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TNFR2 agonists have been investigated as potential therapies for inflammatory

diseases due to their ability to activate and expand immunosuppressive CD4

+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite

TNFR2 being predominantly expressed in Treg cells at high levels, activated

effector T cells also exhibit a certain degree of TNFR2 expression. Consequently,

the role of TNFR2 signaling in coordinating immune or inflammatory responses

under different pathological conditions is complex. In this review article, we

analyze possible factors that may determine the therapeutic outcomes of TNFR2

agonism, including the levels of TNFR2 expression on different cell types, the

biological properties of TNFR2 agonists, and disease status. Based on recent

progress in the understanding of TNFR2 biology and the study of TNFR2

agonistic agents, we discuss the future direction of developing TNFR2 agonists

as a therapeutic agents.
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Introduction

Tumor necrosis factor (TNF) is one of the most potent pro-inflammatory cytokines

that cause cell death and promote inflammatory responses, and high levels of TNF are

attributable to the pathogenesis of autoimmune disease (1, 2). Anti-TNF therapeutics have

been used as a first-line biological treatment of a variety of inflammatory diseases,

including rheumatoid arthritis (RA), psoriasis, and inflammatory bowel disease (IBD)

(3–5). However, paradoxically autoimmune inflammation frequently occurred in a subset

of patients who received anti-TNF treatment. For example, anti-TNF therapy can increase

the incidence of multiple sclerosis (6). These observations brought intense interest in

elucidating the cause and mechanism. TNF receptor type I (TNFR1) and TNFR2 are two

different receptors that mediated the biological function of TNF (7). A recent report
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showed that polymorphisms in TNFR2 frequently occurred in

patients with IBD or RA (8, 9), which suggests that TNFR2

signaling plays an essential role in preventing these diseases.

TNFR2 is preferentially expressed by immunosuppressive cells,

including Tregs, MDSCs, and some endothelial progenitor cells

(EPCs) (10). Now, there is compelling evidence showing that TNF-

TNFR2 signaling plays an important role in curbing pro-

inflammatory responses and promoting tissue regeneration. It was

reported that TNFR2 deficiency aggravated autoimmune

inflammatory responses in collagen-induced arthritis (CIA) (11),

experimental autoimmune encephalomyelitis (EAE) (12), graft-

versus-host diseases (GVHD) (13), and psoriasis (14). Moreover,

several studies have shown that TNFR2 agonists protect mice from

autoimmune inflammatory diseases and degenerative diseases (15–

17). Thus, TNFR2 agonists have been proposed as a novel strategy
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for the treatment of autoimmune diseases, by mainly activating and

expanding TNFR2-expressing Tregs, and MDSCs (18–20).

However, some studies indicate that TNFR2 plays an important

role in the activation of conventional T cells (Tcon cells) and CD8 T

cells (21, 22). Furthermore, antibodies that can trigger the TNFR2

signal in vitro were shown to promote antitumor immune responses

by activating CD8 T cells, Tcon cells, or NK cells (23). And

consequently, TNFR2 agonists have been developed for the

treatment of human cancers (19). Thus, the role of TNFR2 signal

in orchestrating the inflammatory responses in autoimmune

diseases or immune responses in cancers is complicated, and the

mechanism may be involved in the activation of Tregs, MDSCs,

CD8+ T cells and ADCC, or inversely, depletion of Tregs in tumor

environment (summarized in Table 1). The contradictory pro-

inflammatory and anti-inflammatory properties of TNFR2
TABLE 1 The application of TNFR2 agonist in autoimmunity and cancer.

Category Class Agent In vitro activity In vivo activities

Autoimmunity

TNFR2 agonistic
antibody

“TNFR2 agonist” a) Promote the expansion, immunosuppressive
function, and phenotypic stability of human Tregs
(24).

N/A

“TNFR2 agonistic
antibody”

a) Promote Treg expansion and
immunosuppressive function (25)
b) Promote fatty acid oxidation in Tregs (25)

N/A

MR2-1(Isotype:
mouse IgG1)

a) Promote the expansion and
immunosuppressive function of Tregs (26–28).
b) Promote CXCL13 expression on T follicular
regulatory cells (26).
c) Promote EZH2 expression in Tregs (29).
d) Promote glycolysis in Tregs (23, 27).
e) Promote cell death of autoreactive CD8 T cell
death (30)

N/A

TY010 a) Promote M2 polarization (12).
b) Promote IFN-g expression in NK cells (31).

N/A

Transmembrane
mimetics

STAR2 a) Promote the expansion, immunosuppressive
function of Treg (15, 17, 32–34).
b) Protects oligodendrocyte progenitor cells and
nerouns from oxidative stress-induced cell death
(35, 36).

Protects mice from collagen-induced arthritis
(15), GvHD (33), , BCG-induced chronic
inflammation (34)

New STAR2
(STAR2 conjugated

with IgG)

a) Promote Treg expansion and
immunosuppressive function (17, 32, 37)
b) Enhances Microglial Phagocytosis (17, 32)

Protects mice from Alzheimer’s disease (17) and
GvHD (37)

EHD2-scTNFR2 a) Promote the expansion, immunosuppressive
function of Treg (38–40).
b) Activating PI3K-PKB/Akt and NF-kB signaling
(40–42)

Protects mice from neuropathic pain (39),
collagen-induced arthritis (21), traumatic
contusive injury (43), Experimental autoimmune
encephalomyelitis (41), and Alzheimer’s disease
(42).

P53-sc-mTNFR2
and GCN4-sc-

mTNFR2

a) Promote the expansion of Treg (44). N/A

TNF mutants TNF07 a) Promote the expansion and
immunosuppressive function of Treg (45, 46).

Protects mice from DNFB-sensitized contact
hypersensitivity (46).

Endogenous proteins Membrane
lymphotoxin-a2b

a) transmembrane LTa2b robustly activates
human TNFR2 signaling (47).

N/A

(Continued)
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signaling should be further clarified in future investigations. This

contradictory pro-inflammatory and anti-inflammatory property of

TNFR2 signaling should be further clarified in future investigation

This review will focus on the discussion of the current

understanding of the effects of TNFR2 agonists on inflammatory

responses and anti-tumor immune responses. The development of

TNFR2 agonists is introduced and the effect of these agents on the

activation of different subsets of immune cells, and factors that may

determine the therapeutic outcome of TNFR2 agonists in the

treatment of cancer or autoimmune diseases, are reviewed

and analyzed.
Overview of TNFR2 agonists

TNF mutants

Selective mutation of residues in TNF protein significantly

altered its affinity to TNF receptors. The TNF mutant (D143N-

A145R) is a TNFR2-selective agonist developed for decades. TNF

mutant (D143N-A145R) only binds to TNFR2 but not TNFR1 (60).

However, such a TNF mutant presents a 5~30 fold lower affinity to

TNFR2 in comparison with wild-type (WT) TNF (61, 62) In recent

years, several new TNF mutants that selectively bind and activate

TNFR2 were developed by the phage display technique (63). The

SPR analysis showed that these TNF mutants bind to TNFR2 with

lower affinity but had a higher association/dissociation rate in

contrast with WT TNF (63), indicating TNF mutants can form a

stable complex with TNFR2Moreover, an in-vivo study showed that

the TNF mutants fused with IgG could trigger the activation of

TNFR2 signaling and induce Treg proliferation in a TNFR2-
Frontiers in Immunology 03
dependent manner (46). These results suggested that TNFR2-

selective TNF mutants exhibit different binding modes for unique

biological functions.
Transmembrane TNF mimetics

Compared with TNFR1, TNFR2 can only be fully activated by

transmembrane TNF (64). The monomer transmembrane TNF

always forms homotrimers on the cell membrane as a

consequence of self-assembly before binding with TNFR2 (65,

66). Thus, one of the strategies to enhance the affinity of TNFR2-

selective TNF mutants is to construct oligomerized TNFR2-

selective TNF mutants (Figure 1). STAR2, a TNFR2 agonist

composed of murine TNF mutants (D221N and A223R) and

trimerization domain from chicken tenascin C, displays

significantly higher affinity to TNFR2 than single chain TNF

mutein and can induce TNFR2 activation more effectively (33).

Moreover, STAR2 treatment significantly promoted Treg expansion

in the mouse GVHD model (33). Based on this idea, Fisher et al.

generated several oligomerized TNFR2-selective TNF mutants by

using different oligomerization domains. The results showed that

dodecavalent ligands by engineering oligomerization domain from

GCN4 and TNFR2-selective TNF mutants (GCN4-sc-mTNFR2)

displayed superior bioactivity and affinity than other oligomerized

TNFR2-selective TNF mutants in vitro (44). Furthermore, GCN4-

sc-mTNFR2 could be less immunogenic because the structure of

GCN4-sc-mTNFR2 more resembles human protein structure (44).

Although oligomerized TNFR2-selective TNF mutants represent a

more effective strategy to evoke TNFR2 activation, the risk of

immunogenicity cannot be neglected as the sequence of
TABLE 1 Continued

Category Class Agent In vitro activity In vivo activities

Progranulin
(PGRN) or its
derivatives.

Promotes TNF-induced Treg proliferation (48).
Promotes M2 polarizaiton (49).
Promotes the IL-10 expression (50, 51).

Protects mice from osteoarthritis (52, 53).

Cancer

TNFR2 antibody
trigger TNFR2
activation in vitro

TNFR2 agonist (Y9) Promote the activation of CD8 T cells and NK
cells (54).

Inhibit the tumor growth (Require FcgR activity)
(54).

MM401 Provides T cell co-stimulation (55). Inhibit tumor growth and deplete Treg with
ADCC (56)
(Require FcgR activity) (55, 56)

BI1910 Promote CD8 T cell function and infiltration
(57).
Regulating the myeloid contents in tumor (57).

Inhibit tumor growth with or without IgG
conjugation (57)

HFB200301 Activates T cells, NK cells and Tregs in vitro (58). Inhibit tumor growth without affecting Treg
numbers (independent of FcgR activity) (58)

IAT0981-231 stimulated CD8+ T cell activation, proliferation
and cytokine secretion (59)

Inhibit tumor growth (59)
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oligomerized TNFR2-selective TNF mutants cannot be found in

nature. Thus, the immunogenicity of oligomerized TNFR2-selective

TNF mutants should be carefully evaluated.
Progranulin (Endogenous proteins)

Progranulin (PGRN) is a secreted factor that regulates

biological processes including inflammation, wound healing, and

tissue repair (67). The initial results showed that progranulin

directly interacts with and antagonizes both TNFR1 and TNFR2

(68), but subsequently, studies indicated that progranulin triggers

the activation, instead of blocking TNF-TNFR2 signaling (69).

Moreover, progranulin exhibits a relatively high affinity to TNFR2

(68). It has been shown that progranulin or its derivatives, Asttrin,

alleviated the inflammatory responses in a TNFR2-dependent

manner (50, 52, 70). However, there is contradictory evidence

that progranulin may not interact with TNFRs, as progranulin

failed to block the TNFR1-induced cell death (71). Furthermore,

different concentrations of progranulin (2~200 ng/ml) plus IL-2 did

not promote Treg proliferation, indicating that progranulin may

not directly agonize TNFR2 (48). Thus, further investigation is

needed to clarify if progranulin indeed promotes the activation of

TNF-TNFR2 signaling.
TNFR2 agonistic antibodies

Recently, several TNFR2 antibodies with the capacity to activate

TNFR2 in vitro have been developed for the treatment of autoimmune

diseases (25) or cancers (57, 59, 72, 73). These TNFR2-stimulating

antibodies were reportedly to possess either immunostimulatory or

immunosuppressive in vivo, as its complicated nature, presumably

based on different mechanism. For example, Y9, a close of agonistic
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anti-TNFR2 antibody, was found to be a competitive activator of

TNFR2 and bind to CRD2 and CRD3 in TNFR2 (54). Other TNFR2-

stimulating antibodies appeared to bind to CRD1 and CRD2 and did

not compete with TNF for binding with TNFR2 (25, 57, 58). Whether

the antibodies compete to bind to TNFR2 could also be important for

their in vivo effect, as competitive activators sparing more TNF in local

tissue, which may enhance the TNF-TNFR1 signaling. In contrast, the

non-competitive TNFR2-stimulating antibodies did not affect TNF-

TNFR2 interaction but may synergize with TNF in activating TNFR2

(74). Therefore, it is important to determine whether the non-

competitive activator could elicit different responses with

competitive activators.

Fragment crystallizable region (Fc) is another factor that

profoundly affects the function of TNFR2-stimulating antibodies.

For example, TNFR2 agonists may require FcgR activity for more

potent agonistic function, as it confers TNFR2 agonist the

transmembrane TNF-like activity (75). This was evidenced by the

observation that TNFR2 agonistic antibody (BI-1910) with poor

FcgR-binding activity (N297A, IgG1 mutated) exhibited a

decreased antitumor effect as compared to IgG1 or IgG2a

conjugated BI-1910 (57). Therefore, the engagement of FcgR
could be an important factor that determine the therapeutic effect

of some TNFR2 agonistic antibodies (76). Moreover, Fc

conjugation can induce the antibody-dependent cellular

cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis

(ADCP). For example, the antitumor effect of Y9 was reportedly

dependent on the ADCC and ADCP, as its antitumor effect was

diminished in Fcgr2b−/− and Fcer1g−/− mice (54). In this case, Y9

may deplete TNFR2-expressing cells rather than a TNFR2 agonist.

Nevertheless, a recent study shows that a TNFR2 agonistic antibody

had a more potent function in the presence of antibody that can

block crosslinking activities (25), suggesting that neither ADCC nor

Fc-mediated crosslink activities were required for the activity of this

TNFR2 agonistic antibody.
A

B

FIGURE 1

A schematic of TNF mutants and transmembrane TNF mimetics.
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TNFR2 agonist-induced activation of
immune suppressive cells

CD4+Foxp3+ regulatory T cells

There is compelling evidence that TNFR2 plays a pivotal role in

Treg activation, function, proliferation, and phenotypic stability

(77, 78). Several TNFR2 agonists have been reported to alleviate

inflammatory responses by promoting Treg function and expansion

(15, 33, 34, 39, 40). TNFR2 agonism also represents an efficient

approach to expand the Tregs from low-purity human Tregs for

adoptive Treg transfer therapy. Several studies showed that TNFR2

agonistic antibody plus the standard Treg expansion protocol (in

the presence of CD3/CD28, IL-2 with or without rapamycin)

resulted in the expansion of homogenous stable Tregs with potent

immunosuppressive function (24, 25, 33). Moreover, TNFR2

agonistic antibody treated-Treg has lower expression of CD127,

IL-17A, and IFN-g, indicating TNFR2 agonistic antibody help

maintain the phenotypic stability of expanded Tregs (79). It is of

great interest to examine whether TNFR2-agonist-expanded Tregs

are more effective for adoptive Treg transfer therapy.
Myeloid-derived suppressor cells

MDSCs, a subset derives from pathologically activated

neutrophils or monocytes, have potent immunosuppressive

activity. MDSCs are considered a potential target for the

treatment of cancer and autoimmune diseases (80). It was

reported that TNF-TNFR2 signaling is important for the

recruitment, immunosuppressive function, and survival of

MDSCs (81–83). Thus, MDSCs is also a potential target of

TNFR2 agonist. However, recent studies showed that the effect of

TNFR2 agonists is mainly mediated by CD4 T cells, albeit with a

minor effect on MDSCs. Lamontain and colleagues reported that

TNFR2 agonist (TNCscTNF80) treatment promoted the expansion

of MDSCs in bone marrow, but not in spleen and lymph nodes in

the mouse CIA model, indicating the anti-inflammatory effect of

TNCscTNF is not dependent on MDSCs (15). This result was

further supported by the data from CD4creTNFR2fl/fl and

LysMcreTNFR2fl /fl mice. TNFR2 agonist (TNCscTNF80)

suppresses T cell proliferation in LysMcreTNFR2fl/fl mice but not

in TNFR2-/- mice and CD4creTNFR2fl/fl (34), indicating the anti-

inflammatory effect of TNFR2 agonist were mainly dependent on

the TNFR2 expression by CD4 T cells. Further evidence is needed to

support the claim that TNFR2 agonists can boost MDSC’s activity

to suppress inflammatory responses.
Monocytes/macrophages

Monocytes and macrophages express both TNFR1 and TNFR2.

These two receptors play complicated roles in the regulation of the

viability, function, and recruitment of monocytes/macrophages
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(84). Moreover, tissue-resident macrophages may also have

different responses to TNFR2 activation, as compared with

circulating monocytes/macrophages (85). Thus, the effect of

TNFR2 agonism on macrophages could be tissue specific. It has

been shown that administration of TNFR2 agonist (EHD2-sc-

mTNFR2) increased the expression of M2 markers in

macrophages and macroglia, and reduced the expression of M1

markers, but without activation of macrophage in mouse central

nervous system (16, 39). However, these effects of TNFR2 agonists

could be the indirect result of the activated Tregs which may

suppress macrophage activity (86). A recent study showed that

TNFR2 agonist (TY010) promoted M2 polarization of bone

marrow-derived macrophage in TNFR2 dependent manner,

indicating TNFR2 agonist may directly activate TNFR2 on

macrophage and induced an immunosuppressive phenotype (49).

Moreover, TNFR2 agonist (NewStar2, TNCscTNF80 fused with

mutated human IgG) has been shown to enhance the phagocytosis

of microglia and promote the clearance of Ab plaques,

which contributes to the alleviation of Alzheimer’s diseases in

mouse (17). These results indicate that macrophages/monocytes

are the targets of TNFR2 agonists in the treatment of

inflammatory diseases.
TNFR2 agonist-induced activation of
effector immune cells

Conventional T cells

TNFR2 has been shown to promote the activation, function,

differentiation, and proliferation of Tcon cells (22, 87, 88). TNFR2+

Tcon cells are more resistant to Treg-mediated immunosuppression

(87). However, TNFR2 was expressed much lower by Tcon cells

than by Tregs in the resting state (87). Thus, TNFR2 agonists may

not effectively activate TNFR2 signaling in unstimulated Tcon cells

(89). Previous studies showed that the treatment with TNFR2

agonists (TNF mutants or transmembrane mimetics) inhibited

Tcon cell proliferation by promoting Treg expansion (32).

However, TNFR2 expression can also be upregulated by TCR

stimulation (90) or pro-inflammatory cytokines (91), suggesting

the activated Tcon cells could respond to TNFR2 agonists. A recent

study showed that stimulation of anti-CD3 and a TNFR2 agonistic

antibody (MR2-1) induces a similar alteration of transcriptome

profile, albeit the alteration of the Treg cell transcriptomic profile is

more obvious (23). This effect of TNFR2 agonism has shown to be

pathological-relevant, as TNFR2 is expressed by tumor-infiltrating

Tcon cells (89, 91–93) and proinflammatory subsets of CD4 Tcon

cells (94, 95), suggesting that TNFR2 agonists could induce the

activation of TNFR2 signal in Tcon cells in tumor and

inflammatory diseases. In the mouse tumor model, it was

reported that TNFR2 agonistic antibodies induced the expansion

of CD4+ Tcon cells without affecting the Treg number in vivo (58).

Therefore, Tcon cells are also a potential target of TNFR2 agonists

albeit with relatively lower TNFR2 expression.
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CD8 T cell

As one of the co-costimulatory receptors, TNFR2 promotes the

activation, function, proliferation, differentiation, and recruitment

of CD8 T cells (96–98). However, TNFR2 signaling can also play a

dual role in the modulation of the activation of CD8 T cells. For

example, genetic ablation of TNFR2 impairs the production of

effector cytokine while can also result in a more persistent activation

of CD8 cells in mouse tumor and infection models (99, 100). CD8 T

cells at different stages of activation may likely respond to TNFR2

activation differently. This notion is supported by the observation

that the activation of TNFR2 promotes the differentiation of naïve

CD8 T cells (96), while TNFR2 stimulation also selectively induced

the activation-induced cell death (AICD) of the autoreactive CD8 T

cells without significantly affecting the other T cell subsets (30). The

different responses could be attributable to the alteration of

downstream signaling. TNFR2 expression is crucial for the

activation of NF-kB signaling in CD8 T cells when stimulated

with anti-CD3/CD28. While a persistent activation of TNFR2 can

inhibit NF-kB signaling through depleting TRAF2, an important

signal component in mediating NF-kB activation (39), thereby

sensitizing CD8 T cells to TNF-induced cell death (101).

Although treatment of TNFR2 agonistic antibody can stimulate

the activation of tumor-infiltrating CD8 T cells (57), the time frame

of TNFR2 agonist treatment in a preclinical mouse tumor model is

relatively short. Such studies may not be able to reflect the effect of

long-term activation of TNFR2, including activation-induced cell

death (AICD) or exhaustion of CD8 T cells (100, 102). More

recently, we reported that TNFR2 expression is associated with

the exhaustive phenotype of CD8 T cells in human cancers (103).

Thus, the role of TNFR2 in tumor-infiltrating CD8 CTLs is complex

and needs further investigation. A more thorough understanding of

the molecular basis underlying the effect of TNFR2 signal in CD8

CTLs is crucial to device TNFR2 agonists in tumor immunotherapy.
Natural killer cells

TNFR2 has been reported to be expressed by both human and

mouse NK cells, albeit the expression pattern could be different

(89). It has been shown that genetic ablation of TNFR2 has been

shown to significantly decrease the expression of IFN-g in a-
galactosylceramide (a-GalCer)-treated mouse, indicating that

TNFR2 signaling is also important for the activation and function

of NK cells (31). TNF or TNFR2 agonist (TY010) in concert with

IL-12 elevated the expression of IFN-g in human and mouse NK

cells in vitro (31, 104). The antitumor effect of TNFR2-

targetingantibody (Y9) can be impaired by the depletion of NK

cells, suggesting that TNFR2 agonists may also target the NK cells to

elicit antitumor immune responses (54). Now several TNFR2-

stimulating antibodies in clinical development have been reported

to enhance NK cell activation (58, 73). However, the mechanism
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that how TNFR2 agonism affects tumor-infiltrating NK cells

remains to be investigated.
Factors may determine the
therapeutic outcome of TNFR2
agonists in the treatment of cancer or
autoimmune diseases

TNFR2 expression: pro-inflammatory vs
anti-inflammatory cell subsets
TNFR2 signaling can result in both anti-inflammatory or pro-

inflammatory effects, depending on the cell type of TNFR2

expression and the functional status of the cells. High levels of

TNFR2 are constitutively expressed by Tregs, and the activation of

TNFR2 signaling in Tregs or autoreactive CD8 T cells (and other

immunosuppressive cells) can cause immune suppression or elicit

an anti-inflammatory effect (30, 78). However, elevated TNFR2

expression can be shown in pathogenic T cell subsets in patients

with Crohn’s disease (94) and rheumatoid arthritis (95), and

blockade of TNF promoted cell death of pathogenic T cells (94,

95). These results indicated that TNFR2 agonism may also promote

pathogenic T-cell responses. The pathogenic T cells with elevated

TNFR2 expression can be more resistant to Treg-mediated immune

suppression (105). Moreover, activation of TNFR2 also promotes

the inflammatory responses of innate immune cells and non-

immune cells (106–108). The dual role or bi-phasic effect of

TNFR2 signaling is exempted by a study that shows that, in

TNFR1 deficient mice, infusion of murine TNF at the initial

phase of collagen-induced arthritis increased the disease severity,

while the same treatment markedly alleviated the inflammation in

the progression phase (109). This study demonstrated the bi-phasic

effects of TNF-TNFR2 signaling in an inflammatory response.

Both humanized TNFR2 antagonists and agonists have been

developed for the treatment of tumors (19, 110), based on the

notion that antagonistic antibodies may eliminate the

immunosuppressive Tregs, while antibodies that trigger TNFR2

signaling may activate CD8 CTLs and NK cells (54, 56–58, 72).

Despite the assumptions are opposite, the results of the studies

appear to support that TNFR2 antagonistic antibodies inhibit the

tumor infiltration of Tregs and consequently enhance the antitumor

immune responses (111–119), while antibodies that trigger the

TNFR2 signal in vitro also elicited antitumor immune responses

(54, 56–58, 72). It was shown that TNFR2 activation promotes the

differentiation and the production of effector cytokine by CD8 T

cells (96, 120). Thus, as a costimulatory molecule, TNFR2 is likely to

promote the initiation of antitumor T cell immune responses. In

line with this notion, preclinical studies showed that TNFR2

agonistic antibodies with diminished activity to induce ADCC

can enhance the antitumor immune responses by activating CD8
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T cells and NK cells. However, it should be noted that the preclinical

studies about TNFR2 agonistic antibodies were based on the

transplanted tumor models and the time of experiment settings is

relatively short. Such studies may not be able to reflect the effect of

long-term activation of TNFR2, including activation-induced cell

death (AICD) or exhaustion of CD8 T cells (100, 102).
Ligand-based agonists vs
agonistic antibodies

Different types of TNFR2 agonists may own distinguished features

and consequently elicit different effects on immune response in vivo.

We summarized the antibodies that can trigger TNFR2 signaling from

the published studies (Table 1). Interestingly, some of these TNFR2

antibodies can enhance the anti-tumor immune responses even though

they have been shown to significantly promote Treg expansion in vitro.

While the TNFR2-selective TNF mutant or transmembrane TNF

mimetics elicited anti-inflammatory responses in vitro and vivo. The

paradoxical effects of antibodies were also reported in other TNFRSF

members. For example, one of the GITR antibody has been shown to

promote Treg expansion in vitro (121). However, this GITR antibody

has also been shown to enhance the infiltration of non-Foxp3

expressing T cells into tumor tissue and enhance the antitumor

immune responses (122). These results suggest the complicated

nature of TNFR2-antibodies with stimulating activities. By

comparing with transmembrane TNF mimetics, TNFR2-antibodies

with agonistic activities also bind with TNFR2 with high affinity.

However, the function of TNFR2-stimulating antibodies is

significantly affected by the Fc region as aforementioned. Moreover,

although there is compelling evidence that TNFR2 agonists promote

the expansion of Tregs, excessive or prolonged TNFR2 activation may

elicit different responses of Tregs in some circumstances. For example,

tumor-infiltrating Tregs are highly activated and express high levels of

TNFR2. The activation of TNFR2 may induce the TRAF2 depletion in

Tregs present in the tumor environment, thus sensitizing Treg to TNF-

induced cell death (123, 124). Moreover, although optimal PI3K/Akt/

mTOR signaling could be important for TNF-induced Treg activation

and expansion (26, 28), a high dose of TNFR2 agonistic antibody or

superclustering of TNFR2 may also induce hyperactivation of PI3K/

Akt/mTOR signaling pathway, which can destabilize Foxp3 expression

(125). The agonistic antibody-induced Foxp3 instability and Treg cell

death have been reported in other TNFRSFmembers with a similar co-

stimulatory capacity (126, 127). Therefore, this evidence may provide

an alternative interpretation of the reported anti-tumor effect of

TNFR2 agonistic antibodies.
Tissue-specific responses to
TNFR2 agonists

The TNFR2 agonist-regulated immune responses could be

tissue-specific, as the tissue-resident immune cells and non-

immune cells can express TNFR2. TNFR2 activation may induce

anti-inflammatory responses or pro-inflammatory responses as

well, depending on the cell types targeted. There is compelling
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evidence that TNFR2 signaling not only suppresses the

inflammatory responses in the central nervous system (CNS) but

also promotes tissue repair of the CNS system by activating TNFR2

signaling through several different cell types (35, 128, 129). Thus,

TNFR2 agonism evokes immunosuppression and tissue repair in

the CNS. However, TNFR2 also induced potent inflammatory

responses in some organs. For example, activation of TNFR2

signaling in parenchymal cells was important for the development

of hepatitis in mice (130). Blockade of TNFR2 has been shown to

alleviate anti-PD-1-induced hepatic inflammation in mouse hepatic

carcinoma, even infiltration of Tregs was also decreased (131).

Moreover, TNFR2 signaling in some tumor cell types also

contribute to tumor progression (132, 133), so the potentially

undesirable effect of TNFR2 agonistic antibody should be

considered. Thus, tissue-specific responses are also an important

factor that needs to be considered in TNFR2 agonist therapy.
Conclusion and future perspective

Numerous studies indicated the potential of TNFR2 agonism in

the treatment of autoimmune inflammatory diseases and cancer, as

TNFR2 has a dual role in modulating immune responses. TNFR2 plays

a decisive role in maintaining Treg function and activity, which is

important for the suppression of autoimmune inflammatory responses.

On the other hand, TNFR2 activation in Tcon cells or CD8 T cells also

elicits pro-inflammatory responses. However, the therapeutic outcome

of TNFR2 agonism could be affected by the property of agonists, the

disease condition, and tissue-specific responses. To minimize the

unwanted effect elicited by TNFR2 agonism, one of the strategies is

to develop therapeutics that specifically target certain cell types. For

example, IL2-EHD2-sc-mTNFR2, a recombinant protein fused with

TNFR2 agonist (EHD2-sc-mTNFR2) and IL-2, induced a more potent

Treg expansion than IL2 plus EHD2-sc-mTNFR2 (38). Moreover,

combining the immunosuppressants with TNFR2 agonists could be

another strategy in the treatment of autoimmune inflammatory

diseases, as Tregs are more resistant to immunosuppressant-

mediated cell death (134). Although several TNFR2 agonistic

antibodies were demonstrated in the clinical trial, how the TNFR2

agonistic antibody elicits a different immune response in vivo remains

largely unknown. Identifying the factors that affect biological

consequences induced by TNFR2 agonists may pave the way to the

more effective treatment of cancer or autoimmune diseases.
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