnancy while

producing considerable interferon–g (IFN–g) and vascular

endothelial growth factor-a (VEGF-a) to more effectively support

angiogenesis and endometrial vasculature remodeling during

embryonic development. The above-mentioned measures can

facilitate the success of subsequent pregnancies (97).

The effect of first pregnancy on the function of memory Tregs

has been rarely investigated, and most studies have placed a focus

on memory Tregs expansion rather than functional changes during

the second pregnancy. Granne et al. suggested that Tregs in the

endometrium of parous women expressed 38.8% of uniquely genes,

while Tregs in the endometrium of nulliparous women expressed

only 1.8% of uniquely genes. Since memory Tregs make up 97.9% of
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the endometrial Tregs pool in healthy women, the experience of a

successful pregnancy may more significantly affect memory Tregs

than we expect (71).

However, although existing evidence has confirmed the

establishment of a memory immune protection system during

pregnancy, the specific functions of memory Tregs after re-

stimulation with fetal-specific antigens during subsequent

pregnancy have been scarcely investigated. Accordingly, the exact

mechanism by which the first adverse pregnancy triggers the risk of

pregnancy complications in subsequent pregnancies remains

unclear. However, a speculation is made in accordance with the

existing research. The possible reason for the above result is the

abnormal function of memory Tregs during the first adverse

pregnancy. Consequently, a well-functioning fetal protection

system cannot be developed, or immune killer cells (e.g., memory

CD8+ T cells) have hyperfunction, or the mother is susceptible to

placental dysfunction. In general, the truth of the relevant issues

should be revealed by in-depth research.
4 Memory Tregs in pregnancy
complications

4.1 Memory Tregs in PE

The occurrence of PE covers multiple factors (e.g., placental

defects, vascular damage, and immune imbalance). To be specific,

the immunological property of PE refers to the reduced function of

the adaptive immune system (98).

As indicated by a meta-analysis conducted by Green et al., the

number of Tregs in the maternal peripheral blood of patients with

PE is lower compared with healthy pregnancies (99). The Tregs

pool is subjected to the systemic and localized expansion during

human pregnancy. To be specific, clonally expanded effector Tregs

are increased in the decidual. During human pregnancy, the Tregs

pool is subjected to a systemic and localized expansion, with an

increased presence of clonally expanded effector Tregs in the

decidua after fetal antigens are recognized. Existing research has

suggested that the clonal effect of decidual effector Tregs is

diminished in PE patients when compared with healthy third-

trimester women (100).

With the reduced proportion of CD45RA+CD31+ Tregs during

healthy pregnancy, the ratio of CD45RA+CD31+/CD45RA+CD31-

Tregs declines, such that the immunosuppressive function of the

naive Tregs pool is increased. CD45RA+CD31+ Tregs tend to

differentiate into CD45RA−CD31− memory Tregs during healthy

pregnancy. However, this differentiation tendency is disrupted

in PE patients, and the proportion of memory Tregs in Tregs

declines, such that the immune regulatory system is impaired

(75, 76). Steinborn et al. examined HLA-DR as an activation

marker of memory Tregs. As indicated by their results, compared

with healthy pregnant women, the proportion of DR+CD45RA-

memory Tregs in the peripheral blood of PE patients is increased,

whereas the immunosuppression of total Tregs is significantly

reduced (80).
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Kieffer et al. suggested that memory Tregs in decidua parietalis

of early-onset PE (PE onset before 34 weeks) patients are

significantly increased compared with normal pregnant women,

and the effector memory Tregs is mainly up-regulated. In contrast,

memory Tregs in decidua parietalis of patients with late-onset PE

(PE onset after 34 weeks) vary less, whereas central memory Tregs

are significantly reduced. The proportion of effect memory Tregs is

also up-regulated in decidua parietalis of late-onset PE, whereas it is

not statistically significant. The decidua parietalis of early-onset PE

patients express higher levels of IFN-g and IL-2 mRNA than normal

pregnant women. Overall changes in memory Tregs are smaller in

decidua basalis in both early-onset PE and late-onset PE

patients (101).
4.2 Memory Tregs in GDM

GDM shows a correlation with numerous maternal and fetal

adverse pregnancy outcomes, including caesarean section, PE,

macrosomia, intrauterine growth retardation, delayed neonatal brain

maturation, and neurobehavioral abnormalities (102, 103). Among

those with a previous diagnosis of GDM, 22.6% would develop

diabetes within the next 8 years (104). Besides the well-known

glucose intolerance and insulin resistance, GDM is also

characterized by chronic systemic inflammation and enhanced

humoral immune responses (105, 106). The above-described

characteristics are also present in non-pregnant diabetic patients.

The peripheral blood of both type 1 diabetic mice and patients was

flooded memory Tregs with high expandation but impaired function,

which showed increased GITR expression, decreased CD39 expression

and suppressed clonotype expansion of TCR (59, 107, 108).

Schober et al. suggested that although the total Tregs pool in the

peripheral blood of GDM patients was not decreased, but the

immunosuppressive activity of Tregs was significantly reduced

compared with healthy pregnant women. The proportion of naive

Tregs decreased and the proportion of memory Tregs increased in

both diet-adjusted and insulin-dependent GDM patients. The

discrimination was that the proportion of HLA-DR- memory

Tregs was significantly increased in patients with diet-adjusted

GDM, whereas the proportion of HLA-DRlow+ and HLA-DRhigh+

memory Tregs was significantly increased in patients with insulin-

dependent GDM (109).
4.3 Memory Tregs in RPL

Parental chromosomal abnormalities, maternal thyroid disease

or diabetes, endometrial changes, immune factors, and so forth may

result in RPL (110). Wang et al. suggested that no significant

difference exists in the proportion of memory Tregs in peripheral

blood between healthy women and RPL patients at the non-

pregnant state. After pregnancy, the proportion of memory Tregs

in the peripheral blood of the two groups of women is significantly

elevated, whereas the proportion of memory Tregs in RPL patients

remains to be significantly lower than healthy women (18).
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The differential expression of immune checkpoint molecules on

memory Tregs is likely to indicate variations in their function and

expansion capacity. Granne et al. using RNA-sequencing

techniques reported significant differences in the transcriptional

profiles of Tregs of the endometrium whether comparing primary

RPL to nulliparous women or secondary RPL to parous women. To

be specific, the expression level of TIGIT on the surface of Tregs in

RPL patients is notably lower than that in normal women, whereas

the levels of Foxp3, Helios and CTLA-4 are not significantly

different (71). After pregnancy, whether in RPL patients or

healthy women, PD-1, CCR6, and HLA-G expression on memory

Tregs in peripheral blood is significantly up-regulated compared

with that in non-pregnancy, and the expression levels of RPL

patients after pregnancy are still lower than those in normal

pregnancy female (18).
4.4 Memory Tregs in preterm birth

There are various factors leading to preterm birth (e.g., PE, fetal

growth restriction, infection, and short cervix that can all serve as

predictors of preterm birth) (111). In mice, depletion of Tregs

during the late gestation of pregnancy lead to premature delivery

and adverse neonatal outcomes, in the process, the effect of Tregs

exhaustion during the second pregnancy on premature delivery was

smaller than that of the first (14). The mechanism of Tregs

depletion leading to adverse perinatal outcomes comprises tissue-

specific immune response, mild systemic maternal inflammation,

and disorders of placental development. For premature neonates,

the percentage of Tregs in cord blood is negatively correlated

with gestational age, whereas the expression level of CTLA-4 on

the surface of memory Tregs is up-regulated with gestational

age (112). Steinborn et al. suggested that DR-CD45RA+Tregs

were increased in the peripheral blood of premature women,

while DR-CD45RA-Tregs and DRlow+CD45RA-Tregs were

decreased (80).
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4.5 Memory Tregs and assisted
reproductive technology

As infertility arising from various reasons affects nearly 15.5% of

couples of childbearing age, assisted reproductive technology turns

out to be the first choice for treating infertility (113). Schlossberger

et al. analyzed the correlation between the number and function of

memory Tregs and in vitro fertilization (IVF)/intracytoplasmic sperm

injection (ICSI) success through a prospective study. The proportion

of naive Tregs in peripheral blood of pregnant patients after IVF/ICSI

treatment is elevated, the proportion of DR- memory Tregs is

reduced, and the proportion of DR+ memory Tregs is also down-

regulated, whereas it is not statistically significant. It is noteworthy

that naive Tregs of pregnant patients exhibit the significantly greater

immunosuppressive ability than non-pregnant patients, whereas the

immunosuppressive ability of DR+ memory Tregs is significantly

lower than that of non-pregnant patients. The increase of DR+

memory Tregs begins to retard gradually from the age of 40,

suggesting the powerless of naive Tregs to transform into DR+

memory Tregs. In this study, the age of non-pregnant patients after

IVF/ICSI is notably higher than pregnant patients, suggesting that the

reduced immunosuppressive activity of DR+ memory Tregs in non-

pregnant patients may be affected by age (46).

As depicted in Figure 2, the down-regulated expression of the

above-mentioned vital checkpoint molecules on memory Tregs may

play a certain role in the pathogenesis of PE, GDM, RPL, preterm birth

and failure of assisted reproductive technology by reducing stability,

proliferation, amplification, immunosuppression, or chemotaxis.
4.6 Memory Tregs and reproductive
potential

Under multiple factors, the first pregnancy age of women has

displayed an increasing trend in the last decades (114). Although

ovarian function decline with the increasing age in women of
FIGURE 2

Differences of memory Tregs in normal pregnancy and pregnancy complications.
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reproductive age, many young females are subjected to an

irreversible process of premature ovarian failure or ovarian

function decline, which is correlated with iatrogenic factors,

genetic, environmental or immunological factors (115, 116).

Rocamora-Reverte et al. suggested that the senility process was

characterized by an altered composition of immune cells, and the

structure of the total Tregs pool subsets was also altered (117).

The features of senility comprise the increase of decrepit cells and

the accumulation of inflammatory markers in peripheral blood

(118). One of the significant characteristics of senility T cells were

negative express for costimulatory molecule CD28 (119). The

immunosuppressive function of CD28- Tregs is significantly

reduced, and they play a certain role in the pathogenesis of a

wide variety of immune-associated diseases (e.g., rheumatoid

arthritis and multiple myeloma) (120, 121). On the other hand,

the proportion of DR+ memory Tregs in the peripheral blood of

women of childbearing age shows a positive correlation with age,

and the velocity of growth rate tends to be decelerated after the age

of 40 (46).

Kahindo et al. suggested that the level of DR+ memory Tregs in

the peripheral blood of women aged 40-49 years is significantly

higher than that of women aged between 20 and 39 years. The level

of DR+ memory Tregs shows a significant positive correlation with

the level of blood follicle-stimulating hormone (FSH) and a

significant negative correlation with the level of anti- müllerian

hormone (AMH) and antral follicle count (AFC). Furthermore, the

level of CD28- Tregs is negatively correlated with the level of AFC

(122). Thus, as indicated by the above-described results, Tregs

subpopulations are associated with ovarian reserve markers, and

the composition of Tregs pool subpopulations is expected to be

useful in assessing ovarian function and predicting subsequent

reproductive potential.
5 Immunotherapeutic modalities for
memory Tregs

Memory Tregs play a key role in suppressing excessive immune

responses and maintaining immune homeostasis, and defects in

their function lead to imbalance of the immune system and a variety

of immune-associated diseases. Accordingly, many researches

actively explored therapeutic modalities to increase the number of

memory Tregs and activate their immunosuppressive capacity, with

the expectation that the above-mentioned measures could become

effective treatment modalities for immune-associated diseases.
5.1 Low-dose of IL-2

Tregs express high levels of IL-2Ra (CD25), and IL-2 can

facilitate the proliferation, maturation, and anti-apoptotic effects

of Tregs to enhance the immune regulatory function (123). Asano

et al. conducted murine research. As indicated by the result, s low-

dose IL-2 selectively increases the proportion of Tregs while

promoting PD-1 expression and maintaining the stable

expression of other suppressive molecules (e.g., CTLA-4, LAG-3,
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and TIM-3), which are particularly expressed on CD44+ CD62L+

central memory Tregs (124).

Mhanna et al. performed TCR-sequencing on CD4+ T cell

subsets of the spleens from normal C57BL/6 (B6) and non-obese

diabetic (NOD) mice (107). The TCR repertoire of the CD4+

Foxp3+ CD44high CD62Llow amTregs are the least diversity. In

contrast, NOD mice exhibit a significantly higher repertoire

diversity of amTregs TCR compared with that of B6 mice. Under

this property of NOD mice, amTregs are difficult to activate, and

minor immunomodulatory effects are exerted. When stimulated by

sustained low-dose IL-2, NOD mice exhibit a significantly higher

proportion of amTregs, while the clonotypic expansion of amTregs

is rejuvenated.

Cunningham et al. injected high, medium and low doses of IL-2

to PE rat models. As indicated by their results, PE rats injected with

low-dose of IL-2 have decreased blood pressure and the down-

regulated levels of v Chimeric antigen receptors asoconstrictor

peptide endothelin-1, while the fetus is adversely affected (125).

Thus, this treatment modality may exert a therapeutic effect on

pregnancy complications by enhancing the functional activity of

memory Tregs, whereas the specific evidence should still be verified

in the future.
5.2 mTOR inhibitors

As mentioned before, sustained glycolytic activity inhibits

memory formation, whereas inhibition of glycolysis promotes

memory cells development (126). Rapamycin, i.e., a selective

inhibitor of mTOR, is capable of increasing lipid oxidation and

reducing glycolysis, and then suppressing the immune response of

Teffs and facilitating the generation of Tregs (36, 127, 128). Given

the metabolic similarity between memory cells and Tregs, one

theory holds that if naive cells stimulated by high level mTOR

signal would differentiate into effector Tregs, while stimulated by

low level mTOR signal would differentiate into memory Tregs

(129). Short term inhibition of mTOR alleviates the negative

regulation of Tregs by costimulation domain 4-1BB tonic

signaling (130).

Up-regulated PI3K/Akt/mTOR signal pathway can suppress

Foxp3 expression, induced aberrant immunosuppressive function

of Tregs and ultimately caused spontaneous miscarriage or fetal

malformations in mice (131). Royster et al. demonstrated that Tregs

exhausted mice exhibited a significant increase in litter size after

rapamycin injection treatment (132). But the long-term use of

rapamycin have risks such as cancer, stroke, cerebral infarction,

blindness and premature death (133). Zhang et al. suggested that

the combined administration of low-dose rapamycin and higher

dose IL-2 can reduce side effects while enhancing Tregs expansion

and immunoregulatory function (134).
5.3 Other potential treatment methods

Adoptive transfer of Tregs is a promising high-effectiveness

strategy for treating diseases mediated by the impaired function of
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Tregs. Such therapeutic modalities comprise isolating differentiated

Tregs in vivo, expanding Tregs in vitro, or generating inducible

Tregs in vitro and transfer into body subsequently (135). Wang et al.

built CBA/J×BALB/c normal pregnancy mice model and triggered

an increase in the miscarriage rate through the transvaginal

injection of rIL-17. After the adoptive transfer of purified Tregs

from healthy pregnant mice, the increased miscarriage rate in the

treated mice model is reversed, and the levels of TGF-b and IL-10 in
the decidual Tregs are up-regulated (136). Thus, Tregs adoptive

transfer therapy may be promising in treating miscarriage due to

inflammation. However, this treatment method has only been

proven to be effective in inbred animals of the identical strain,

and whether it can be employed in the clinical treatment of humans

should be investigated in depth. Furthermore, memory Tregs are a

subpopulation of Tregs with a low number, and the sorting and

purification of memory Tregs may be a laborious task for

this reason.

Chimeric antigen receptors (CARs) are a series of engineered

fusion proteins, which comprise extracellular single-chain variable

fragment recognizing antigens, intracellular immunoreceptor

tyrosine-based activation motifs, transmembrane domain and

costimulatory domain. They are capable of redirecting the

specificity and function of T lymphocytes and other immune cells

(137, 138). Existing research has reported that CAR-Tregs achieve

positive outcomes in treating immune-associated diseases (e.g.,

graft-versus-host disease, type 1 diabetes, inflammatory bowel

disease and other immunity-associated diseases) (139–141). CAR-

Tregs show numerous advantages (e.g., being capable of

maintaining a stable phenotype and function, being less

dependent on IL-2, preferentially migrating to targeted tissues,

and exerting stronger and more specific immunosuppressive

effects over polyclonal Tregs) (142). However, with the aim of

constructing highly specific and effective memory CAR-Tregs,

antigens the CARs targeted should be selected, and specific

antibodies should be developed. Thus, this construction process is

undoubtedly a tough challenge for several diseases (142).
6 Conclusion

In brief, Tregs are activated after being stimulated by cytokines

(e.g., fetal-specific antigens in paternal semen, embryo cells, and
Frontiers in Immunology 09
pregnancy-induced microchimerism) and differentiate into

embryonic antigen-specific memory Tregs. The differentiation of

memory Tregs is regulated by numerous factors (e.g., TCR signal

stimulation, transcription factor interaction, mTOR signal, and

methylation). It is more certain that the reduced number and

abnormal function of maternal memory Tregs show a correlation

with a wide variety of pregnancy complications and adverse

outcomes, whereas rare effective treatment methods have been

proposed. Accordingly, the characteristics of memory Tregs in

normal pregnancy and pathological pregnancy should be further

researched, and the exploration of molecule markers correlated with

memory Tregs function can be conducive to revealing the

pathogenesis of pregnancy-associated diseases and providing a

strategy for gaining insights into subsequent clinical diagnosis

and treatment.
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