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the innate immune response
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As the first responders, neutrophils lead the innate immune response to

infectious pathogens and inflammation inducing agents. The well-established

pathogen neutralizing strategies employed by neutrophils are phagocytosis, the

action of microbicide granules, the production of ROS, and the secretion of

neutrophil extracellular traps (NETs). Only recently, the ability of neutrophils to

sense and respond to pathogen-associated molecular patterns is being

appreciated. This review brings together the current information about the

intracellular recognition of DNA by neutrophils and proposes models of signal

amplification in immune response. Finally, the clinical relevance of DNA sensing

by neutrophils in infectious and non-infectious diseases including malignancy

are also discussed.
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1 Introduction

As part of the first line of protection provided by the innate immune system,

neutrophils play a key role in the early immune response. Neutrophils are essential for

defense against not only pathogens, such as fungi and bacteria, but they are also the first

responders at the site of acute injury or acute inflammation (1, 2).

A defining feature of the pathogen-eliminating mechanism of neutrophils is

phagocytosis. Over the last several decades, studies have finely dissected the controlled

process by which neutrophilic phagosomes are formed. The phagosome is a distinctive

organelle arising from the invagination of the plasma membrane which results in the

formation of a vacuole-like structure, thereby completely encircling the engulfed pathogen.

Within the phagosome, several simultaneously or consecutively occurring processes take

place, which lead to the rapid neutralization of the pathogen. Scientific consensus is that the

active processes within neutrophilic phagosomes include the production of NADPH

oxidase-derived reactive oxygen species (ROS), the delivery of microbicidal proteins
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from the pre-formed granule, the movement of ions across the

phagosomal membrane and the dynamic alteration of the

phagosomal pH (3–5). In fact, the pre-formed granules in mature

neutrophils consist of subsets of different granules, like azurophilic,

specific, gelatinase and lysosomal granules, which differ not only in

their biochemical characteristics but also in their primary functions

and participate in all known neutrophil antimicrobial effector

activities (5–7). In contrast, the NADPH oxidase complex is

responsible for the generation of the superoxide molecule that

acts upon the myeloperoxidase enzyme to generate biologically

toxic substances, such as hypochlorite. Although, other immune

cells like macrophages also phagocytose pathogens, neutrophils are

inherently more powerful at this activity by at least 1-2 orders of

magnitude (1). A key point to note is that while pathogens can stay

in the macrophages latently, neutrophils are rarely used as a resting

point by pathogens (1). This implies that the end result of

phagocytosis by neutrophils is the complete destruction of the

pathogens. And thus, while multiple studies have highlighted the

importance of phagocytosis by neutrophils, very few of them have

clearly clarified what occurs once the pathogen is killed within the

phagosome (3, 8). The resolution of the phagosome with the

disintegration of the pathogenic molecular motifs and potential

re-integration of the broken-down molecules within the

neutrophilic biochemical processes, or the disposal of inactivated

foreign molecules, remains largely unexplored. More specifically,

the fate of so-called pathogen-associated molecular patterns

(PAMPs) including, DNA, RNA, mRNA or proteins originating

from the pathogen, still remains an unsolved mystery. Although

speculative, one can foresee the possibility that these PAMPs are

recognized by intracellular sensors present within neutrophils. The

resulting activation of the various signaling cascades and the release

of cytokines and chemokines by neutrophils has a direct implication

in the resolution of the infection or inflammation. It should be

stressed that post phagocytosis, PAMPs are not only present

intracellularly in neutrophils, but neutrophils may also present

the digested pathogenic protein particles as antigens to the

adaptive immune system, thereby ensuring that the immune

response against the invading pathogen is further prolonged, as

well as amplified (9). This aspect of the amplification of the immune

response will be discussed later in this review.

Apart from phagocytosis, formation of NETs is an unique

phenomenon observed amongst few immune cells including

neutrophils. NETs are composed of web-like decondensed

chromatin fragments, which are coated with histones

and antimicrobial proteins (10–13). Interestingly, NETs are

released only by activated neutrophils, clearly indicating

the need for a neutrophil-activating signal (12). Once

activated, a sequential program is triggered which involves the

permeabilization of the plasma membrane, the disassembly of

the cytoskeleton and nuclear envelope, the decondensation of

chromatin, and the assembly of the antimicrobial proteins onto

the surface of the chromatin (12). NETosis results in the

extrusion of both nuclear and mitochondrial DNA (14). While

initial experimental results suggested that the primary function

of NETs is to trap and neutralize pathogens, currently it is well

accepted that NETs also modulate functions of other immune
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cell, promote thrombosis, tumorigenesis, as well as tumor

metastasis (11, 13).
2 Intracellular DNA signaling - our
understanding so far

The discovery of the role for the first Toll-like receptor (TLR) in

providing immunity against fungal and gram-positive bacterial

infections, initiated a whole gamut of studies investigating

different pattern recognition receptors (PRRs) (15). Starting with

the identification of multiple TLRs on the cellular surface of

immune cells, subsequent studies identified endosomal/

cytoplasmic PRRs. In line with the identification of different

PAMPs present within pathogenic organisms, soon their

corresponding PRRs were subsequently identified. A widespread

group of PAMPs present in all living organisms are the nucleic acids

including DNA, RNA, and RNA : DNA hybrids. All these nucleic

acids are either localized to certain organelles in the cell, or

otherwise subjected to a very tightly controlled transport, thereby

limiting the inappropriate exposure to corresponding intracellular

sensors. However, under some circumstances, these nucleic acids

present themselves in the cytosol or the endosomes, potentially

resulting in their recognition as danger signals by PRRs. PRRs that

have been implicated in the detection of RNA and DNA derived

from both, pathogens and hosts, include Toll-like receptors (TLRs),

RIG-I-like receptors (RLRs), absent in melanoma 2 (AIM2)-like

receptors (ALRs), and NOD-like receptors (NLRs) (16, 17). This

review is primarily limited to elucidating the current knowledge

about intracellular recognition of DNA by cytosolic PRRs, with a

further narrowed focus about the role of such DNA sensors

in neutrophils.

In the last two decades we have uncovered several endosomal/

cytosolic DNA sensors, like Toll-like receptor 9 (TLR9), AIM2,

cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes

(STING), interferon gamma-inducible 16 (IFI16), DEAH- and

DEAD-box helicases DHX9, DHX36, DDX41, and RNA

polymerase III (16, 18). Broadly speaking, the detection of DNA

by these receptors results in cytokine production and, in some cases,

initiates an inflammatory and lytic form of cell death called

pyroptosis. While a majority of these sensors like TLR9, cGAS,

DAI, DEAH- and DEAD-box helicases DHX9, DHX36, DDX41,

and RNA polymerase III induce the production of type I IFNs,

activation of AIM2 results in the secretion of IL-1b.
Despite the long list of reported DNA sensors, currently

AIM2 and cGAS are considered as the primary detectors of

cytosolic DNA. The AIM2 protein belongs to the family of NLR

proteins called inflammasomes, and functions as a molecular

platform where caspase-1 and apoptosis-associated speck-like

protein (ASC) come together. The subsequent interactions

between these proteins results in the maturation and release of

IL-1b/IL-18, and gasdermin D (GSDMD)-mediated pyroptosis

(19). On the contrary, pathogenic DNA detected by cGAS

induces the synthesis of cGAMP (20). cGAMP, functioning as a

second messenger, associates with- and activates stimulator of

IFN genes (STING). STING has been implicated as a central
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player in DNA-induced type I IFN production (Figure 1). Readers

are encouraged to check the innumerable reviews that have put

together all the literature about the signaling pathways, molecular

regulation, and the role of these two DNA sensors in several

diseases (21–23).
2.1 Intracellular DNA sensing in neutrophils

Our understanding of the role of neutrophils within the innate

immune system is based primarily on their function as a phagocytic

factory and their involvement in the phenomenon of NETosis. For

several decades, the focus of many studies was on finding out how

exactly neutrophils phagocytose pathogens and the microbicidal

aspect of the phagosome. Despite it being a well-controlled process,

phagocytosis and NETosis involve physical modifications of the

neutrophil’s molecular material and they appear as rather primitive

mechanisms for neutralizing pathogens; especially when compared

with the elegant signaling pathways and cascades that have been

identified in other members of the innate immune system, such as

macrophages or dendritic cells and in cells belonging to the adaptive

immune system. Recently, there has been an attempt to revisit the

role of neutrophils in the recognition of PAMPs, including

intracellular DNA. In the subsequent section of this review, we

will investigate how neutrophils could potentially sense and

respond to cytosolic DNA.
Frontiers in Immunology 03
2.1.1 Expression of molecular components
essential for the sensing of intracellular DNA in
neutrophils

For a long time, neutrophils were considered as terminally

differentiated, short lived cells with a latent condensed nucleus and

pre-formed proteins ready to identify and kill pathogens. The ability

of neutrophils to dynamically respond to danger by up- or down-

regulating genes in a cell-intrinsic manner was not clear. In fact, one

study exploring the changes in neutrophils exposed to S.aureus

showed minimal changes in protein expression per se, but revealed

that about one third of the phospo-proteome was altered (3).

However, recent data, proving that neutrophils are fully capable

of extensive and rapid changes in gene expression upon activation,

forces us to revisit this idea of neutrophils as immune cells with

merely pre- determined processes. Indeed, in response to

neutrophilic stimulation with live/opsonized E.coli or soluble LPS,

the expression of multiple groups of genes was altered (24). This

modified expression upon stimulation ranged from genes involved

in the classical response to inflammation/infection (such as

members of the FOS, JUN, and NF-kB families), to regulators

and mediators of gene expression (i.e. RNA polymerase II

transcription factors and protein chaperones. These and other

subsequent data now reveal that neutrophils also possess the

plasticity to adjust their response to different pathogens (24, 25).

For us to appreciate the relevance of the intracellular DNA

sensors in neutrophils, we first need to confirm the presence of at
FIGURE 1

Intracellular DNA recognition by different cytosolic DNA sensors in Neutrophils. Current evidence shows the existence of AIM2 and Sox2 as DNA
sensors in neutrophils. cGAS-STING is a well-established cytosolic DNA sensor but the existence of this pathway in neutrophils needs to be further
explored.
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least some of the known components of these signaling pathways in

these cells. We know that neutrophils express all TLRs from 1-10

except TLR3 (26). Of these, TLR9 recognizes the unmethylated

cytosine-phosphate-guanosine (CpG) form of DNA, which is

commonly found in bacterial, viral, fungal, and parasite genomes.

In brief, on one end TLR9 functions via the MyD88 protein to

activate the IKK-NFkB pathway, and on the other end it acts

through the IRF-IFN pathway, resulting in the secretion of IFN

and IL-1b. Although TLR9 is expressed in neutrophils, some early

studies reported that TLR9 is not required for nucleosome-induced

neutrophil activation (27). However, recent studies have confirmed,

that mitochondrial DNA, released as a result of cellular trauma, can

activate neutrophils in a TLR9-dependent manner (28).

The presence of AIM2 in murine and human neutrophils has been

well established since some time (29, 30). Despite this, only recently a

functional role for AIM2 protein in detecting cytosolic DNA was

established (31). For a long time, it was assumed that some of the

enzymatic components of the neutrophilic granules, like neutrophil

elastase and proteinase 3, were essential for the maturation and

secretion of IL-1b by neutrophils. Based on genetic models, the

absolute requirement for these enzymes in the production of IL-1b
has now been disproved. In fact, several studies have now

demonstrated that, almost all essential components required for the

activation of different inflammasome pathways are expressed in

neutrophils (29, 30, 32). More specifically, it has been shown that
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neutrophils express functionally active caspase-1 and NLRP3 protein,

and that they can induce and secrete mature IL-1b in a dose-dependent
manner. Thus, all components essential for activation of AIM2

pathway are present in neutrophils.

More recently, Xia, Wang and colleagues identified a completely

new neutrophil-specific intracellular DNA sensing protein called

Sox2 (33). Before this report came out, Sox2 was known as a

transcription factor with a key role during fetal development. Gene

expression data revealed that Sox2 is constitutively expressed in the

cytoplasm of peripheral neutrophils derived from both, mice and

humans. Neutrophil-specific deletion of SOX2 resulted in increased

susceptibility of mice to infection with listeria, and it validated the

important role for this protein in neutrophils. The authors showed

that binding of pathogenic DNA with Sox2 triggered Sox2

dimerization via its GBH domain resulting in the activation of

TAB2-TAK1 complex resulting in the translocation of NF-kB and

AP-1 transcription factors and the production of TNFa, IL-6 and

IL-1b pro-inflammatory cytokines. An important point that should

be noted is that in this study the authors demonstrated that

neutrophils have low expression of STING and undetectable

expression of cGAS and that the Sox2-mediated activation of

neutrophils was independent of STING or cGAS. We need to

reconcile this data with the data from Neutgx portal mentioned

below wherein one can conclude that the expression of SOX2, CGAS

and STING are in the similar range (Figure 2). Interestingly, Sox2 is
FIGURE 2

The expression of different genes known to be essential for intracellular DNA sensing were checked on the Neutgx portal from NIH (https://neutgx.
niaid.nih.gov/) (34). Each dot represents expression of the gene in one biological replicate. Expression is measured as FPKM (fragments per kilobase
of transcript per million fragments mapped). Established neutrophil specific genes ELANE (Neutrophil elastase) and MPO (Myeloperoxidase) are used
as control. MB21D1 and TMEM173 are the names for human CGAS and STING genes. It should be noted that expression of CGAS and STING genes
in neutrophils is in the same range as that of SOX2.
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not expressed in T cells, B cells, natural killer cells, dendritic cells or

macrophages and this raises an open-ended question about, why

only neutrophils express Sox2 as an exclusive intracellular DNA

sensor (33). Further studies are required to understand whether

Sox2 is associated with any other aspect of neutrophil function, such

as, phagocytosis or NETosis (35, 36).

Due to the absence of additional experimental proof on the

expression of all cGAS-STING pathway components in neutrophils,

for the purpose of this review, we verified the gene expression

profiles provided on the Neutgx portal from NIH (https://

neutgx.niaid.nih.gov/) (34). The neutrophil gene expression data

offered by NeutGX was obtained from bulk RNA sequencing (RNA-

seq) experiments performed on highly pure neutrophils obtained

from the peripheral blood of healthy human volunteers (34). As

such it provides unbiased data for the expression of different classes

of genes in neutrophils. As shown in Figure 2 both STING (human

gene TMEM173) and CGAS (MB21D1) are indeed expressed by

human neutrophils. The presence of measurable levels of mRNA for

these targets in neutrophils indicates that CGAS and STING could

be translated into proteins within human neutrophils allowing a

potential functional role for these sensors in recognizing

intracellular DNA. The comparison with the expression levels of

neutrophil elastase and myeloperoxidase genes (ELANE; MPO),

characterized in the Neutgx portal as neutrophil specific genes,

enables an estimate of CGAS and STING gene expression level

in neutrophils.

As described above, the activation of most intracellular DNA

sensors results in the secretion of type 1 IFN. The exception to this

rule is AIM2, which when activated promotes the secretion of IL-1b.
It is well established, that amongst immune cells, dendritic cells

(conventional or plasmacytoid) and macrophages are largely

responsible for producing type 1 IFNs. The hint that neutrophils

can produce also type 1 IFNs, came indirectly from studies showing

the production of these cytokines in disease models where dendritic

cells were depleted. Current evidence has, in fact, confirmed the

ability of neutrophils to secrete type 1 IFNs in response to poly I:C,

free chromatin, mitochondrial DNA, and of course, in response to

genetic material from pathogenic organisms (32). In short, it is clear

that neutrophils express all known molecular components

necessary for recognition of cytosolic DNA.

2.1.2 The potential sources of cytosolic DNA in
neutrophils

The question of how genetic material present within the

nucleus and barred from the cytosol by the nuclear membrane

reaches the cytosol, is a puzzle that still needs to be solved. With

respect to neutrophils, there are several potential mechanisms

that could explain for the presence of DNA in the cytosol of

these cells.

a) Phagocytosis of the whole pathogen including its genetic

material. As described in the introduction, while the process of

phagocytosis itself has been well studied, what happens to the

pathogenic molecular components, once they have been digested

by the contents of the neutrophilic granules, has been largely

unexplored. It is, therefore, conceivable that the genetic material
Frontiers in Immunology 05
of the pathogen could be potentially exposed directly to the

cytosolic sensors in neutrophils.

b) Ingestion of free floating pathogenic genetic material. At the

very initial stages of the infection, during the interaction with the

ectodermal/endodermal cells, pathogens may not remain intact and

may disintegrate. Furthermore, the cellular enzymes released at the

site of infection could degrade the pathogen in situ, thereby

releasing its genetic material. This free-floating genetic material

once ingested by the neutrophil could be presented to the cytosolic

nucleic acid sensors (37).

c) Release of mitochondrial DNA. The mitochondrial DNA is

known to be released either because of cellular injury or during the

formation of the NETs. We now know that mitochondrial DNA is

also an inducer of the TLR9-dependent signaling cascades (28, 38,

39). The latest evidence in this regard has revealed that mtDNA can

indeed also activate the cGAS-STING pathway (40). Whether the

same is true in neutrophils, still needs to be established.

d) Horizontal transfer of genetic material between neutrophils.

Experimental evidence shows that neutrophils can communicate

with each other using attractants, which once secreted, helps them

to bind to cell surface–expressed G protein–coupled receptors

(GPCRs) on neighboring cells. This strategy enables the

neutrophils to launch a coordinated effort in their hunt for

pathogens (41). The neutrophil-cluster formation acts as a

physical barrier that limits the spread of the pathogen. However,

what remains to be explored is whether PAMPs resulting from

neutrophil phagocytosis are potentially transferred to the

surrounding naïve neutrophils. In this case, one neutrophil

becomes the direct responder to the pathogen, while another

neutrophil acts as the receiver of the PAMP element(s) like DNA.

As such the horizontal transfer of intracellular DNA could further

amplify the signaling cascades resulting in an enhanced

concentration of cytokines and chemokines at the point

of infection.

2.1.3 The downstream consequences of
intracellular DNA sensing by neutrophils

Neutrophils can recruit, interact with and activate other

immune cells by secreting cytokines, chemokines, and proteases

that can then modulate the immune response (42, 43). Be it at the

site of initial insult or distant lymph nodes, neutrophils can

stimulate macrophages, induce differentiation of monocytes to

monocyte-derived DCs, promote recruitment and maturation of

classical antigen presenting cells such as NK and conventional DC

cells and drive plasmacytoid DC recruitment resulting in interferon

production (1, 44). This modulation of DC activity indirectly has an

impact on the T cell function. However, neutrophils also directly

induce non-specific T cells by secreting the chemokines that attract

T cells to the site of the inflammation. Furthermore, neutrophil

depletion models have revealed that neutrophils can also influence

the Th cell polarization and affect the balance between the Th1 and

Th2 cells (42, 45). The displacement of neutrophils to distant lymph

nodes or even to spleen especially while still carrying elements of the

pathogen due to ineffective elimination of pathogen, can also result

in the activation of B cells. This activation of the B cells results from
frontiersin.org
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the secreted B-cell activating factor of the tumor necrosis family

(BAFF) and a proliferation-inducing ligand (APRIL) and promotes

B cell expansion, plasma cell differentiation and the increased

production of antibodies (1, 42, 45). Indeed, experimental

evidence has demonstrated a link between neutrophilic DNA,

NETs and activation of adjacent macrophages wherein

decondensed DNA present in NETs resulted in the activation

of the macrophagic cytosolic cGAS-STING pathway (46).

This transfer of activating signals from neutrophils to

macrophages ultimately results in the amplification of the initial

immune response.

When it comes to cancers, within the tumor micro environment

(TME) the interaction of the invading neutrophils with the

surrounding immune cells depends on the phenotype of

neutrophils. We now know that neutrophils can differentiate into

two phenotypes with different properties: N1 –phenotype with pro-

inflammatory propert ies and N2 phenotype showing

immunosuppressive profile. N1 pro-inflammatory neutrophils are

activated by type I interferons, inhibit angiogenesis and are able to

eliminate pathogens via antibody-dependent cellular cytotoxicity

(ADCC) and phagocytosis. These cells show increased NADPH

oxidase activity which leads to the production of reactive oxygen

species (47). Immune profile of N1 cells is characterized by the

secretion of high levels of TNFa, CCL3, intercellular adhesion

molecule 1 (ICAM-1), and low levels of arginase. N2 phenotype

neutrophils induce immunosuppression via release of CXCL1,

MMP9, VEGF, and TNFa (48, 49). Moreover, these neutrophils

act via releasing ROS and nitric oxide (NO), which increase DNA

instability. N2 neutrophils can inhibit T cell proliferation via

expression of arginase 1 and induce T cell apoptosis via NO

production (50).

Having established the effect of activated neutrophils

on other immune cell types we can next focus on the

consequences of effector cytokines secreted because of

intracellular DNA sensing i.e., IL-1b and type I IFNs. IL-1b
itself has been shown to enhance antigen-driven response in

both CD4 and CD8 T cells, support the expansion and activation

of specific Th1, Th2, Th17 and Granzyme B+ CD8 T cells in vivo

and for naïve CD4+ T cells to overcome Treg-mediated

inhibition and memory CD4+ T cells to acquire a fully

functional memory phenotype (51).

With regards to type I IFN, meta-analysis of experimental data

has revealed that the outcome of the type I IFN stimulation on

immune cell activation is largely context dependent and does not

always follow a linear “cause-effect” relationship. Type I IFN i.e.,

IFNa/b have effects on both the innate and adaptive cellular

immune response and affect myeloid cells, B cells T cells and NK

cells (52). For example, IFNa/b has an activating effect on

immature committed DCs, enhancing the expression of MHC

molecules and co-stimulatory molecules such as CD80 and CD

86, which is associated with an increased ability to stimulate T cells

(53). IFNa/b also promote the migration of DCs to the lymph

nodes. DCs themselves are potent producers of IL-12 which is

required for driving T helper type responses during certain

infections and promoting the production of IFNg by T and NK

cells (52).
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3 Amplification of the innate immune
response-role for neutrophils

As the first responders, neutrophils initiate the immune

response to the primary insult. The outcome of the interaction

between the pathogen and the neutrophil will depend on several

factors. For example, depending on whether the pathogen is wholly

phagocytosed or some specific element of the pathogen is

phagocytosed or if only specific PAMP(s) bind and activate PRR

(s), activated neutrophils will secrete different cytokines and

chemokines. Although, in comparison with DCs or macrophages,

in general, neutrophils do secrete only a small amount of cytokines,

the presence of massive numbers of neutrophils in the blood and at

the site of insult, ensures an accumulative stronger cytokine

response. It is conceivable that the first wave of neutrophils,

having engaged with the injurious element, start secreting

cytokines, which could in turn activate the subsequent waves of

neutrophils. We use the term short amplification loop to describe

this local activation of naïve neutrophils. Depending on the time

since the initial insult and the efficacy of the initial response, other

immune cells such as monocytes, macrophages, DCs, NK cells, T

cells and B cells are directed towards and can be stimulated by the

secretome of the activated neutrophils. Keeping in mind that in

response to activation, macrophages and DCs secrete cytokines

several fold higher than neutrophils, the immune response attains a

logarithmic scale. This activation of other immune cells and

enhanced secretion of cytokines can be considered as the long

loop of immune response amplification (Figure 3). While these

short and long amplification loops can certainly be features of other

signaling pathways activated by distinct PAMPs as part of immune

responses, couple of unique factors i.e., a) that neutrophils act as the

first responders; b) their relatively higher numbers and c) the

secretion of potent cytokines like IL-1b and type I IFNs upon

recognition of intracellular DNA, attests to the role of neutrophils as

central players in this phenomenon.
4 Clinical implications

In keeping with its key role in the immune system, neutrophils

have been implicated in many different diseases including infectious

diseases, acute and chronic inflammatory conditions, autoimmune

diseases as well as cancers. In this section, we list some examples of

potential clinical relevance for intracellular DNA sensing

by neutrophils.

As the prototypic member of the cytosolic DNA sensors, AIM2

is involved in the detection of genetic material from many different

bacteria and viruses. Examples of some of the bacteria are

Mycobacterium tuberculosis, Porphyromonas gingivalis,

Streptococcus pneumoniae, Chlamydia muridarum. In addition,

viruses such as Vaccinia virus, Human papillomaviruses, Hepatitis

B virus and West Nile virus (RNA virus) also activate the AIM2

pathway (54). Similarly, a role for cGAS-STING pathway has also

been identified in multiple infectious diseases. Current evidence

indicates that this pathway is activated in response to bacteria such
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1208137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mankan et al. 10.3389/fimmu.2023.1208137
as Listeria monocytogenes, Staphylococcus aureus. Streptococcus

pneumoniae, Brucella abortus, Pseudomonas aeruginosa and

viruses including vaccinia virus, Kaposi’s sarcoma-associated

herpesvirus and herpes simplex virus (55, 56). Interesting, AIM2,

Sox2 and cGAS have all been shown to detect DNA from Listeria

monocytogenes. While there is ample evidence that supports a role

for neutrophils in infection by Listeria monocytogenes, S. aureus and

S. pneumoniae, how effective neutrophils are in response to viral

infections is still not clear (57, 58). As such, whether activation (or

deficiency) of AIM2/Sox2/cGAS-STING pathway in neutrophils

plays a direct role in the immune response against these pathogens

needs to be further explored.

Psoriasis that manifests mainly as skin lesions and

extracutaneous comorbidities serves as a classic example of a

chronic, immune-mediated disease. In psoriasis, loss of immune

homeostasis results in the overstimulation of several different cells

including neutrophils, dendritic cells, T cells, keratinocytes,

fibroblasts, mast cells, and melanocytes (59). In fact, Munro’s

microabscesses that are considered as one of the major

histopathological hallmarks of psoriasis are vesicles filled with

neutrophils (60). Neutrophilic granules, ROS production and

release of NETs have all been found to play a role in psoriasis and

presence of MPO and NETs in skin plaques is positively correlated

with the severity of the disease (59, 61). In contrast, a reduction in

circulating neutrophils by drug induced agranulocytosis or by using

the granulocyte and monocyte adsorption (GMA) is accompanied by

regression of psoriatic plaque and abscess development (62, 63). The

role for activated neutrophils is not just limited to the site of the lesion

but it also results in the stimulation of myeloid and plasmacytoid DCs

(59). Additionally, the activated neutrophils and mast cells present in

the psoriatic skin secrete IL-17 (64). This secreted IL-17 on one hand,

acts on keratinocytes directly, and on the other hand, induces the

production of both G-CSF and subsequently neutrophils (65). Thus,

psoriasis serves as a classic example for the short and long

amplification loops resulting from the activation of neutrophils

(Figure 3). More recently, experimental evidence has shown that

abundant dsDNA fragments are present in the upper epidermal

layers of psoriatic, but not in the unaffected skin areas (66). One

hypothesis suggests that fragments of genomic dsDNA (resulting
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inflammation and keratinocyte hyperproliferation (66). Defective

cellular differentiation results in parakeratosis i.e., excessive

production and abnormal maturation of keratin. Denucleation of

the immature keratinocytes leads to the release of genomic DNA

fragments in the psoriatic lesions which in turn induce pro-

inflammatory cytokines. A role for both cGAS-STING and AIM2

has been observed in the recognition of dsDNA in keratinocytes (67,

68). While whether neutrophils are directly responsible for

recognizing the dsDNA in psoriasis and any consequences of this

needs to be further explored, it is now clear that neutrophils do play a

key role in psoriasis and that the vicious inflammatory cycle resulting

from the release of dsDNA in psoriatic lesions should be explored as

potential therapeutic target.

Inflammatory Bowel Disease especially, Ulcerative Colitis (UC)

serves as a good case of a chronic inflammatory condition where we

have sufficient evidence for the contribution of neutrophils in its

pathogenesis. UC is a disease of unknown etiology characterized by

inflammation of the mucosa and sub-mucosa of the colon and

rectum lining (69). Clinically, the chronic inflammation results in

ulcers with resultant abdominal pain, weight loss, fever, diarrhea

mixed with blood and anemia. UC patients present with a high

neutrophil to lymphocyte ratio (70). At the tissue level, one

recurrent feature observed in UC is the accumulation of

neutrophils in the inflamed intestinal mucosa. As expected,

Neutrophilic myeloperoxidase and the NETs have been identified

as the main culprits responsible for causing tissue inflammation in

UC (69, 71, 72). Therapeutically, decreasing the number of

neutrophils either by using steroids or by GMA has turned out to

be a promising strategy for reversing the disease progression in UC

(73, 74). Recent evidence has also pointed out a role for intracellular

DNA sensing and secreted type 1 IFNs in UC (75). Enhanced

expression of both AIM2 and cGAS, in a cell type-restricted pattern,

was detected in active UC tissue. However, so far, no direct link

between intracellular DNA sensing by neutrophils and UC has

been established.

Finally, a causative role for neutrophils itself in tumorigenesis is

highlighted by the observation that solid tumors infiltrated by large

number of these cells or that a higher neutrophil-to-lymphocyte
FIGURE 3

Short and long amplification loops of immune cell activation. At the site of the initial insult neutrophils are activated by directly engaging with the
pathogen. These can then activate the subsequent waves of swarming neutrophils creating a short loop. Cytokines and chemokines secreted by the
neutrophils further activate immune cells in the milieu there by amplifying the immune response by the longer loop.
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ratio (NLR) in peripheral blood results in poor clinical outcome (76,

77). However, as described above, the phenotype of the neutrophils

present in the TME also influences whether tumor associated

neutrophils will support an anti-tumor response or have a pro-

tumor effect. It is not surprising that several clinical trials targeting

neutrophils have been launched for Breast cancer, Hepatocellular

carcinoma, Colorectal neoplasms amongst others (76, 77).

Cancer cells, especially those that have advanced dysmorphic

features with unstable genomes resulting in chromosomal

instability (CIN), present DNA in the cytosol. Furthermore, the

oxidative stress that malignant cells are exposed to results in

mitochondrial dysfunction and release of mtDNA. Other sources

of cytosolic DNA in cancer cells include the leakage of genetic

material during cellular senescence (56, 58).

AIM2 has been implicated in the pathogenesis of tumors like

colon cancer, hepatic cancer, cutaneous squamous cell carcinoma

and endometrial carcinoma. Like several other oncogenic

proteins, AIM2 can, in a context dependent manner either

promote or inhibit carcinogenesis (78). AIM2 can also recognize

DNA released a result of ionizing radiation and/or use of

chemotherapeutic drugs (79).

Sox2 plays a role during all stages of carcinogenesis including

cancer cell proliferation, migration, invasion, and metastasis (80,

81). Sox2 signaling involves multiple different signaling

pathways such as EGFR, SHH, HIPPO, WNT/b-Catenin,
and TGF-b/Smads signaling pathways and results in enhanced

proliferation, survival, and tumorigenesis. Indeed, Sox2

amplification or overexpression is a frequently occurring event,

for example in Breast, Colorectal, Esophageal, Liver, Lung

adenocarcinoma, Prostate and is associated with advanced

stages of tumorigenesis, poor prognosis, and drug resistance,

making Sox2 a target for anti-cancer therapies (82, 83).

We now know that the cytosolic DNA in the cancer cell

themselves or within the immune cells present in the TME can

be detected by cGAS (56). From a tumorigenesis standpoint,

activation of cGAS-STING pathway and the subsequent release

of pro-inflammatory cytokines has two major consequences.

Firstly, it prevents the early neoplastic progression and secondly

it promotes the recruitment of effector immune cells (56). Within

the TME, it has been proposed that the cytosolic DNA in cancer

cells can be transmitted to adjacent antigen presenting cells like

dendritic cells. cGAMP, formed as a result of the binding of

dsDNA to cGAS in the cancer cell, can itself be transferred to the

adjacent cells in TME by moving through the gap junctions or

aided by tumor cell-derived exosomes (56, 58). Finally, a role for

this DNA sensing pathway has been identified in the cancer

metastasis, autophagy and response to the DNA damaging

therapies (56).

However, for the purpose of this review, it should be mentioned

that is has, so far, not been possible to study anti-cancer drugs

targeting AIM2, Sox2 or cGAS-STING pathway exclusively

in neutrophils.
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Since their discovery as part of the immune system,

neutrophils have been viewed as the primary responders

employing relatively primitive defensive mechanisms such as

phagocytosis, production of ROS and release of NETs. Recent

evidence is pointing out to the presence of well-defined signaling

cascades resulting from the recognition of pathogenic molecular

elements. The response of the neutrophils to presence of cytosolic

DNA aids the immune response by magnifying the initial response

to the pathogen. The release of IL-1b and type I IFNs can

profoundly alter the profile of the downstream immune cells

and influence the outcome of the immune response.

Identification of other pathogen recognition pathways in the

neutrophils will allow us to further understand the role of these

key defenders of the immune system and their relevance in

different diseases.
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