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polarization in sepsis-induced
acute lung injury
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Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
Sepsis presents as a severe infectious disease frequently documented in clinical

settings. Characterized by its systemic inflammatory response syndrome, sepsis

has the potential to trigger multi-organ dysfunction and can escalate to

becoming life-threatening. A common fallout from sepsis is acute lung injury

(ALI), which often progresses to acute respiratory distress syndrome (ARDS).

Macrophages, due to their significant role in the immune system, are receiving

increased attention in clinical studies. Macrophage polarization is a process that

hinges on an intricate regulatory network influenced by a myriad of signaling

molecules, transcription factors, epigenetic modifications, and metabolic

reprogramming. In this review, our primary focus is on the classically activated

macrophages (M1-like) and alternatively activated macrophages (M2-like) as the

two paramount phenotypes instrumental in sepsis’ host immune response. An

imbalance between M1-like and M2-like macrophages can precipitate the onset

and exacerbate the progression of sepsis. This review provides a comprehensive

understanding of the interplay between macrophage polarization and sepsis-

induced acute lung injury (SALI) and elaborates on the intervention strategy that

centers around the crucial process of macrophage polarization.
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1 Introduction

Sepsis, which has a high morbidity and mortality rate, results from infection caused by

maladaptive immune and metabolic responses (1, 2). Dysregulation of the immune

response leading to organ dysfunction and eventually organ failure is thought to be the

key to distinguishing sepsis from infection and is increasingly recognized as an important

part of the pathogenesis of sepsis (3–5). Early detection or intervention of Inflammatory

response disorder may be a promising way to effectively attenuate sepsis (6–8).

Acute lung injury is a common complication of sepsis and a major cause of short-term

death and long-term decline in quality of life (9). The pathogenesis of sepsis-induced acute

lung injury (SALI) includes damage to the vascular endothelium and alveolar epithelium,
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leading to increased permeability of alveolar capillaries and

decreased alveolar surface active substances (10, 11). According to

relevant epidemiological studies, the incidence of ALI in sepsis

patients is 68.2%, and the 90-day mortality rate of patients with

combined ALI is as high as 35.5% (2).

After invasion of lung tissue by endotoxins, microorganisms,

and other pathogens, a large number of inflammatory factors are

released, which activate effector cells such as alveolar macrophages,

epithelial cells, endothelial cells, and multinucleated leukocytes,

resulting in the release of an un-controlled inflammatory cascade.

These can directly and indirectly damage alveolar epithelial cells

and vascular endothelial cells, affecting gas exchange in the lungs,

causing severe lung injury and reduced lung function (Figure 1)

(12). Macrophages play dual roles in SALI. It is found that the total

number of macrophages increased significantly after exposure to

lipopolysaccharides (LPS), mainly increased inflammatory M1

macrophages and the corresponding M1 expression products, and

decreased anti-inflammatory M2 macrophages and the

corresponding M2 expression products (13).The mass production

of M1-type macrophages will lead to the exacerbation of lung

inflammation and alveolar damage, thus aggravating the degree of

SALI. Otherwise, the production of M2-type macrophages can

promote alveolar repair and regeneration, thus promoting SALI

recovery. Therefore, in the treatment of SALI, the production and

action of M1 and M2 type macrophages should be balanced to

achieve the best therapeutic effect (14).

This article reviews the role of macrophage polarization in the

immune response, summarizes the macrophage phenotype and the

regulation of macrophage polarization, and explains the possible

therapeutic approaches of targeting macrophage polarization in
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SALI. The purpose of this review is to comprehensively understand

the function and characteristics of macrophage polarization in the

immune mechanism of SALI. We will continue to review valuable

targets and therapeutics related to the regulation of macrophage

polarization and phenotypic changes.
2 Macrophage polarization

2.1 Monocytes-derived macrophages
and native macrophages

Activated macrophages are pathological markers of the immune

and inflammatory responses of ALI (15, 16). According to recent

studies, a considerable amount of tissue macrophages can be

sustained independently of blood monocytes (17). This is in

contrast to the previous assumption that macrophages originated

solely from bone marrow hematopoietic stem cells. Instead, it is

now understood that fetal liver monocytes, which are developed

from late erythroid-myeloid progenitor cells produced in yolk sacs,

also give rise to macrophages (18). There are four subtypes of

pulmonary macrophages. These are alveolar macrophages (AMs),

pulmonary interstitial macrophages (PIMs), pulmonary

intravascular macrophages (PICMs), and dendritic cells (DCs).

When activated, pulmonary macrophages can synthesize and

secrete a large number of different substances. These secreted

products are not only involved in protective reactions, but

also related to tissue destruction (19). AMs account for about

95% of the white blood cells in alveolar cells, which originate

during embryonic development and can self-renew throughout
FIGURE 1

Schematic of neutrophils and macrophages being recruited during SALI During septic lung injury, neutrophils and monocytes are recruited from the
blood into the lung, and monocyte-derived macrophages and resident macrophages work together to clear pathogens. However, the uncontrolled
storm of inflammatory factors caused by effector cells will lead to further aggravation of SALI.
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life (20). AMs is an important cell line in the catabolism of surface-

active substances produced by alveolar type II epithelial cell (ATIIs)

(21). As an important effector cell for lungs to resist foreign

stimulation, AMs play a key role in the pathogenesis of lung

inflammation (22). Interstitial macrophages (IMs) are situated in

the connective tissue surrounding the bronchial airway (23). There

are two sources of AMs. One is that monocytes in blood migrate

into alveoli and differentiate into AMs, called monocytes-derived

AMs. The second is derived from the division and proliferation of

resident AMs. When inflammation occurs, the cell source is mainly

the former. At present, it is believed that AMs are the main

initiating cell of local inflammatory response in the lung. These

recruited macrophages initially exhibit a different phenotype than

resident macrophages. After activation, Various tissue factors can

induce their conversion into macrophages with similar

characteristics to resident macrophages (24). AMs produces a

large number of inflammatory mediators, and can cause the

activation of other immunocompetent cells and the release of

inflammatory factors, leading to the uncontrolled local

inflammatory response in the lung, which is an important cause

of acute lung injury (25) (Figure 2).
Frontiers in Immunology 03
2.2 Phenotype and function
of macrophages

Macrophages can be categorized based on changes in the

microenvironments of different tissues. However, the main

phenotypes that are currently known are inflammatory or

classically activated (M1-like) macrophages and healing or

alternatively-activated (M2-like) macrophages (Figure 2). Upon

exposure to external stimuli, they exhibit high antigen-presenting

activity and pro-inflammatory phenotype, which helps eliminate

infection-causing bacteria, fungi, and viruses. The M1-like

macrophages are primarily involved in inflammation and

immune response, which display high levels of interleukin (IL)-

1b, IL-6, tumor necrosis-like factors (TNF)-a, and other

inflammatory mediators along with inflammation-related genes

such as inducible ni tr ic oxide synthase ( iNOS) and

cyclooxygenase (COX)-2 (26, 27).

M2-like macrophages comprise three subpopulations: M2a,

M2b, and M2c, which respond to different stimuli. M2a

macrophages are induced by IL-4 and IL-13, while M2b

macrophages are activated by IL-1b. M2c macrophages are
FIGURE 2

Phenotypic changes in macrophage polarization during SALI During inflammation, monocytes are recruited into the lung interstitium, bronchi and
alveoli to be macrophages (M0), various tissue factors can induce their conversion into different phenotypes(M1, M2a, M2b, M2c et al.). The key to
SALI therapy is the balance between M1 pro-inflammatory cells and M2 anti-inflammatory cells (Yin-Yang balance).
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stimulated by anti-inflammatory agents including glucocorticoids,

IL-10, and transforming growth factor (TGF)-b. However, all three

subpopulations express high levels of CD11 and anti-inflammatory

factors such as IL-10, CCL24, and CCL22, which help prevent

inflammation and pro-inflammatory immune responses (28). Also,

M2-like macrophages mainly show high production levels of IL-10,

TGF-b, and other anti-inflammatory factors, and also express high

levels of arginine (Arg)-1, CD206, and other anti-inflammatory

related genes (29). This effect inhibits tissue and cell inflammation

and promotes tissue repair and angiogenesis (30).

AMs can carry out various functions depending on their

ontology and receptor signaling in the microenvironment (31).

Controlling how macrophages change their behavior could be a

beneficial strategy for restoring the immune system balance in

patients with sepsis, which could provide a fresh approach to

treating various phases of the condition (32). Studies in recent

years have found that macrophages can express a series of pattern

recognition receptors including toll-like receptor (TLR),

inflammatory body, and lectin-like receptors that are strategically

located in the cell membrane, cytoplasm, and endometrium, and

thus mediate the polarization of macrophages (33). M2

macrophages can inhibit the inflammatory response and play a

role in tissue repair and reconstruction in the later stage of

inflammation by secreting CXC chemokines ligand (CXCL)-12,

IL-1a, tissue inhibitor of metalloproteinase (TIMP)-1, IL-4, and

CXCL1 (34). The polarization process involves a variety of

molecular mechanisms, mainly including TLR4/nuclear factor

kappa B (NF-kB), janus kinase (JAK)/signal transducer and

activator of transcription (STAT), TGF-b/Smads, peroxisome

proliferator-activated receptor g (PPARg), Notch, and miRNA

(miR) signal transduction pathways and inflammatory factors

(35). By regulating the synthesis and release of various

inflammatory mediators, macrophages seriously affect the

development of ALI after infection and non-infectious stimulation.
3 The regulation of macrophage
polarization in SALI

3.1 Regulation of macrophage polarization
during the overwhelming inflammation
phase of SALI

In the overwhelming inflammatory response phase of sepsis,

targeted inhibition of M1-like macrophages can significantly reduce

the release of inflammatory factors, thereby reducing tissue damage

and patient mortality. The acute lung injury model is mostly

induced by LPS or cecal ligation and puncture (CLP), and the

overwhelming inflammatory response phase is mostly observed

within 24 hours after treatment (Table 1).

In SALI, the polarization of M1 macrophages is related to the

activation of NF-kB and STAT1 signaling pathways (36). Tong et al.

by studying mice 24 hours after CLP surgery, recently discovered

that higher levels of MMP-9 in monocytes of early-stage sepsis

patients correlate with the severity of the disease. Matrix
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Metalloproteinase-9 (MMP-9) promotes the polarization of

macrophages to the M1-like phenotype by activating the NF-kB
pathway. Furthermore, the Human immunodeficiency virus (HIV)

protease inhibitor saquinavir can alleviate acute lung injury in septic

mice by reducing the expression of MMP-9, thereby targeting the

regulation of macrophage polarization (37). He et al. team

concluded from observing the changes in the LPS-induced sepsis

mice model 24 hours after LPS injection that Sentrin/SUMO-

specific protease 3 (SENP3) promotes M1 macrophage

polarization and the production of pro-inflammatory cytokines

via the hypoxia-inducible factor 1a (HIF-1a)/Pyruvate kinase

isozymes M2 (PKM2) axis, thereby contributing to lung injury;

hence, SENP3 could represent a potential therapeutic target for

LPS-induced ALI treatment (38). Zhou et al. found through

studying mice 24 hours after CLP surgery that the compound 3,4-

dihydroxyphenylethanol glycoside inhibits the polarization of M1-

like macrophages by preventing the activation of the Notch1

signaling pathway, thereby significantly reducing the severity of

acute lung injury in septic mice (39). Zhang et al. also studying mice

24 hours after CLP surgery, concluded that the extracellular

regulated protein kinases (ERK) and NF-kB pathways promote

M1 polarization, and loganin down-regulates the release of

macrophage-associated M1 pro-inflammatory cytokines by

inhibiting ERK and NF-kB pathways (40). In a separate study,

Zhang et al. reported that the monocyte chemotactic protein

(MCP)-induced Protein 1, a ribonuclease, can reduce sepsis-

induced acute lung injury and mortality by targeting and

regulating the polarization of M2-like macrophages via the c-Jun

N-terminal kinase (JNK)/cell-myc (c-Myc) signaling pathway. This

conclusion was drawn from observing mice 6 hours after CLP

surgery (41). a-ketoglutarate (a-KG) downregulates the expression
of m1 polarization marker genes and inhibits the activity of

mammalian target of rapamycin complex 1 (mTORC1)/p70

ribosomal protein S6 kinase (p70S6K) signaling pathway in M1-

like macrophages (42). Liu et al. illustrated that a-KG promotes il-4

induced M2 polarization of MH-S cells by increasing peroxisome

PPARg nuclear translocation and increasing the expression of fatty

acid metabolism related genes, and reduces LPS-induced

inflammation and lung pathological damage (42, 43).
3.2 Regulation of macrophage polarization
in the immune tolerance phase of SALI

A subset of sepsis patients experiences a period of

immunosuppression characterized by reduced output of

inflammatory cytokines, increased secondary infections, and an

increased risk of organ failure and death (44–47). During the

immunosuppressive stage of sepsis, in addition to the apoptosis of

a large number of immune cells, the polarization direction of

macrophages also changed. M2-like macrophages secrete large

amounts of anti-inflammatory mediators such as IL-10 and TGF-

b, leading to host immune paralysis and severe infection recurrence.

Therefore, targeted regulation that enhances M1-like macrophage

polarization or reduces M2-like macrophage polarization may
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provide new therapeutic modalities for the immunosuppressive

phase of sepsis (Table 1).

Zhou and others have found that extracellular cold inducible

RNA binding protein (eCIRP) promotes endotoxin tolerance in

macrophages. Using recombinant mouse CIRP (rmCIRP) to

pretreat macrophages can demonstrate tolerance to LPS

stimulation by reducing the production of TNF-a. The eCIRP

promotes endotoxin tolerance and M2 polarization by activating

p-STAT3 through IL-6R. Targeting eCIRP seems to be a potential

treatment for correcting the immune tolerance of sepsis (48).

Specific microRNAs can regulate macrophage tolerance and may

serve as biomarkers for immune paralysis and poor prognosis in

sepsis patients (49). Long-term exposure to endotoxins can induce an

innate immune memory, which weakens the subsequent response to

unrelated pathogens, this is known as Endotoxin Tolerance (ET) (50).
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Peripheral macrophages may be a key factor in carrying peripheral

antigens to the thymus medulla and affecting the negative selection of

T cell populations to promote the formation of ET. These results

suggest that clonal selection of ET in the thymus may provide

protection against microbial sepsis (51). LPS tolerance encapsulates

several key features of sepsis-associated immune suppression. Seeley

and others screened tolerance-associated microRNAs and identified

miR-221 and miR-222 as regulatory factors in the functional

reprogramming of macrophages during the LPS tolerance process.

Chronic stimulation of mice with LPS results in increased expression

of miR-221 and miR-222, both of which regulate the Brahma related

gene 1 (Brg1) (49).

Immune suppressive molecules regulate the functions of

immune cells, decide the suppressive state of immune cells, and

are key mediator molecules in the pathophysiology of sepsis (52).
TABLE 1 Pathways regulate macrophage polarization in different phases of SALI.

Phase of SALI Pathway Mode Time to build model Function Reference

Overwhelming inflammation

MMP-9/NF-kB CLP 24h promote M1-like phenotype (1)

SENP3/HIF-1a/PKM2 LPS intraperitoneally 24h promote M1-like phenotype (2)

Notch1 CLP 24h inhibit M1-like phenotype (3)

ERK and NF-kB CLP 24h inhibit M1-like phenotype (4)

GADD34/IKKb LPS intraperitoneally 16h inhibit M1-like phenotype (5)

MCP-induced Protein 1/JNK/c-
Myc

CLP 6h promote M2-like phenotype (6)

a-KG/PPARg LPS intraperitoneally 3h inhibit M1-like phenotype (7)

Immune suppression

eCIRP/IL-6R/STAT3 CLP 96h promote M2-like phenotype (8)

miR-221 and miR-222/Brg1 LPS intraperitoneally 72h promote M2-like phenotype (9)

Tim-3/IRF-7/IFN-a/b
LPS intraperitoneally
CLP

24h
inhibit M2-like phenotype
promote M1-like phenotype

(10)

EPO/PI3K/AKT
LPS intraperitoneally
twice

20h+6h promote M2-like phenotype (11)

p21/NF-kB
LPS intraperitoneally
twice

16h+2h promote M2-like phenotype (2)

AMPK/TGF-b1 CLP 48–72 h inhibit M2-like phenotype (12)

TLR4
LPS intraperitoneally
for 5 consecutive days

5d
inhibit M2-like phenotype
promote M1-like phenotype

(13)

Pulmonary fibrosis

EZH2/STAT/SOCS
PPARg

LPS intratracheally 3d/7d/14d
inhibit M2-like phenotype
promote M1-like phenotype

(14)

JNK
LPS intraperitoneally
for 5 consecutive days

5d promote M1-like phenotype (15)

IL-10 secreted by neutrophils LPS intratracheally 32h
promote M2c-like
phenotype

(16)
MMP-9, Matrix Metalloproteinase-9; NF-kB, nuclear factor kappa-B; CLP, cecal ligation and puncture; SENP3, SUMO1/sentrin/SMT3 specific peptidase 3; HIF-1a, Hypoxia-inducible factor 1a;
PKM2, Recombinant Pyruvate kinase isozymes M2; Notch1, Notch homolog 1; ERK, extracellular regulated protein kinases; GADD34, Growth arrest and DNA damage-inducible 34; IKKb, IKB
kinase; MCP-induced Protein 1, Monocyte Chemoattractant Protein-1; JNK, c-Jun N-terminal kinase; c-Myc, cell-myc; STAT, signal transducer and activator of transcription; a-KG, D-alpha-
Hydroxyglutaric acid disodium salt; PPARg, peroxisome proliferator-activated receptor g; STAT3, signal transducer and activator of transcription 3; eCIRP, extracellular cold inducible RNA
binding protein; IFN, Interferon; AMPK, adenosine 5’-monophosphate -activated protein kinase; TGF-b1, transforming growth factor-b1; TLR4, Toll-likereceptor4; EZH2, enhancer of Zeste
Homolog 2; SOCS, suppressor of cytokine signaling.
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Tim-3 is also constitutively expressed on macrophages and

dendritic cells and regulates the innate immune response (53, 54).

In the late stage of sepsis, the expression of Tim-3 decreases,

inhibiting M2 macrophage polarization and promoting M1

macrophage polarization, leading to a decrease in the release of

anti-inflammatory agents and avoiding immune paralysis (55).

Erythropoietin (EPO) is a glycoprotein regulated by HIF-1a and

has anti-inflammatory and tissue protective functions. EPO

improves host protective genes in endotoxin-tolerant

macrophages and mice, such as antimicrobial peptide-related

gene Cnlp, macrophage receptor with collagenous structure

(Marco), and tissue repair gene vascular endothelial growth factor

C (Vegfc), and this effect of EPO is regulated by PI3K-AKT (56).

The authors found that p21 regulates macrophage reprogramming

by altering the balance of the p65-p50 and p50-p50 NF-kB
pathways. In human monocytes with p21 knocked out, M2-like

macrophage polarization is weakened and the state of immune

suppression in the body is reduced (57) . Adenosine

monophosphate-activated protein kinase (AMPK) participates in

inhibiting the development of endotoxin tolerance, which is a

driving factor for immune suppression induced by sepsis. AMPK

activation inhibits LPS-induced TGF-b1 production and its

signaling pathway, thereby inhibiting the development of

endotoxin tolerance in macrophages (58). Liu et al. found that

AMPK activation inhibited the development of LPS-induced

endotoxin tolerance by repressing the accumulation of the

immunosuppressive transcription factor hypoxia-inducible factor

(HIF)-1a (59). AMPK activators have the potential to become

therapeutic drugs for SALI. Natural compound resveratrol

induces AMPK activation through the calcium/calmodulin

dependent protein kinase kinase (CaMKK) pathway and inhibits

the development of endotoxin tolerance by suppressing LPS-

induced expression of IL-1 receptor-associated kinase M (IRAK-

M) and the SH2-containing inositol-5-phosphatase 1 (SHIP1) (60).

Hydroxyapatite nanoparticles (HANPs) show moderate

immunogenicity and can cause an innate immune response,

which may involve the activation of Toll-like receptor 4 (TLR4)

(61). In a mouse model of endotoxin tolerance, HANPs eliminate

macrophage endotoxin tolerance by restoring the production of

pro-inflammatory cytokines in macrophages in response to

secondary LPS stimulation, and they enhance the body’s

responsiveness to LPS re-challenge. HANPs can induce the

activation of TLR4 signaling. In addition, HANPs dose-

dependently cooperate with LPS to program LPS-induced

macrophage TLR4 signal transduction, promote macrophage

polarization to M1 phenotype, and eliminate macrophage

immune tolerance to repeated LPS stimulation (62). This research

provides a window into the intrinsic mechanism of HANPs driving

the immune response.
3.3 Macrophage polarization in fibrotic
phase of post-SALI

Pulmonary fibrosis is a late manifestation of acute respiratory

distress syndrome (ARDS) (63). The morbidity and mortality of
Frontiers in Immunology 06
ARDS is especially high when it leads to persistent intra-alveolar

and interstitial fibrosis (64, 65).

The model of pulmonary fibrosis after SALI is mostly induced

by continuous administration of LPS through the trachea for 14

days. In idiopathic pulmonary fibrosis, the model is induced by

bleomycin, and M2 phenotype of lung macrophages promotes

tissue repair and is a pro-fibrotic phenotype (66). In the

pulmonary fibrosis caused by the late stage of SALI, there is no

clear conclusion on which phenotype of macrophages is the pro-

fibrotic phenotype. Most scholars believe that pulmonary fibrosis

after SALI is related to M1 macrophage polarization. Bao et al.

found through in vivo and in vitro experiments that inhibiting

EZH2 could inhibit the differentiation of M1 macrophages and

promote the differentiation of M2 macrophages by inhibiting the

STAT/suppressor of cytokine signaling (SOCS) pathway and

activating PPAR-g (67). Xu et al. demonstrated that the

suppression of TNF-a release and PFKFB3 expression barred the

occurrence of LPS-induced pulmonary fibrosis in vivo. To conclude,

this research uncovered that the TNF-a secretion from LPS-

triggered macrophages could incite fibroblast aerobic glycolysis

and lactate production. This suggests that the interaction between

inflammation and metabolism within lung macrophages and

fibroblasts could assume a critical role in the process of LPS-

induced pulmonary fibrosis (68). However, some scholars believe

that pulmonary fibrosis after SALI is related to polarization of M2

type macrophages. Ye et al. found in the bronchoalveolar lavage

fluid exosomes of mice with LPS-induced pulmonary fibrosis that

IL-10 secreted by neutrophils may cause macrophages to polarize

towards M2c, which may be an important mechanism of fibrosis

after ALI (69). The interaction between lung macrophages and

fibroblasts promotes the development of sepsis-induced pulmonary

fibrosis. These evidences provide a new perspective on the

mechanism of sepsis-induced pulmonary fibrosis, and may

become potential therapeutic targets in the future.
4 Potential therapies for macrophage
polarization in SALI

4.1 Protein-protein regulation of
macrophage polarization

In recent years, more and more studies have shown that related

compounds, both artificial and natural, have significant effects on

the regulation of the polarization state of macrophages in SALI (70).

In the following, we review the related compounds and action

pathways with high attention (Figure 3).

4.1.1 Synthetic small-molecule compounds
As a new therapeutic strategy, small-molecule compounds are

widely used in the treatment of SALI because of advantages such as

simple molecular structure, high bioavailability, and low toxicity

and side effects (71, 72). For instance, loganin effectively inhibits M1

macrophage polarization and NLRP3 inflammasome activation by

blocking the ERK and NF-kB pathways (40). Prostatic 6

transmembrane protein 2 (STAMP2) may reduce the
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inflammatory response of SALI by inhibiting the activation of NF-

kB signaling pathway and inhibiting M1 polarization of

macrophages (73). In addition, cordycepin is crucial in mitigating

lung injury in CLP mice by modulating the NF-kB signaling

pathway to decrease the M1/M2 polarization of macrophages

during sepsis. This underscores the significance of the NF-kB
signaling pathway in ameliorating pro-inflammatory responses of

macrophages (74). Cheng et al. showed that the synthetic analog of

arachidonic acid, w-alkynyl arachidonic acid, has the potential to

induce M2 polarization of macrophages in acute myocardial

infarction. This effect is achieved by regulating the interplay

between PKM2, HIF-1a, and iNOS (75).

4.1.2 Natural some-molecular compounds
Several natural compounds have been shown to promote the

survival rate of mice and reduce damage to the alveolar structure

and inflammation caused by SALI. These compounds work by

improving the M1 phenotype of lung macrophages and promoting

the M2 phenotype of lung macrophages. One example is quercetin,

which enhances the polarization of M2 macrophages and boosts the

expression of endogenous antioxidants in macrophages and

microglia. It also lowers the levels of oxidative stress products

such as NO, iNOS, and COX-2. Furthermore, it decreases the

expression levels of M1 markers such as interleukin-6, tumor

necrosis factor (TNF)-a, and IL-1b (76). Norisoboldine (an active
Frontiers in Immunology 07
ingredient in the root bark and bark of Lindera aggregate Kosterm)

can attenuate SALI via promoting M2 polarization of macrophages

through the PKM2/HIF-1a signaling pathway (77). The natural

compound tetramethylpyrazine (TMP), an active ingredient

extracted from ligusticum chuanxiong, alleviates ALI by blocking

various signaling pathways including TLR4/TRAF6/NF-kB/
NLRP3/caspase-1 and TLR4/caspase-8/caspase-3. This results in a

reversal of macrophage polarization, a decreased in cell pyroptosis,

and prevention of apoptosis (78).

4.1.3 Other promising related compounds
Macrophage polarization is closely related to inflammatory

response (79). Therefore, anti-inflammatory drugs may atteunate

SALI by regulating macrophage polarization. Compared with M2-

polarized AMs, M1-polarized AMs increased pulmonary

inflammation (80). For instance, Tong et al. showed that

saquinavir (SQV), a first-generation protease inhibitor used to

treat HIV, has anti-inflammatory properties. Specifically, SQV

was found to induce the M2 phenotype of lung macrophages in

mice that had undergone cecal ligation and puncture (CLP) surgery.

This effect was attributed in part to the inhibition of matrix

metalloproteinase-9 (MMP-9), which helped to maintain a

balance between M2 and M1 macrophage phenotypes (37).

Gainesville–Tokushima Scientists (GTS)-21 has a protective effect

against LPS-induced lung injury by reducing the expression level of
FIGURE 3

Drug and Epigenetic regulation of macrophage polarization. HIF-1a, hypoxia-inducible factor 1a; PKM2, recombinant pyruvate kinase isozymes M2;
STAT, signal transducer and activator of transcription; AMPK, adenosine 5’-monophosphate -activated protein kinase; TRAF6, tumor necrosis factor
receptor-associated factor 6; PTEN, phosphatase and tensin homolog deleted on chromosome ten; PI3K, phosphatidylinositol 3 kinase; AKT, protein
kinase B, PKB. USP19, ubiquitin-specific protease; NLRP3, NOD-like receptor thermal protein domain associated protein 3. CBP, CREB-binding
protein; METTL3, M6A-catalytic enzyme methyltransferase like 3; ITCH, E3 ubiquitin ligase.
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HMGB1 in AMs, reducing the number of AMs, and reducing the

level of AM-related inflammatory factors (81). Glucosamine (GlcN)

inhibits LPS-induced O-GlcNAc expression in mouse lung and

zebrafish visceral tissues to up-regulate proinflammatory cytokines

through inhibition of NF-kB (82). Liu et al. demonstrated that

ubiquitin-specific protease (USP19) switches the proinflammatory

function of NOD-like receptor thermal protein domain associated

protein 3 (NLRP3) into an anti-inflammatory function by

promoting M2-like macrophage polarization through direct

association with interferon regulatory factor 4 (83). Similarly, it

has been reported that losartan can increase the M1 subtype of lung

macrophages via the same signaling pathways. This helps to keep

the balance of mitochondria in cardiomyocytes, lower oxidative

stress, and reduce apoptosis of myocardial cells (84). Growth

differentiation factor-15 (GDF15) with resistance to apoptosis,

anti-inflammatory and endothelial protective effect. GDF15

regulates the polarization of macrophages to M2 by activating the

PI3K/Akt signaling pathway, reduces the level of M1 in

macrophages, and has a protective effect on the survival rate of

sepsis mice model. The increase of serum GDF15 level is closely

related to the severity and mortality of sepsis patients, and GDF15

can be used as a prognostic indicator of sepsis (85).
4.2 Epigenetic regulation of
macrophage polarization

As shown in Figure 3, the regulation of non-coding RNA can

affect the polarization state and function of macrophages by

changing its gene expression (70). Jiao et al. reported that PMNs

exosome miRNA (miR)-30d-5p induced polarization of M1

macrophages and pyroptosis of macrophages by activating the

NF-kB signaling pathway, thus participating in the occurrence of

SALI. These findings suggest a new mechanism of PMN-Mj
interaction in SALI and provide new therapeutic strategies for

sepsis patients (86). Jiang et al. found that miR-23a-3p promoted

the activation of STAT1/STAT3 by down-regulating Polo-like

kinase 1 (PLK1) and increased the M1 polarization of

macrophages. Inhibition of miR-23a-3p resulted in decreased

macrophage response and promoted inflammation in ALI (87).

miR-718 can directly down-regulate phosphatase and tensin

homolog (PTEN) to activate PI3K/Akt phosphorylation, reduce

M1 type transformation, resulting in reduced production of

proinflammatory cytokines (88). miR212-3p was shown to

directly target HMGB1 and further inhibits MAPK pathway,

thereby inhibiting the LPS-induced inflammatory response of

RAW264.7 cells (89). N6 - methyl adenosine (m6A) methylation

is the most abundant mammalian mRNA epigenetic modifications.

M6A-catalytic enzyme methyltransferase like 3 (METTL3) drives

M1 macrophage polarization by directly methylating STAT1

mRNA and may serve as an anti-inflammatory therapeutic target

(90). Ubiquitination is a post-translational modification that

regulates these inflammatory signaling pathways. E3 ubiquitin

ligase (ITCH) is a negative regulator of inflammation. Its

reduction leads to ubiquitination of IL-1a which in turn leads to

increased pro-inflammatory polarization of macrophages (91).
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macrophages can promote the production and action of M2-type

macrophages, thereby promoting alveolar repair and regeneration.

During sepsis, the miR-223 level positively correlates with the

proportion of M2 macrophages, and the clinical score of sepsis

and mortality of miR-223 knockout mice increased in one study

(92). In another study, the overexpression of miR-223 reduced the

expression of iNOS in LPS-stimulated macrophages, decreased the

expression of IL-6, and increased the expression of IL-10.

Additionally, miR-223 interferes with the glycolysis pathway and

promotes the expression of M2-type macrophages by down-

regulating HIF-1a (93). Knockdown of lncRNA nuclear

enrichment transcript 1 (NEAT1) promotes M2-type polarization

of macrophages through the miR-125a-5p/TRAF6/TAK1 axis,

thereby improving the LPS-induced inflammatory response (94).

One study showed that extracellular vesicles (EVs) derived from

endothelial progenitor cells (EPCs) promote the polarization of M2-

type macrophages by lncRNA taurine up-regulated gene 1 (TUG1)

through the destruction of miR-9-5p–dependent Sirtuin 1 (SIRT1)

inhibition (95). STAT6 is known to drive macrophage M2

polarization. Yu et al. found that lysine (Lys) 383 of STAT6 is

acetylated by the acetyltransferase CREB-binding protein (CBP) to

suppress macrophage M2 polarization to contribute to the

induction of an immunosuppressive tumor niche (83).
4.3 Metabolic reprogramming
of macrophage polarization

Metabolic reprogramming encapsulates the alterations in a

cell’s energy requirements. This is carried out to equip the cells

with enhanced resilience against external environmental stressors

and impart new functions to them. Such reprogramming

incorporates changes in metabolism-associated products,

enzymes, and metabolic pathways (96). The metabolic profile of

M1 macrophages is defined by aerobic glycolysis, fatty acid

synthesis, and a truncated variant of the tricarboxylic acid (TCA)

cycle. Conversely, M2 macrophages exhibit characterization

through fatty acid oxidation (FAO) and an oxidized version of

the TCA cycle (97).

Research shows that the activation of macrophages by

interferon (IFN)-g and LPS results in the truncation of the TCA

cycle at the levels of isocitrate dehydrogenase (IDH) and succinate

dehydrogenase (SDH), leading to the accumulation of succinate and

citrate metabolites. The accumulation of succinate in M1-like

macrophages can stabilize HIF-1a by inhibiting the activity of

proline hydroxylase (PHD), thereby promoting glycolytic

metabolism and driving the inflammatory response (98, 99). LPS-

induced succinate stabilizes hypoxia-inducible factor-1a, an effect

inhibited by 2-deoxy-D-glucose, with IL-1b being an important

target (98).

Accumulated citrate serves as the precursor of the macrophage-

specific metabolite itaconate, which characterizes IFN-g/LPS-
polarized macrophages (100). Studies on mouse and human

macrophages indicate that itaconate is the first example of a

metabolite linked to the antibacterial function of pro-
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inflammatory macrophages (101). When itaconate generation is

impaired, LPS-induced immune responsive gene 1 (IRG1) −/−

mouse bone marrow-derived macrophages do not display

succinate accumulation, further proving that itaconate is a specific

driver for the accumulation of succinate in lipopolysaccharide-

stimulated macrophages (102, 103). Studies also propose that

itaconate produces therapeutic effects on SALI by inhibiting

ferroptosis (104).

In macrophages, the main source of ROS is NADPH oxidase,

which produces two superoxide radicals for each molecule of

NADPH consumed (105). Scholars have pointed out that ROS is

closely related to the pro-inflammatory phenotype M1 conversion

of macrophages (106). During sepsis, FAM96A may mediate an

immunometabolic shift in macrophages from oxidative

phosphorylation (OXPHOS) to glycolysis, associated with reactive

oxygen species (ROS) and glucose uptake (107). The inflammatory

phenotype of these macrophages can be inhibited by blocking ROS

production through uncoupling mitochondrial respiration with

triptolide or by expressing alternative oxidase (AOX), which

protects mice from LPS-induced lethality (98). However, studies

have also indicated that the Th2-like cytokine IL-25 can induce ROS

production, increase mitochondrial respiratory chain complex

activity, subsequently activate AMPK, and induce M2

macrophage polarization in monocytes (108).

Arg can affect the polarization state of macrophages through

two different metabolic pathways: the NO synthesis pathway and

the Arg-1 pathway. Glutamine can widely enter the TCA cycle and

the hexosamine pathway, promoting the polarization of M2-like

macrophages under IL-4 stimulation (109, 110). In summary, the

metabolic reprogramming of macrophages is a complex process.

Elucidating the metabolic reprogramming of macrophages in an

inflammatory environment would help to identify targets for the

regulation of macrophage polarization in inflammatory diseases.
4.4 Regulation of macrophage polarization
by mesenchymal stem cells

Mesenchymal stem cells (MSCs) have the ability to secrete

substances, regulate the immune system, and promote tissue repair

(111). These cells hold potential for treating both acute and chronic

inflammatory lung diseases (112, 113). MSCs function by

interacting with specialized immune cells called resident alveolar

and interstitial macrophages (114). MSCs not only enhance the

growth of undifferentiated M2 and pre-M2 by releasing

macrophage colony-stimulating factor but also encourage M2

polarization of pre-M2 through direct contact with them (115).

The microenvironment within the lungs encourages MSCs to

release certain substances that lead to the transformation of

macrophages into an M2-like phenotype that suppresses the

immune system. This change supports the preservation of a

steady and well-functioning tissue environment (116). A potential

therapeutic strategy for sepsis was presented by Liu et al., where

they showed that MSCs can produce TGF-b, which has the

potential to shift the polarization of LPS-stimulated macrophages

towards an M2-like phenotype. This shift leads to a decrease in
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inflammatory response and an improvement in phagocytosis, which

is achieved through the AKT/foxo1 pathway (117). For example,

Bai et al. found that extracellular vesicles from adipose tissue-

derived stem cells can selectively inhibit M1-like macrophage

polarization through the Notch-miR148a-3p signal axis, thus

alleviating sepsis-induced inflammation and protecting organ

function (118). Bone marrow mesenchymal stem cells (BMSCs)

can alleviate sepsis-induced lung injury by secreting exosomes, and

have powerful immunomodulatory and immunosuppressive

properties. Deng et al. found that exosomes released by BMSCs

administered through the trachea could inhibit M1-like polarization

and promote M2-like polarization of MH-S cells (a mouse alveolar

macrophage cell line), thus treating SALI (119).
5 Conclusion

This article reviews the phenotype of macrophage polarization

and its regulation, and the role of macrophage polarization in SALI.

Further understanding of the function and characteristics of

macrophage polarization and its role in the host immune response

in SALI may contribute to the development of new therapies targeting

the different stages of SALI, as well as the regulation of immune

homeostasis in the microenvironment under sepsis conditions.

During sepsis, the lung is highly susceptible to damage caused

by inflammation, which is also one of the most easily affected organs

by inflammatory factors. SALI is a condition where the lungs

become inflamed and damaged because of various factors. Despite

considerable advancements in early detection and organ-function

assistance for patients with sepsis, the occurrence and fatality rates

of sepsis remain elevated, presumably because of the challenging

nature of reversing organ damage (16, 120–122). Therefore, early

recognition and intervention of SALI are key factors in improving

the prognosis of sepsis patients (123, 124). We can see that the role

of small molecule compounds, including synthetic small molecule

compounds and natural small molecule compounds in the

prevention and blocking of sepsis has received increasing attention.

Tremendous evidence has shown that the study of macrophage

polarization has a broad prospect, and its intervention strategy is

also expected to be a new approach for the treatment of SALI. When

exposed to changes in the microenvironment of different tissues,

macrophages will express M1-like or M2-like phenotypes with

different functions. The former can secrete large amounts of pro-

inflammatory mediators, and while they provide defense against

pathogens, they may also damage tissue or immune cells. In

contrast, M2-like macrophages secrete a large amount of anti-

inflammatory mediators, which can reduce the host inflammatory

response and induce immune paralysis. Therefore, macrophage

polarization regulation is particularly important for maintaining

host immune homeostasis. However, due to the complexity of the

macrophage polarization regulatory network, it is important to

identify the signaling pathway and key transcription factors for the

targeted regulation of this process. In addition, targeted regulation

of macrophage polarization at the epigenetic level opens up a series

of new therapeutic avenues for sepsis and related diseases. In

clinical practice, appropriate intervention measures can be
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selected according to the specific conditions of patients to achieve

optimum therapeutic effect. It needs to be pointed out in particular

that, although the M1/M2 paradigm has provided a useful

framework for understanding macrophage biology, macrophage

activation exists on a diverse spectrum and cannot be easily

defined by such phenotypic dichotomy, particularly in vivo where

numerous stimuli may be present together.

At present, various approaches have been demonstrated to

interfere with the occurrence and development of SALI by

influencing the polarization state of macrophages. However, the

precise regulatory mechanisms of macrophage polarization remain

incompletely understood. Future research directions include: 1)

searching for more small-molecule compounds that can regulate

the polarization or apoptosis of macrophages; 2) exploration of

biomarkers related to macrophage polarization that can identify

progression to sepsis in the early stages of infection; 3) clinical

trials to verify the therapeutic effect of new agents in SALI and 4)

individualized precision treatment targeted towards different stages of

pathogenesis and sepsis of SALI patients and combined with patients’

age, genetics, and underlying diseases should be carried out.

Consequently, targeted regulation of macrophage polarization

through protein-protein intervention, epigenetic modification, and

metabolic reprogramming is expected to develop new approaches for

the treatment of different stages of SALI.
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