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The characteristics of the tumour cells, as well as how tumour cells interact with

their surroundings, affect the prognosis of cancer patients. The resident cells in

the tumour microenvironment are mast cells (MCs), which are known for their

functions in allergic responses, but their functions in the cancer milieu have been

hotly contested. Several studies have revealed a link between MCs and the

development of tumours. Mast cell proliferation in colorectal cancer (CRC) is

correlated with angiogenesis, the number of lymph nodes to which the

malignancy has spread, and patient prognosis. By releasing angiogenic factors

(VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D,

etc.) stored in granules, mast cells play a significant role in the development of

CRC. On the other hand, MCs can actively encourage tumour development via

pathways including the c-kit/SCF-dependent signaling cascade and histamine

production. The impact of MC-derived mediators on tumour growth, the

prognostic importance of MCs in patients with various stages of colorectal

cancer, and crosstalk between MCs and CRC cells in the tumour

microenvironment are discussed in this article. We acknowledge the need for

a deeper comprehension of the function of MCs in CRC and the possibility that

targeting MCs might be a useful therapeutic approach in the future.
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1 Introduction

According to estimates, there were more than 1.9 million new cases of CRC and 935,000

deaths from this disease worldwide in 2020 (1). A thick connective tissue interstitial milieu

composed of epithelial cancer cells, extracellular matrix (ECM), fibroblasts, endothelial cells,

and immune cells is one of the key characteristics of CRC (2). More people have become

aware of the close association between colorectal cancer development and the immune

system in recent years. Tumourigenesis, which is characterized by genomic instability,
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dysregulated gene expression, and anomalies in the epigenome,

requires the coordinated action of several processes (3). However,

altered cells are regularly removed through immune surveillance,

which stops tumour development (4). Through intricate methods,

many immunosuppressive cells can evade immune system detection,

allowing for ongoing tumour growth. Tumour development requires

angiogenesis, and lymphangiogenesis is crucial to lymph node

metastasis (5, 6). Mast cells are found in all vertebrates (7) and

were described and originally named by Paul Ehrlich in 1878 (8).

Westphal first postulated that MCs played a protumourigenic role in

1891 (9). MCs are derived from hematopoietic stem cells that are

CD34+ (10) and CD117+ (KIT) and can be separated into two

groups based on their composition: M(T) and M (Tc). Mc(T)

granules are rich in trypsin and are mainly located in the mucosa

of the gastrointestinal and respiratory tracts (11, 12). On the other

hand, Mc(TC) particles contain trypsin, chymotrypsin, and

carboxypeptidase and are mainly located in the submucosa,

connective tissue, near blood vessels, and lymphatic vessels (12).

Mast cells, which act as the barrier between the host and the outside

environment, can enhance host defense against infections by

controlling the immune response (13). Mast cells are also critical

immune cells that can secrete cytokines that alter tumour growth in

the inflammatory milieu, and they play a significant role in

hypersensitivity, particularly type I hypersensitivity. Proteases

(including trypsin and chymase), histamine, cytokines, chemokines,

and angiogenic factors are among the bioactive mediators found in

the cytoplasm of mast cells (11, 14). The conventional pathway,

which is mediated by IgE binding to the FcRI receptor on the surface

of mast cells, is the most well-known method of initiating MC

degranulation; however, the activation of C3a and C5a in the

inflammatory milieu can directly induce MC degranulation (15).

Mast cells secrete a variety of bioactive mediators that can inhibit and

promote tumours (16). The heterogeneity of mediators released by

MCs depends on the tissue, environment, and different pathways that

activate MCs, such as IgE-dependent activation, IgG immune

complex crosslinking with FcgRIII, C3a and C5a complement

receptor activation, stem cell factor (SCF)-bound c-kit receptor,

and TLR 2 (toll-like receptor 2) activation (17). It is interesting to

note that mast cells produce naturally occurring and immune-

mediated proangiogenic factors that help blood vessels form (e.g.,

VEGF-A, endothelin-1, GM-CSF, and CXCL 8) (18, 19). In the

tumour microenvironment, these cells can also release compounds

that promote lymphangiogenesis, such as VEGF-C and VEGF-D (9).

The role of MCs in CRC is still controversial and uncertain. However,

understanding the molecular mechanisms underlying the interaction

between MCs, cancer cells, and other elements of the tumour

microenvironment may help in the search for a way to interfere

with the interaction between cancer cells and other cells to stop the

growth and reproduction of cancer cells.
2 MC growth and biological function

Half a billion years ago, the innate immune system included

MCs, which exerted antiparasitic and antibacterial effects in the

host, and they can be found in the hemolymph of the ascidian (sea
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squirts) (20, 21). MCs are mainly derived from the myeloid lineage

of bone marrow hematopoietic stem cells (22). CD34+/CD117
+pluripotent MC progenitors (MCps) leave the bone marrow,

migrate and colonize target tissues (e.g., gastrointestinal tract,

skin, perivascular space, perineural connective tissue and

respiratory tract) via specific integrin and chemokine receptors

(23–26). Subsequently, in response to stem cell factor (SCF), IL-3,

IL-4, IL-9, IL-10, TGF-b, and IL-33, MCps develop into MCs with

dense granules (27–32). A recent study showed that MCps and

mature MCs express some of the same chemokine receptors, such as

CXCR4 and CCR1, suggesting that mature mast cells can still

migrate to other tissues after maturation (33). MC surface

receptors bind to tumour-derived cytokines and growth factors,

which recruits these cells into the tumour microenvironment. For

example, SCF produced by tumour cells bind to the c-Kit receptor

on mast cells (34–36). Several chemokines derived from tumours

(CCL2, CCL5, CCL11, CCL15, CXCL1, CXCL2, CXCL10 and

CXCL12) can activate mast cell receptors (CCR2, CCR3, CXCR2,

CXCR3 and CXCR4) to induce MC migration (34, 37–43). On the

other hand, VEGF, platelet-derived growth factor AB (PDGF-AB),

basic fibroblast growth factor (bFGF), and adrenomedullin (AM)

produced by tumour cells can induce mast cell chemotaxis (44).

Mast cells play an important role in innate and adaptive immunity

(45). Mast cells are among the first cells to come into contact with

pathogens, and so they are reliable prerequisite cells for preventing

infection in humans (46). Mast cells can fight pathogens through

direct antibacterial, antiviral and antiparasitic effects (e.g., the

release of multiple antimicrobial peptides, killing bacteria after

binding to complement or IgG Fc receptors, and endocytosis)

(47–50). The more important role of mast cells in innate

immunity is to recruit other innate immune cells, such as

neutrophils, eosinophils and macrophages, to the site of infection

(51–53); thus, multiple immune cells come together to better clear

pathogens. On the other hand, several costimulatory molecules

(CD40L, OX40L, CD80, and CD86) on mast cells and the various

cytokines (IL-4, IL-5, IL-6, IL-13 and IL-33) they produce can

influence the biological behavior of TH2 cells and B cells and

modulate regulatory T cells (Tregs), thus regulating adaptive

immunity (46). For example, MC-derived IL-25, IL-33, and TSLP

can activate antigen-presenting cells (e.g., DCs) to eventually

regulate the functional status of TH2 cells (54). In conclusion,

mast cells play an important role in the protection of human health

and in the pathophysiology of various diseases (e.g., cancer), IgE-

driven allergic diseases, cardiovascular diseases, autoimmune

diseases and cancer) (55).
3 The controversial role of
MCs in cancer

Depending on the kind, stage, grade, and size of the tumour, as

well as their microanatomical placement inside the tumour,

tumour-associated mast cells (TAMCs) can have pro- or

antitumourigenic effects on the host (56). However, in a some

circumstances, these cells do not seem to have any impact on the

development or progression of tumours (57–59). The protumour
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activity of MCs and the link between TAMCs and poor clinical

outcomes in a variety of cancers, including Hodgkin lymphoma,

gastric cancer (GC), pancreatic cancer, cholangiocarcinoma, and

bladder cancer, are supported by a number of research

investigations. MC infiltration is associated with a worse

prognosis and lower relapse-free survival rates in Hodgkin’s

lymphoma (60–62). In vitro experiments showed that Hodgkin’s

lymphoma could promote tumour cell proliferation through

CD30L-CD30 interactions between mast cells and cancer cells

(60, 63). Similar results have been observed in gastric cancer, in

which the presence of tumour-infiltrating MCs is related to tumour

progression and independently predicts a lower overall survival rate

(64–66). Tumour-derived adrenomedullin (ADM) stimulated mast

cell production of IL-17A, which can boost GC cell proliferation

and block GC cell death in vitro (66). Intriguingly, pancreatic cancer

cells have been shown to attract MCs to the tumour

microenvironment. MCs then aid in tumour cell proliferation and

invasion, hastening disease development (67). MC infiltration is

enhanced along with carcinogenesis in cholangiocarcinoma (68)

and bladder cancer (69). Mast cells in these tumours have

protumourigenic effects by influencing tumour biology, including

angiogenesis, lymphangiogenesis, invasiveness, and tumour cell

proliferation, which ultimately results in a poor prognosis

for patients.

Research linking the presence of mast cells to various tumour

types seem to be contradictory. High concentrations of

peritumoural mast cells were linked to a poor prognosis in

prostate cancer, although mast cell densities inside tumours were

an independent favorable prognostic predictor (70–72). The

different anatomical placements of the mast cells might be the

cause of these opposing effects (peritumoural vs. intratumoural).

The accumulation of mast cells in the peritumoural compartment

during the development of a castration-resistant prostate tumour

ultimately resulted in tumour palindromia (70). Mast cells have

been linked with a favorable prognosis in breast carcinomas in some

studies (73–77) but not all of them (78–80). There is also a high

degree of intertumour and intratumour heterogeneity among

patients (81). In lung adenocarcinoma, a higher MC count was

associated with poor prognosis in stage I NSCLC (82). In contrast to

another study, a low density of peritumoural mast cells was

associated with a worse prognosis in stage I lung adenocarcinoma

(83). In skin cancers, human and animal studies targeting the

function of mast cells and their mediators have obtained

controversial outcomes (84). Mast cell-derived serine proteases

inhibit the growth of melanoma (85); however, data have also

reported that MCs are associated with poor prognosis (86) and

resistance to immune therapy (87).
4 TAMCs in tumour angiogenesis and
lymphangiogenesis

Angiogenesis, which is the growth of new blood vessels, is

essential to many physiological processes that take place as the

human body develops (5). Lymphangiogenesis, which is the

development of new lymphatic vessels, is a process that is active in
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some diseases (wound healing, chronic inflammation, tumour

metastasis, etc.) (88). The ratio of substances that stimulate

angiogenesis and lymphangiogenesis to those that prevent it

determines the rate (89). It is interesting to note that the regulation

of lymphangiogenesis and angiogenesis is mediated by innate and

adaptive immune cells, including mast cells (90). In 1971, Judah

Folkman proposed that angiogenesis was necessary for the growth of

tumours (91), and he later proposed that mast cells may be a major

source of substances that promote angiogenesis (92). Similarly,

tumour-associated lymphangiogenesis plays an integral role in

lymph node metastasis and tumour progression (93). Many

experiments have demonstrated that pro-angiogenic factors

(VEGF-A, VEGF-B) (94–97), and pro-lymphangiogenic factors

(VEGF-C and -D) (43, 94) are synthesized by mast cells. VEGF

receptor 2 (VEGFR-2) is expressed by blood endothelial cells (BECs),

and VEGF-A activates it to carry out its intended tasks (98). Since

VEGFs induces mast cell chemotaxis by binding to the VEGFR-1 and

VEGFR-2 receptors on their surface, mast cells serve as both the

source and the target (89, 99). Lymphangiogenesis depends on

VEGF-C and VEGF-D binding to their receptor VEGFR-3 (100,

101). In addition to playing a crucial switching role in tumour-

associated angiogenesis (102), angiopoietins (Angs) and their

endothelial cell receptor Tie2 can encourage the growth of

lymphatic vessels (103). Ang1 expression by pericytes is essential

for vascular maturation, Ang2 is produced by ECs, and both of these

factors agonize Tie2 under certain conditions (104, 105). Mast cell-

derived chymotrypsin converts Ang1 to Ang2 and accelerates

angiogenesis (106). Tie1 and Tie2 are expressed on the surface of

human lung mast cells (HLMCs), and the binding of Ang1 to Tie2

can cause mast cell migration (107). When stem cell factor (SCF)

binds to c-KitR on the MC surface, the c-KitR pathway is activated,

inducing MC degranulation and the release of trypsin and pro-

angiogenic cytokines (such as VEGF, PDGF, and FGF-2) (108, 109).

Trypsin produced by mast cells can directly stimulate endothelial cell

growth (110) or indirectly activate matrix-metalloproteases (MMPs)

and plasminogen activator (PA) to degrade the extracellular matrix,

providing space for neovascularization and facilitating the invasion

and metastasis of cancer cells (36, 111). Moreover, trypsin can

activate protease-activated receptor 2 (PAR-2) (112), which is

expressed on endothelial cells in the blood vessel wall (113). When

PAR-2 is activated, endothelial cells multiply, and proangiogenic

chemicals, including IL-6 and granulocyte macrophage colony-

stimulating factor, are released (114). Notably, IL-1 can trigger

human mast cells to produce CXCL8/IL-8, effectively increasing

angiogenesis (115). Extracellular adenosine is elevated in the

tumour microenvironment because of hypoxia, and this factor can

activate adenosine receptors on the surface of mast cells, which

increases the production of VEGF and CXCL8/IL-8 (116),

ultimately promoting angiogenesis and lymphangiogenesis.
5 Mast cells and prognosis in CRC

The role of mast cells in colorectal cancer progression is

controversial. Many researchers have investigated the correlation

between MCs and CRC patient prognosis (Table 1). Some authors
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believe that MCs are correlated with a good prognosis (22, 117,

118), while others believe that mast cells are not associated with

prognosis (59, 119, 120), but most studies suggest that mast cells are

associated with reduced survival rates (2, 121–123).

Song et al. analyzed pathological tissues from 164 CRC patients

and found that high mast cell density (MCD) levels were

significantly associated with longer overall survival of patients

(22). Mehdawi et al. (117) observed that fewer MCs were found

in cancer tissue from 72 CRC patients than in normal colon tissue

and that patients with relatively higher MCD in cancer tissue had a

significantly longer overall survival.

However, Mao et al. (123) confirmed that MCD was an

independent prognostic factor, and low tumour infiltration MCD

was associated with increased overall survival, which may be due to

the association of lowMCDwith a stronger immune response to aid

prolonged survival in patients with a low MCD, MCD has also been

shown to predict survival in stage II and III CRC patients treated

with adjuvant chemotherapy. Suzuki et al. (121) reported that high

peritumoural MC infiltration was a significantly unfavorable

prognostic factor in 135 patients with colorectal liver metastasis

(CRLM) who underwent liver resection, and the number of MCs in

liver metastatic lesions could significantly predict the prognosis of

CRLM patients and was an indication for treatment. Wu et al. (2)

showed that MC infiltration was significantly associated with sex,

lymph node status, and American Joint Committee on Cancer stage,

and high MC infiltration can serve as an independent biological

marker to predict poor survival in colorectal cancer patients. Thus,

the identification of patients with high risk of tumour progression

can be achieved by immunohistochemical analysis of tumour-

infiltrating mast cells, thus optimizing personalized treatment for

CRC patients.

In contrast, Xia et al. (119) observed that mast cell counts in

adjacent normal colon mucosa were associated with pathological

classification, distant metastasis, and liver metastasis but were not a
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prognostic factor. Instead, mast cell counts in the invasive margin

showed no correlation with clinicopathological parameters or

overall survival. Zhao et al. (120) reported that circulating mast

progenitor cell (MCp) levels are low in CRC patients and are

significantly associated with CRC progression, and the frequency

of MCps may be an independent indicator of the aggressiveness of

CRC in patients and may be used to distinguish between patients

with early and advanced CRC. However, mast cells in tumour tissue

are not associated with CRC progression.

These conflicting results stem in part from the high

heterogeneity of studies on MCs and CRC. For example, different

tumour regions have been examined in many studies on MCs and

CRC, and some studies examined the surrounding tumour regions,

while others examined the central tumour areas, and many studies

did not report the tumour regions examined, making it difficult to

compare. However, there is a link between the distribution of MCs

and the prognosis of CRC patients. MC infiltration was defined as a

favorable independent prognostic factor in CRC patients (124);

however, a large number of MCs confined to the tumour periphery

is associated with tumour progression (121, 125, 126). On the other

hand, stage IIIB colon cancer was shown by Xia et al. (59) to have

mast cell numbers that varied depending on where in the tumour

they were located, and the interstitium of primary colon cancer had

fewer mast cells than the neighboring mucosa.

In addition to the localization of mast cells, MCs from different

tissues were analyzed by transcriptional profiling, and MCs showed

large transcriptional heterogeneity between different tissues (127).

MC degranulation status also plays an important role in the

prognosis of CRC patients. A recent study showed that the

proportion of degranulated mast cells (observed by morphology)

was increased in patients with metastatic colorectal cancer, while the

proportion of intact mast cells was increased in the nonmetastatic

group (128). This may be related to the tumourigenic activity of some

products released during MC degranulation.
TABLE 1 Role of MCs in the outcome of colorectal cancer.

Publication Disease stage Methods of MCs identification Localization Prognosis

Mehdawi et al. (117) All TNM stages Tryptase and Chymase
Intratumoural/
peritumoural

Positive

Elezoglu et al. (118) All TNM stages Toluidine blue
Intratumoural/
peritumoural

Positive

Song et al. (22) All TNM stages Tryptase Intratumoural/peritumoural Positive

Xia et al. (59) IIIB stage Tryptase Intratumoural/peritumoural No relationship

Xia et al. (119) All TNM stages Tryptase and Chymase Intratumoural/peritumoural No relationship

Zhao et al. (120) All TNM stages Flow cytometric analysis Intratumoural/peritumoural No relationship

Zhao et al. (120) All TNM stages Flow cytometric analysis Blood samples Positive

Wu et al. (2) All TNM stages Tryptase Intratumoural/peritumoural Negative

Shinsuke et al. (121) IV stage Tryptase Peritumoural Negative

Malfettone et al. (122) All TNM stages Tryptase Peritumoural Negative

Mao et al. (123) All TNM stages CIBERSORT/Tryptase Intratumoural/peritumoural Negative

Gulubova et al. (124) All TNM stages Tryptase/Toluidine blue Intratumoural/peritumoural Negative
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Recently, it was found that in NSCLC, TAMCs were divided

into 2 subgroups based on alphaE integrin (CD103) expression, and

CD103+ cells were more likely to interact with T cells and were

closer to cancer cells, thus emphasizing the nonnegligible

heterogeneity of MCs in cancer (129). In most studies, however,

characterization of the MC phenotype was not described in detail.

Therefore, to better understand howMCs affect the prognosis of

CRC patients, it is important to focus not only on MC counts but

also on understanding their localization, detection methods,

degranulation status, degranulation products, and phenotype. For

example, we could apply new multiomics, single-cell sequencing

and imaging mass cytometry technologies to examine colon cancer-

associated MCs and provide a better understanding of the various

biological behaviors of mast cells in the tumour microenvironment.

6 Cross-talk between MCs, other
immune populations, and colon
tumour cells

In recent years, an increasingly close link between the

development of colorectal cancer and the immune system has
Frontiers in Immunology 05
been recognized (Figure 1). Immune cells in the tumour

microenvironment can influence tumourigenesis and progression

and are associated with patient survival (134–136). Zhang et al.

(137) confirmed an indicator of immune cell infiltration that

included five types of immune cells (resting memory CD4 T cells,

M0-M2 macrophages and activated mast cells), and the

characteristics of these cells can predict overall survival in late-

stage CRC patients. Among these 5 types of immune cells, resting

memory CD4 T cells and M0-M1 macrophages are protective

factors, and M2 macrophages and activated mast cells are

detrimental factors.

Ducroc et al. (113) demonstrated that PAR-2 was expressed in

several colon cancer cell lines, and MC-derived trypsin activation of

PAR-2 was significantly associated with cell proliferation. The

mitogen-activated protein kinase/extracellular signal-associated

kinase (MEKK) and mitogen-activated protein kinase (MAPK)

pathways are briefly phosphorylated as a result of PAR-2

activation, which promotes the growth of colon cancer cells by

increasing the production of cyclooxygenase-2 (COX-2) and

prostaglandin E2 (PGE2) (138). Therefore, the proliferation of

CRC cells and the growth of associated blood vessels can be

inhibited by trypsin inhibitors (gabexate) and c-KitR inhibitors
FIGURE 1

Multiple roles of MCs in colorectal tumours. The release of multiple factors, such as vascular endothelial growth factor, IFN, CXCL8, histamine, nitric
oxide, and PGD2, as well as interactions with various populations of the immune system, including CD8+ T cells (130) and MDSCs (131), result in
MCs shaping the tumour microenvironment (TME) in different ways and exerting antitumour and protumour effects depending on the context. MCs
influence tumour aggressiveness through the release of trypsin and MMPs (111), among other substances. On the other hand, colon tumour cells
influence the biological behavior of MCs by various means, such as the release of IL-33 (132) and the activation of Sigle (133), which is surface
receptor of MCs.
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(imatinib, macitinib) (139, 140). On the other hand, activated c-Kit

activates the downstream Wnt/b-catenin signaling pathway (141),

and Wnt is abundantly expressed in colorectal tumour cells (142),

ultimately activating the b-catenin signaling pathway in mast cells

in colorectal tumours, while b-catenin stimulates protease

maturation and expression in mast cells, and activated b-catenin
mediates bone marrow-derived mast cell support of colon cancer

(143). Therefore, by blocking the c-Kit receptor with drugs, the b-
catenin signaling pathway in MCs will also be inhibited (144), thus

inhibiting tumour growth.

In addition, mast cells promote the development of colorectal

cancer through several mechanisms. Activation of mucosal mast

cells (MMCs) leads to the recruitment of large numbers of CD11b

+Gr1+ inflammatory cells into colonic tissue, and MMCs can

regulate the activity of CD11b+Gr1+ cells to promote the

development of CRC (145). Mast cells can increase the

suppressive properties of splenic-derived monocyte MDSCs

through IFNg and nitric oxide production, and the two cell

populations interact with each other through CD40:CD40L cross-

signaling, which is an axis that is tasked with forming a

proinflammatory microenvironment that leads to the production

of mediators (TNFa, IL6, CCL-2) (131). Notably, CCL-2 can

mediate the migration and activation of MDSCs in tumours

(146). Furthermore, mast cells can induce the migration of

MDSCs, which can cause immune escape in tumour cells and

further cause tumour development (131). On the other hand,

mast cells can upregulate RhoA expression in colon cancer cells

to activate the Rho/ROCK signaling pathway in tumour cells (147),

leading to increased cell mobility (148) and ultimately promoting

CRC invasion. The MAPK pathway mediates cell proliferation and

differentiation, and many inflammatory factors can activate protein

kinases in the MAPK signaling pathway, such as ERK and JNK,

which promote tumour progression (149, 150). Mast cells promote

tumour-associated angiogenesis through the MAPK/Rho-GTPase/

STAT pathway, leading to the development of colon cancer (147).

In the hypoxic microenvironment of colorectal cancer, mast cells

synthesize hypoxia-inducible factor-1a (HIF-1a) to ensure their

own degranulation potential; thus, MC-derived HIF-1a is

associated with the release of inflammatory factors (VEGF, IL-6,

TGF-b, etc.), and MCs can promote angiogenesis and tumour

metastasis by synthesizing HIF-1a (151).

Mast cells affect the development of colon cancer cells, and

tumour cells affect the biological behavior of mast cells. YU et al.

(152) showed that transcriptome profiling of combined cultures of

HT 29 colon cancer cells and MCs showed active expression of

MMP-2, VEGF-A, PDGF-A, COX 2, NOTCH1, and ISG 15 by

comparing MCs with controls, which revealed how HT 29 makes

MCs tumourigenic in the initial stage. These findings provide a new

method to study the difference between MCs associated with colon

cancer and MCs in normal tissue with a 3D coculture model (152).

Many organs express IL-33, which is a cytokine belonging to the IL-

1 family (153). The main producers of IL-33 are nonhematopoietic

cells such as endothelial cells, smooth muscle cells, adipocytes,

myofibroblasts, and epithelial cells (154, 155). Of note, IL-33 is
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expressed in the tumour epithelium of human colorectal cancer

adenomas and carcinomas, and IL-33 activates mast cells and

subepithelial myofibroblasts (SEMFs) to express and release ECM

components and remodeling proteins, growth factors and

angiogenesis modulators, and cytokines to develop a tissue

microenvironment that is conducive to polyposis (132). Siglecs

are a class of receptors that resemble immunoglobulins and bind

sialic acid, and they come in many isoforms and are mostly

expressed on immune cells (156). Siglec-6 is the isoform that is

the most highly expressed in human MCs, which also express

Siglec-3, Siglec-5, Siglec-6, Siglec-7, and Siglec-8 (157, 158). Yu

et al. (133) discovered that Siglec-6 was a functional inhibitory

receptor for MCs, and Siglec-6 was upregulated onMCs when colon

cancer cells (HT29 and co2) were cocultured with MCs, suggesting

that MC activity may be regulated through Siglec-6 in the tumour

microenvironment of colorectal cancer and demonstrated Siglec-6

expression on human CRC tissue for the first time.

IL-17 is an inflammatory cytokine that is notably increased in

gastrointestinal inflammation and cancer (159). The intestine

contains many cells that express IL-17, such as innate-like T cells,

ab and gd T cells, NKT and NK cells, macrophages, granulocytes

and mast cells (160–162). Chen et al. (163) found that in histamine-

deficient intestinal immunity, intestinal MCs expressing IL-17 were

expanded in response to food allergy, while MCs expressing IL-17

were actively mobilized, recruited MDSCs to the intestinal mucosa

and suppressed CD8 T-cell activity. Notably, these susceptibility

factors that increase tumourigenesis can be reversed by histamine

therapy, and histamine appears to prevent MC polarization into IL-

17-secreting cells (163). Food allergy can affect colorectal

carcinogenesis through mast cells and needs further study.

Interestingly, there have recently been experiments (130)

demonstrating that MCs can promote or hinder CRC

development, and this difference may vary depending on the type

of stimulus that promotes CRC. Activated MCs reduce the number

of CD8+ T cells in tumours and promote the progression of colitis-

dependent (colitis-associated (CA)-CRC), but they inhibit colitis-

independent (sporadic (s)CRC) development (130). On the other

hand, Iwanaga et al. (164) demonstrated that mast cells strongly

expressed H-PGDS in the inflamed colon, and the release of PGD2

inhibits colitis and CRC generation by attenuating TNF a signaling.

Cystatin C is an endogenous lysosomal cysteine protease inhibitor,

and serum cystatin C can be used as a marker for the diagnosis of

renal dysfunction (165). Serum cystatin C levels are associated with

a variety of diseases, including tumours (166). Recently, it was

shown that mast cell-derived cystatin C can specifically induce

endoplasmic reticulum stress (ERS) in CRC cells, thereby inhibiting

CRC development (22).
7 Conclusions

Previously neglected MCs are gradually becoming protagonists

in tumourigenesis, and increasing evidence demonstrates their

importance in tumour prognosis and therapeutic efficacy. Despite
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this awareness, the role and pathogenic mechanisms of MCs in

tumours are still far from understood. This is mainly reflected in the

contradictory results of many studies. This is a result of mast cells

having context-dependent phenotypes and plasticity, which are

sensitive to the suddenly changing microenvironment. In

addition, many studies on the association between MCs and CRC

merely showed the number or density of mast cells without

addressing other important features, such as the degranulation

status of MCs, tumour localization, the characteristics of secreted

cytokines and proteases, and crosstalk between associated immune

cells and colon cancer cells. MC is closely linked to angiogenesis,

lymphangiogenesis, and the progression of CRC, and it is likely to

provide targets for new therapies in the future. Therefore, we

urgently need higher quality studies to fully understand the

biological behavior of MCs in CRC patient tumours.
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A, Muñoz-Bello JO, Anaya-Rubio I, et al. Mast cell-tumour interactions: molecular
mechanisms of recruitment, intratumoural communication and potential therapeutic
targets for tumour growth. Cells (2022) 11(3):349. doi: 10.3390/cells11030349

45. Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune
responses. Nat Immunol (2005) 6(2):135–42. doi: 10.1038/ni1158

46. Cardamone C, Parente R, Feo GD, Triggiani M. Mast cells as effector cells of
innate immunity and regulators of adaptive immunity. Immunol Lett (2016) 178:10–4.
doi: 10.1016/j.imlet.2016.07.003
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