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Cutaneous immune-related
adverse events to immune
checkpoint inhibitors:
from underlying immunological
mechanisms to multi-
omics prediction

Ting Cao, Xuyang Zhou, Xingbiao Wu and Ying Zou*

Allergic Dermatoses Clinical Center, Shanghai Skin Disease Hospital, Tongji University School of
Medicine, Shanghai, China
The development of immune checkpoint inhibitors (ICIs) has dramatically altered

the landscape of therapy for multiple malignancies, including urothelial

carcinoma, non-small cell lung cancer, melanoma and gastric cancer. As part

of their anti-tumor properties, ICIs can enhance susceptibility to inflammatory

side effects known as immune-related adverse events (irAEs), in which the skin is

one of the most commonly and rapidly affected organs. Although numerous

questions still remain unanswered, multi-omics technologies have shed light into

immunological mechanisms, as well as the correlation between ICI-induced

activation of immune systems and the incidence of cirAE (cutaneous irAEs).

Therefore, we reviewed integrated biological layers of omics studies combined

with clinical data for the prediction biomarkers of cirAEs based on skin

pathogenesis. Here, we provide an overview of a spectrum of dermatological

irAEs, discuss the pathogenesis of this “off-tumor toxicity” during ICI treatment,

and summarize recently investigated biomarkers that may have predictive value

for cirAEs via multi-omics approach. Finally, we demonstrate the prognostic

significance of cirAEs for immune checkpoint blockades.

KEYWORDS

immune checkpoint inhibitors, cutaneous immune-related adverse events, multi-omics,
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1 Introduction

The development of immune checkpoint inhibitors (ICIs), such as monoclonal

antibodies targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)

and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), has dramatically changed the

landscape of therapy for multiple malignancies. ICIs represent one type of immune therapy

for cancer, among other options such as, surgery, chemotherapy, radiotherapy, targeted
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1207544/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1207544&domain=pdf&date_stamp=2023-06-22
mailto:zouyingsh@163.com
https://doi.org/10.3389/fimmu.2023.1207544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1207544
https://www.frontiersin.org/journals/immunology


Cao et al. 10.3389/fimmu.2023.1207544
therapy and immune therapy. In contrast to other therapies that use

toxic chemical or physical agents to kill tumors, immunotherapy

aims to harness the immune response. Immunotherapy is premised

based on the theory that the immune system should be able to

eliminate tumors, but the tumors ‘escape’ by some mechanisms,

termed ‘immunoediting’ (1, 2). Accordingly, immunotherapy kills

tumors by enhancing the anti-tumor ability of the immune system

or by inhibiting tumor immunoediting. It has been established that

checkpoints are some regulators of immune response, and tumors

could specifically stimulate some negative checkpoints to suppress

the immune response, thus escaping (3). Therefore, the immune

system may be used to target tumors by inhibiting negative

checkpoints, such as CTLA-4 and PD-1/PD-L1.

The intervention of immune homeostasis by ICIs can enhance

the anti-tumor function of the immune system, while also leading to

some adverse effects resulting from the systemic immune

overactivation (Table 1). These unwanted effects are often termed

immune-related adverse events (irAEs). Among all the related

organs and systems, the skin is one of the most common targets,

of which cutaneous irAEs (cirAEs) are often the first to manifest (5).

Since the suppressive effects of checkpoints on the immune

response are inhibited by ICIs, lymphocytes become over-

activated (22, 23), pro-inflammatory cytokines are abundantly

released (24, 25), and immune tolerance is destroyed (26, 27), all

of which may contribute to the irAEs. These adverse events present

a challenge for cancer patients receiving ICIs and can even force

them to withdraw from ICI therapy. However, the precise

mechanism of irAE remains unknown, and treatment primarily

comprises immunosuppressants, such as glucocorticoids (28).

Although there is scant evidence showing that the application of
Frontiers in Immunology 02
immunosuppressors can offset the anti-tumor effect of ICIs (29), the

development of new adverse events (e.g., opportunistic infection,

hyperglycemia, fluid retention, anxiety, and osteoporosis) should

not be ignored over the long term (30, 31).

Since cirAEs occur often and early, influencing the life quality of

patients, which reduces patient compliance to ICIs, the treatment of

which also gives rise to a series of new problems, there is an urgent

need to identify predictive biomarkers of cirAEs. Several risk factors

have been identified by epidemiological investigation, and the

serum levels of several molecules in patients suffering from irAEs

have been found to exhibit significant differences compared to those

without irAEs (Table 2). However, none of these biomarkers have

shown satisfying prediction efficacy, which may be due to the

heterogeneity and complex mechanisms of irAEs. The recent

advent of multi-omics, a combined technology including

genomics, transcriptomics, proteomics and metabolomics, has

been associated with substantial progress for revealing the

mechanism and predicting irAEs. Analyzing the genome helps us

to find mutations that are responsible for ICI-resistance and irAEs,

thus contributing to uncovering the mechanism of irAEs and

predict ing the r isk . Regarding to the heterogenei ty ,

transcriptomics deals with the distinct expression of genes,

providing a context-dependent understanding of what actually

occur in the anti-tumor immunity, and proteomics provides

functional insight into genomics. Moreover, since the metabolic

reprogramming is a hallmark of cancers, which is associated with

the tumorigenesis, progression, metastasis and drug-resistance, the

screening for metabolomics reveals the current condition or status,

helping to determine whether the tumors are responsive to ICIs and

whether the immune homeostasis is disturbed to elicit adverse
TABLE 1 Common cirAEs.

cirAEs Manifestations Immune
checkpoints

Ref.

Pruritus Inflamed skin and scratch marks PD-1/PD-L1,
CTLA-4

(4–7)

Maculopapular rash Faint erythematous macules and papules coalescing into plaques PD-1/PD-L1,
CTLA-4

(5, 8,
9)

Bullous pemphigoid (BP) Large, fluid-filled blisters located in between skin folding or creases of skin PD-1/PD-L1,
CTLA-4

(10–
12)

Vitiligo Patchy loss of skin color, premature whitening or graying of the hair, PD-1/PD-L1,
CTLA-4

(6,
13,
14)

Psoriasiform Patchy rash varying in color, small scaling spots, dry and cracked skin PD-1/PD-L1,
CTLA-4

(13,
15)

Eczema Dry and cracked skin, itchiness, rash on swollen skin PD-1/PD-L1,
CTLA-4

(5,
16,
17)

Stevens Johnson Syndrome (SJS) Painful raw areas called erosions that resemble a severe hot-water burn PD-1/PD-L1,
CTLA-4

(18)

Toxic epidermal necrolysis (TEN) Widespread skin pain, spreading rash, blisters and large areas of peeling skin, sores, swelling and
crusting on the mucous membranes, including the mouth, eyes and vagina

PD-1/PD-L1,
CTLA-4

(19,
20)

Drug reaction with eosinophilia and
systemic symptoms (DRESS)

An extensive mucocutaneous rash, accompanied by fever, lymphadenopathy, hepatitis,
hematologic abnormalities with eosinophilia and atypical lymphocytes

PD-1/PD-L1,
CTLA-4

(6,
21)
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events (51–53). From a systemic biology perspective, a macroscopic

immune network has gradually been uncovered and additional

molecules that were previously unknown have been identified as

biomarkers for the prediction of both anti-tumor efficacy and irAEs.
2 Epidemiology and clinical
manifestations

Cutaneous irAEs is one of the most common types of irAEs,

with regards to morbidity. cirAEs arise in as many as 34% of

patients receiving anti-PD-1/PD-L1 therapy and about 43% −45%

of those on CTLA-4 inhibitors (54). The incidence of cirAEs varies

among the patients suffering from different types of cancers, and

even different pathological subtypes and different stages of certain

cancers (55). Distinct types of ICIs can also lead to distinct

incidence of cirAEs (56). Nevertheless, cirAEs commonly

manifest as maculopapular rash, psoriasiform rash, bullous

pemphigoid (BP), vitiligo, pruritus, eczema, and Stevens-Johnson

syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction

with eosinophilia and systemic symptoms (DRESS) less commonly

(13). Cutaneous irAEs occur early, with the time to onset ranging

from 3 to 4 weeks (57), compared to 12 weeks in the endocrine

gland (58) and 22.2 weeks in the gastrointestinal tract (59).

Therefore, for the common and early onset and suffering

manifestations, there is an urgent need to investigate cirAEs,

uncovering its mechanism, and identifying its predictive

biomarkers. Such information will serve to relieve the pain of

patients as well as contribute to cancer therapy.
3 Mechanisms

ICIs are agents that block the interaction between checkpoints

and the associated ligands and thereby block the subsequent
Frontiers in Immunology 03
intracellular signaling. The most commonly used ICIs target PD-1/

PD-L1, with others targeting of CTLA-4, Tim-3, and LAG-3.

Although both CTLA-4 and PD-1/PD-L1 are negative checkpoints,

they play different roles in regulating the immune response, thus

leading to different adverse events once blocked. CTLA-4 is a

competitive inhibitor of CD28, a co-stimulatory signal receptor that

is essential for T cell activation (Figure 1A). CTLA-4 is considered to

be the most important negative checkpoint, as murine animals

lacking CTLA-4 will die at an early age due to severe

lymphoproliferation (60). Moreover, regulatory T cells (Treg) also

function via CTLA-4 expression, competitively binding to B7

expressed on antigen presenting cells (APCs), which blocks its co-

stimulatory effects on naïve T cells (61). PD-1 is one of the inhibitory

receptors that contain an immunoreceptor tyrosine-based inhibition

motif (ITIM) or the related immunoreceptor tyrosine-based switch

motif (ITSM), which could remove the phosphates once

activated and thereby inhibit the signaling (Figure 1B). PD-1 is able

to bind with PD-L1 and PD-L2, which are constitutively expressed by

a variety of cells and inductively expressed on APCs during

inflammation, respectively (62, 63). Regulating the expression of

PD-1 can control the intensity of the immune response, as pro-

inflammatory cytokines have been shown to down-regulate PD-1

expression and murine models lacking PD-1 tend to develop auto-

immune diseases (64). Therefore, various checkpoints substantially

contribute to the regulation of the immune response and tolerance.

Medications that affect checkpoints may lead to a disorder in

immune homeostasis.

Having established a macroscopic overview of the action of ICIs

in the immune response, we will now discuss the mechanism of

irAEs, especially cirAEs. In general, irAEs are primarily induced by

the overactivation of the immune response due to a blockades of

negative regulators, and auto-immune responses are activated as a

result. As previously discussed, cirAEs manifest commonly and

early, indicating that cirAEs have some distinct characteristics

other than the common mechanism of irAEs. Here, we propose
TABLE 2 Some current biomarkers of irAEs.

Category Biomarker Specific irAE Specific cancer type

Serum factors IL-6 (32–34) Non-specific Non-specific

IL-17 (25, 35) ICIs-induced colitis, Melanoma

C reaction protein (36–38) Non-specific RCC, NSCLC

Preexisting auto-antibody (39–41) Endocrine irAEs Non-specific

Serum neurofilament light chain (42) Neuro irAEs Non-specific

Cells Neutrophil to lymphocyte ratio (43) Non-specific Non-specific

Platelet-to-lymphocyte ratio (44) Non-specific NSCLC

IgG4+/PD-1+ MFI ratio (45) Non-specific Non-specific

Tumor Infiltrating Lymphocytes (46) Cutaneous irAEs Melanoma

Others TMB (47) Non-specific Non-specific

Circulating tumor DNA (48, 49) Non-specific Non-specific

Indoleamine 2,3-dioxygenase 1 (50) Immune-mediated hepatotoxicity Non-specific
RCC, renal cell carcinoma; NSCLC, non-small cell lung cancer; IL-6, interleukin-6; IL-17, interleukin-17; TMB, tumor mutation burden; MFI, mean fluorescence intensity.
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that the commensal microbiota and the distinct characteristics of

cutaneous immune system may be the issue. Next, we will first

demonstrate the role of auto-immune response in irAEs, followed

by a discussion of the commensal microbiota and the characteristics

of cutaneous immunity. Finally, we will discuss genetic factors.
3.1 Autoimmunity

An important mechanism of irAEs is the autoimmune response,

which is the immune response that targets self-antigens. Many

irAEs are considered to be or appear to mimic autoimmune

diseases, including myocarditis (65), diabetes mellitus (66),

hypothyroidism (67), pneumonitis (68), rheumatoid arthritis (69),

vitiligo (70), BP (10) and psoriasis (71). The association between

checkpoints and autoimmunity has previously been confirmed by

the Genome-Wide Association Study (GWAS), in which mutations

in the CTLA-4 and PD-1/PD-L1 genes were identified to be
Frontiers in Immunology 04
responsible for several autoimmune diseases, such as Grave’s

Disease and systemic lupus erythematosus (SLE) (72, 73). Other

studies have also demonstrated that the IL-27-mediated priming of

naïve T cells could upregulate the expression of PD-L1, which

inhibited the differentiation of CD4+ T cells into a Th17 phenotype,

thereby exhibiting protection against autoimmune diseases (74).

The mechanism of this protection also involved a blockade of the

TCR from binding to dendritic cells (DCs) through the interaction

of PD-1 and PD-L1 (75). Moreover, PD-L1 were found to be

abundantly expressed on pancreatic b-cells to avoid autoimmune

attack (76). Therefore, a PD-1/PD-L1 blockade may induce

autoimmune diabetes (type 1 diabetes mellitus, T1DM) by

destroying this tolerance. Pdcd1-/-Ctla4+/- mice can be used as the

model to study ICI-associated myocarditis (ICI-MC) (77).

Moreover, the engineered expression of PD-1/PD-L1 have been

used for the treatment of several immune diseases, including

arthritis, colitis, and T1DM (78, 79). This indispensable role of

PD-1/PD-L1 for preventing autoimmunity was also confirmed by a
FIGURE 1

Mechanisms of CTLA-4 and PD-1/PD-L1.CTLA-4 and PD-1 are both negative checkpoints that inhibit the activation of lymphocytes. (A) T cells can
be activated by APCs by pMHC-TCR (signal 1) and co-stimulatory molecules such as B7-CD28 (signal 2). CTLA-4 is competitive inhibitor of CD28,
which has higher affinity to B7, thus inhibiting the co-stimulatory signaling in T cells activation. (B) PD-1 is an inhibitory receptor that contains an
ITIM or ITSM, which mediate dephosphorylation reaction once activated, thus stopping the activation signaling transduction. CTLA-4, cytotoxic T-
lymphocyte-associated antigen 4; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; MHC, major histocompatibility complex; TCR, T
cell receptor; ITIM, immunoreceptor tyrosine-based inhibition motif; ITSM, immunoreceptor tyrosine-based switch motif.
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clinical research in a patient with an inherited PD-1 deficiency,

diagnosed with T1DM, hypothyroidism, and idiopathic arthritis,

who was dying from severe pulmonary autoimmunity (80). In fact,

although the mechanism of ‘central tolerance’ eliminates most of

the lymphocytes which could be activated by self-antigens, self-

reactive lymphocytes always exist in the natural immune repertoire

but do not elicit remarkable autoimmune diseases, due partly to the

lack of activation signal (also termed as ‘second signal’) and the

action of negative checkpoints such as PD-1/PD-L1, termed

‘peripheral tolerance’, thus keeping a balance between preventing

infection and preventing autoimmunity. In some contexts, infection

is a common trigger of autoimmune diseases because it leads to an

abundant release of pro-inflammatory cytokines, which act as

activation signals towards self-reactive lymphocytes. The

application of ICIs may also activate the autoimmune response by

liberating self-reactive lymphocytes from the inhibitory control of

negative checkpoints. Therefore, in this manner, irAEs of ICIs often

appear to mimic classic autoimmune diseases. Since self-active T

cells can induce the autoimmune response via two methods,

exhibiting direct cytotoxicity and facilitating B cell-induced

immune response, auto-antibodies are also involved in the irAEs,

which is in line with previous literature. The hypophysitis and

diabetes mellitus induced by anti-CTLA-4 and anti-PD-1/PD-L1,

respectively, can serve as examples of cases in which auto-

antibodies, while undetectable at baseline, developed significantly

following treatment with ICIs (64, 81). Another important

autoimmune disease is bullous pemphigoid (BP), which is

associated with impaired basement membrane zone (BMZ)

caused by auto-antibodies targeting BP180 and BP230. Trauma,

burn or radiation may elicit BP by destroying the immune barrier

which leads to the exposure of self-antigen to self-active

lymphocytes, and application of some drugs also results in BP

which may due to the immune-modulatory effects of these drugs.

ICBs will also give rise to disturbance of immune responses. The

increased risk of BP in patients receiving anti-PD-1/PD-L1 has been
Frontiers in Immunology 05
confirmed by series of clinic researches (11, 13, 82, 83), while the

molecular mechanisms still need further researches to elucidate. A

depletion of Tregs, which function depending on immune

checkpoints, may play a role in the pathogenesis of BP, according

to immunopathological results (84).

The relevance of anti-tumor efficacy and the irAEs of ICIs also

implies the autoimmune mechanism of irAEs. While some studies

did not confirm the association between the treatment efficacy and

irAEs (29), others did find that the occurrence of irAEs was usually

associated with a more robust response to ICI therapy and better

prognosis (70, 85–88). GWAS studies also identified an IL-7 variant

that can lead to increased irAEs incidence and a concomitant

increase in overall survival in melanoma patients (89, 90). The

failure of the immune system to eliminate tumors is partially due to

a lack of a true ‘onco-antigen’, that is, the tumors do not present

distinct antigens that can be recognized by the immune system

rather than being tolerated. This is because tumors comprise part of

our body and the mechanism of immune tolerance can prevent the

body’s response to them. The condition may differ with the

application of ICIs, which interferes with immune homeostasis.

Several studies have found that severe irAEs were associated with a

longer overall survival, even while regarding irAEs as an indicator

for predicting the prognosis of patients receiving ICIs. This finding

may be partly explained by the fact that ICIs can promote the anti-

tumor immune response by inhibiting immune tolerance, as PD-1/

PD-L1 plays an important role in mediating the immune tolerance.

An example is vitiligo, a common irAE in melanoma patients

receiving anti-PD-1 therapy that is caused by an autoimmune

attack to melanocytes (Figure 2). Research has proposed that this

effect is due to the cross-reactivity between T cells directed against

tumors and a related antigen expressed in normal tissues (27).

Under normal physiological conditions, T cell targeting of antigens

expressed on normal melanocytes will not be activated, nor will

those that target related antigens expressed on tumors due to the

immune tolerance. Therefore, neither the auto-immune response
FIGURE 2

Mechanism of anti-PD-1/PD-L1-induced vitiligo. (A) Melanoma and melanocytes exhibit some shared antigen but are protected from immune attack by
peripheral tolerance mechanisms, such as PD-1/PD-L1. (B) With PD-1/PD-L1 blocked, T cells will be activated by melanoma and initiate immune response
targeting both tumors and normal tissue, due to the shared antigen on melanoma and melanocytes, termed ‘cross-activation’. TCR, T cell receptor.
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nor the anti-tumor response is intensely elicited. Once tolerance is

destroyed by PD-1/PD-L1 blockade, these T cells will be activated

by melanoma or by melanocytes, thus attacking melanoma cells as

well as normal melanocytes, which may account for the relevance

between the efficacy and irAEs of ICIs. Moreover, this theory may

help explain why the irAEs vary among the different types of

cancers, depending on the cross antigens between tumors and

normal cells. Whether the PD-1/PD-L1 blockade could promote

anti-tumors immunity via decreasing tolerance to tumors requires

validation with further research. However, the role of checkpoints

in preventing autoimmune diseases and the relationship between

the severity of irAEs and better prognosis have been established by

previous studies.
3.2 Targeting at commensal microbiota

The link between commensal microbiota and response to ICIs

for the treatment of cancer has been revealed by a series of studies

that investigated the heterogeneity of the patients’ response to ICIs

(91–98). Using 16S ribosome RNA gene sequencing, both

preclinical and clinical studies have found distinct commensal

microbiota between patients who are ICI-responsive and non-

responsive (97, 99). There is increased concern that the

commensal microbiota and its metabolites have a substantial

influence on host homeostasis. For example, the interaction

between the microbiota and host can ‘shape’ the immune system

of the host. As a result, there is a heterogeneous response to ICIs due

to the heterogeneity of the commensal microbiota to some extent.

Although the association between the anti-tumor efficacy and the

irAEs of ICIs remains conflicting (29, 85, 100–102), some studies

have actually found a positive relationship (100–102), indicating

that commensal microbiota may play a role in the pathogenesis of

irAEs. It has been well established that the colon is the location in

which there is the most abundant commensal microbiota, and the

skin is another important residence. Epidemiological investigations

have shown that irAEs most commonly involve the skin, GI tract,

and endocrine system (5, 103). The microbiota abundance and irAE

frequency in the skin and GI tract may indicate the potential

relevance of commensal microbiota. One study confirmed an

association between irAEs and several Lachnospiraceae spp. and

indicated that the abundance of Streptococcus spp. substantially

contributes to the distinction of irAEs (91). Additional studies have

also supported the association between the commensal microbiota

and irAEs (93, 95, 104). Reports researching the impact of PPIs have

found that the application of PPIs has also had an impact on irAEs

by influencing the microbiome (105, 106). The commensal

microbiota profile may be used to predict irAEs (93) and the

therapy targeting the commensal microbiota, such as fecal

microbiota transplantation (FMT), may be used to cure irAEs (107).

Skin is the first-line barrier to protect the host from microbial

invasion while maintaining a peaceful coexistence with resident

microbiota (108), along with other barriers, such as the GI tract,

respiratory tract and genital tract. A homeostatic state is formed

under the complex microbiota-host interaction network and the

intensity of immune response is controlled to a ‘set point’, which is
Frontiers in Immunology 06
suitable for the micro-ecosystem. Immune homeostasis is

maintained by many immune regulators, including cytokines,

regulatory receptors and regulatory immune cells. The application

of ICIs makes great intervention for this control mechanism.

Physiologically, within the action of checkpoints, T cells will not

become activated to target commensal microbiota due to the lack of

activation signals and presence of inhibition signals, plus some

regulatory immune cells (e.g., Tregs) and cytokines (e.g., IL-10).

Once CTLA-4 or PD-1/PD-L1 is blocked, however, CD4+ and

CD8+ T cells may be activated and induce a subsequent immune

response, which can lead to tissue damage. A recent study found

that Staphylococcus epidermidis could only elicit inflammation in

the context of a CTLA-4 blockade, the latter of which resulted in

excessive activation of IL-17-producing commensal-specific T cells;

thus inducing skin damage (109). Moreover, since the commensal

microbiota itself also plays a crucial role in maintaining

immunological homeostasis, an inappropriate immune response

causes indirect damage by inhibiting commensal microbiota.

Research into inflammatory bowel disease (IBD) has revealed that

the failure to limit inappropriate inflammation contributes to

ulcerative colitis and Crohn’s disease (110–112), and other

research about atopic dermatitis (AD) has found that microbiota

diversity was decreased in inflamed AD skin (113) and reverted

during the treatment and recovery (114). Moreover, epidermal

barrier dysfunction represents a key factor associated with the

pathogenesis of AD, which can be due to an over-release of pro-

inflammatory cytokines and damage-associated molecular patterns

(DAMPs) (115), such as that seen in inherited filaggrin deficiency

(116). Further research into the influence of ICIs on the cutaneous

micro-economy must be conducted. In summary, the cutaneous

commensal microbiota is highly involved in the pathogenesis of

cirAEs and the immune responses targeting commensal microbiota

can lead to tissue damage by both direct and indirect methods, as a

result of impaired immune tolerance.
3.3 The cutaneous immunity

In this section, we will aim to explore that why the skin is a

common and early target of irAEs. The hallmark of the skin from an

immunological perspective is the abundance of immune molecules

and cells, as well as higher activity of the immune response. The

immune profile is determined by and is suitable for the systemic

role of the skin as a barrier for the entire body and its corresponding

physiological functions. Our internal environment is separated

from the external environment by the skin and mucosa, which

covers the surface of body and the internal lumen, respectively, such

that the skin is exposed to the most direct effects of various of

physical, chemical and biological factors. The role of the skin to

protect the internal environment from being affected by these

disturbing agents, thereby helping to maintain internal

homeostasis, so as to increase the active immunity of the skin.

Similar to the colon, which also continuously makes contact with a

wide range of foreign antigens and may lead to diarrhea, abdominal

distension, and abdominal pain if the local immune response is

induced (117–120), the skin also continuously faces a multitude of
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foreign stimuli. Moreover, since the immune responses to these

factors can occasionally be senseless and challenging, immune

tolerance is of greater significance in the skin compared to other

parts of the body. UV radiation will give rise to DNA damage (121,

122), contacting chemicals will also affect, and the commensal

microbiota is an obvious source of foreign antigens. Using the

immune response induced by UV radiation as an example,

keratinocytes could be activated by UV radiation, initiating the

formation of NLRP3 inflammasome and releasing IL-1b, which acts
as an important pro-inflammatory cytokine (123, 124). By blocking

the mechanisms used to limit the immune response, the persistent

stimuli of UV radiation can over-activate the immune response in

both intensity and duration, leading to cutaneous disorders.

Therefore, the skin is a common target for the destruction of

immune tolerance by ICIs. Moreover, the immune response in

the skin is more readily initiated due to the abundance of the

immune cells residing within the skin. Keratinocytes and

melanocytes represent two major types of epidermal cells which

generate keratin and melanin and act as crucial components of the

skin barrier, respectively. In addition, both of these cell types

express TLRs and NLRs and can initiate the immune response by

secreting pro-inflammatory cytokines and chemokines to activate

and recruit other immune cells (125, 126). Another important cell

type that can induce an immune response is Langerhans cells (LCs),

which can be regarded as a specific type of dendritic cell for its

similar antigen-presenting function as a classic DC, whereas recent

studies have shown that LCs are resident macrophages in the

epidermis (127). Additionally, tissue-resident memory T cells

(TRM) also contribute substantially with their ability to rapidly

recall the immune response by releasing cytokines or exhibiting

cytotoxicity (128). In particular, CD8+ TRM have been shown to

patrol the tissue or function as a local sentinel in both epidermal

and dermal layers, providing a rapid and tissue-wide immune

response (129). Significantly, there is a constitutive expression of

negative checkpoints (e.g., PD-1, LAG-3, and Tim-3) on these TRM

in the skin (130, 131). Therefore, the application of ICIs may lead to

the over-activation of TRM. Taken together, these characteristics of

cutaneous immunity indicate that the skin is more susceptible to the

adverse events induced by drugs that affect immune homeostasis

and the onset of cirAEs occurs swiftly due to the rapid responses of

these immune cells.

In addition to inducing a local immune response, the skin is also

responsible for transmitting invading signals to the brain; thus, the

skin is largely innervated by sensory nerves. The role of

inflammation on inducing sensations such as pain and itching is

relatively clear (132). It has been shown that some neuropeptides,

such as substance P (SP) and vasoactive intestinal peptide (VIP),

can activate immune cells (e.g., mast cells), as confirmed by

previous studies (133–135). Additionally, several studies have

reported highly complex crosstalk or interactions between the

immune response and these sensations. Moreover, the

experimental application of imiquimod (IMQ) in murine skin

could provoke inflammatory lesions that resemble human

psoriasis. This effect was found to be blocked pharmacologically

or through genetic ablation of nociceptors and could be restored by

exogenous IL-23. A subsequent detailed study confirmed that the
Frontiers in Immunology 07
sensory neurons expressing the ion channels, TRPV1 and NaV1.8,

could regulate the production of IL-23/IL-17 by interacting with

dermal dendritic cells to modulate the local immune response (136).

Another subset of neurons expressing MrgprD was shown to inhibit

the degranulation of mast cells and limit the cutaneous immune

response via releasing glutamate. Indeed, the loss of these neurons

may lead to immune disorders (137). There is also a subset of

macrophages that have been identified to interact with sensory

nerves, surveilling and trimming the myelin sheath (138). Due to

the complicated interaction between sensory nerves and immune

cells, such homeostasis appears to be susceptible to intervention,

and some unpleasant sensations (e.g., chronic pain and itchiness)

are commonly induced once the immune response is activated, as

the manifestation of cirAEs.
3.4 Genetics

We have established that the irAEs are closely related to

autoimmunity. Despite the unclear precise mechanism,

epidemiological investigations have found that autoimmune

diseases usually have a strong genetic component, which means

some are easier to suffer from these diseases, whereas others are not.

Psoriasis is a common disease that cirAEs appear to mimic (also

termed ‘psoriasiform rash’) after using PD-1/PD-L1 (139, 140) and

is considered to be an autoimmune disease to some extent (141,

142). Previous research has found that in people with parents

suffering from psoriasis are easier to suffer from this disease

(143), several psoriasis susceptibility genes have been identified,

including HLA-Cw6, IL12B, IL23R, and LCE3B/3C (144). T1DM is

another example which is also a classic autoimmune disease and

one of the most common irAEs. The primary risk factor for b-cell
immunity is confirmed as genetic, which mainly occurs in

individuals with either HLA-DR3-DQ2 or HLA-DR4-DQ8

haplotypes, or both (145). Alopecia is the most common hair

toxicity associated with ICIs and has a phenotype similar to

alopecia areata (AA) (13). The GWAS study identified 139 SNPs

associated with AA and demonstrated an autoimmune mechanism

(146). Genomics-based and recent multi-omics-based approaches

have shed light on the research into autoimmune diseases and

irAEs. Some of these biomarkers may potentially be applied for the

prediction and precise treatment of diseases in the future.
4 Prediction of cirAEs

Since cutaneous irAEs occur often and early, patients suffer and

are forced to withdraw, and there is an urgent and unmet demand for

seeking validated biomarkers to predict cirAEs due to its high

morbidity and negative influence on cancer immunotherapy. This

task can be conducted by traditional epidemiological methods, such

as cross-sectional, cohort, or case-control studies (147–149). The

probable biomarkers that have currently been identified are either

general characteristics (e.g., age (150, 151), gender (152), and BMI

(153)) or common serum molecules based on the current

understanding of the immunological mechanisms of cirAEs (e.g.,
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CRP (154), IFN-g (155)). Regarding to the antigenicity, tumor

mutation burden (TMB) (156–158) and microsatellite instability

(MSI) (159, 160), which stand for the neoantigen or onco-antigen,

are used to predict the efficacy of ICIs and the risk of irAEs. As for the

strategies by which tumors suppress the immune response, the

expression of PD-L1 was also considered as a predictive biomarker

for the responsiveness of ICIs (161). However, these biomarkers do

not provide appropriate predictions in clinical practice, and the

results of studies identifying these biomarkers also remain

conflicting. These discrepancies are partially due to the

heterogeneity of the cirAEs. As previously discussed, cirAEs are

closely related to cutaneous commensal microbiota and

autoimmunity, both of which are highly heterogeneous among the

population. Therefore, general characteristics alone may not be

sufficient to induce cirAEs and those serum factors often play a

common role in several pathways in the immune network, thereby

lacking precision. Traditional research methods of molecular biology

explore the role of a ‘pathway’ rather than dealing with the ‘network’,

ignoring the crosstalk among the pathways which appear to be

independent. In contrast, the technology of multi-omics screens for

the whole genome, transcriptome, proteome and metabolome,

analyzing the whole signaling network in different stages from gene

to metabolites. It also helps to study commensal microbiota, which is

unavoidable in cirAE research, as discussed previously.

Researchers have identified LCP1 and ADPGK as irAE

biomarkers by conducting a comprehensive screening across

mRNA, miRNA, lncRNA, protein expression and non-silent gene

mutations across 26 cancer types, in which lymphocyte cytosolic

protein 1 (LCP1), involved in T cell activation, achieved the highest

correlation coefficient. The addition of the adenosine diphosphate-

dependent glucokinase (ADPGK), which can mediate a metabolic

shift during T cell activation, to LCP1, led to a linear-regression

model with the best accuracy among all the bivariate models. These

two biomarkers were validated by a subsequent cohort study, which

involved 28 cancer patients receiving anti-PD-1/PD-L1 therapy and

found higher geometric mean and stronger immunohistochemistry

staining in the irAEs group. The area under the receiver-operating

characteristic curve (AUC) of LCP1 and ADPGK to predict irAE

was 0.78 and 0.78, whereas the combination of LCP1 and ADPGK

had a better AUC value at 0.80 (162). Another study established a

tri-variate model composed of CDC42EP3-206, TMEM138-211,

and IRX3-202 to predict irAEs by combining pharmacovigilance

data and pan-cancer transcriptomic information (163). RNA and

whole exon sequencing of tumors from 13 patients who developed

ICI-induced diabetes mellitus (ICI-DM) showed significant

overexpression of ORM1, PLG, G6PC and a missense mutation in

NLRC5. The researcher proposed that NLRC5 mutation could be

used to predict ICI-DM (164). The analysis of protein-protein

interactions also helped to identify biomarkers, for which four

immunogenetic variants were identified by genotyping 39 variants

in 18 genes using a multiplex genotyping assay (165). Single-cells

RNA sequencing revealed that patients with distinct T cells

populations at baseline were under the risk of distinct types of

irAEs and this could serve as biomarker for those irAEs. Fewer

CD8+ TCM cells, more Th2 and Th17 cells were observed in patients

with irAEs, and were associated with a higher risk of ICIs-induced
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arthritis, pneumonitis, and thyroiditis (166). Higher resolution

human leucocyte antigen (HLA)-I typing on 179 patients with

NSCLC treated with anti-PD-1/PD-L1 found that homozygosity at

one or more HLA-I loci was associated with a reduced risk of irAE,

including pruritus and rash (relative risk (RR) = 0.61, 95% CI 0.33 −

0.95, P = 0.035) and this could also serve as a biomarker (167). A

variation in HLA-DRB1 was found to be associated with one or

more types of cirAEs, and a more detailed association between

HLA-DRB1*11:01 and pruritus was validated (168). This finding

was in line with that of a previous study confirming an association

between HLA-DRB1*11:01 and atopic dermatitis (AD) (169). The

results of 16S rRNA gene amplification and multi-parallel

sequencing also indicated that microbiota may serve as a

potential biomarker (93, 104). Non-coding RNA (e.g., miR-146a)

was found to be associated with irAEs in preclinical studies, and the

predictive efficacy was validated by analyzing the effect of a SNP in

the MIR164A gene on irAEs in 167 patients treated with ICIs. SNP

rs2910164 led to reduced miR-164a expression and was associated

with an increased risk of irAEs (170). Taken together, these studies

via multi-omics technology have shed light on the discovery of

biomarkers that can predict irAEs, although the efficacy should be

validated using large number of clinical trials and the testing

methods must be improved to be suitable for clinical practice.

There’re also many biomarkers for the responsiveness to ICIs

therapy being identified by means of multi-omics, with a potential

role in predicting irAEs as well. In a rich resource of scRNA-seq and

bulk mRNA-seq analysis, B cells and T follicular helper cells were

found mediating the response to ICI in breast cancers, and a new

predictive gene signature was identified (171). Based on the

antigenicity of tumors, the analysis of self-immunopeptidome also

served to predict the response of ICIs. This method calculated the

ratio of nonsynonymous to synonymous mutation (dN/dS) to

discriminate the ‘escaped tumors’ and ‘edited tumors’, with the

former presenting neoantigens but escaping immune attack by

immunosuppressive mechanisms such as over-expressing PD-L1,

thus responsive to ICIs and under risk of irAEs; and the latter

escaping by neoantigen-depletion that prevent tumors from being

recognized by immune system, thus non-responsive to ICIs (172). A

study of proteomics also identified leukemia inhibitory factor (LIF)

as a novel predictive biomarker of resistance of ICIs (173).

Moreover, a quantitative functional proteomics analysis[QF-Pro]

found that functional engagement of the PD-1/PD-L1 complex but

not PD-L1 expression alone is highly predictive to the response to

ICIs in non-small-cell lung cancer (174). Another multi-omics

study of 108 human papilloma virus (HPV)-negative head and

neck squamous cell carcinomas (HNSCCs) identified three subtypes

with responsiveness to CDK inhibitors, anti-EGFR antibody and

immunotherapy, respectively, and an immune-proteogenomic

analysis uncovered the mechanisms of immunosuppression and

ICIs-resistance (175). Metabolomics studies found that

hypoxanthine and histidine in early on-treatment serum (176),

indoleamine-2,3-dioxygenase (IDO) (177) and very long-chain fatty

acid-containing lipids (VLCFA-containing lipids) (178) were also

predictive biomarkers for the response to ICIs. Still, these

biomarkers need further validation for the predictive efficacy of

irAEs, in addition to the anti-tumor efficacy.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1207544
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2023.1207544
Another important method is radiomics, which assess tumors

based on the abundant images from computed tomography (CT),

magnetic resonance imaging (MRI) and positron emission

tomography/computed tomography (PET/CT) (173, 174). The

analysis of genomics, transcriptomics, proteomics and

metabolomics, as previously discussed, need puncture or surgery

for biopsy. Due to the spatial and temporal heterogeneity, however, it

is not available to get whole information by sampling (175). As a

widely used and non-invasive diagnosis method, radiographic

examination serves as a repeatable and rapid approach for

assessing the tumors. These traditional radiographic imaging,

equipped with modern technologies such as high-resolution

imaging, data mining algorithms and high-throughput analysis,

provides global information about the biology of tumors and

contributes to predicting the efficacy and adverse events of

immunotherapy. Nowadays, radiomics studies seek for biomarkers

mainly by analyzing the characteristics of tumor microenvironment

(TME) (176), such as tumor-infiltrating lymphocytes (TIL),

microcirculation, various signal molecules and extracellular matrix,

tightly associated with immunotherapy. As known, TIL is a

significant parameter to predict the response to immunotherapy,

CT, PET/CT and MRI-based biomarkers to assess TIL have been

identified by radiomics studies (4, 177, 178). There’re also radiomics-

based prediction models for assessing the PD-L1 expression being

proposed, using the radiomics feature combined with clinical

characteristics (5–9). Radiomics features that predict ICI-induced

pneumonitis were identified by maximum relevance and minimum

redundancy feature selection method, anomaly detection algorithm,

and leave-one-out cross-validation, despite the predictive efficacy to

other types of irAEs remaining unvalidated. Nevertheless, radiomics

analysis, involving in the technology of multi-omics, will play an

increasingly crucial role in the research of tumors.
5 Summary

In this review we discussed the application of ICI therapy to

cancers and its adverse events in epidemiology, followed by a

detailed discussion of its immunological mechanism and

prediction. Cutaneous irAEs represents one of the most common

types of irAE associated with ICI therapy and can lead to substantial

suffering, as well as hinder the normal application of ICI, with a

blockade of the normal role of checkpoints in the regulation of

immune response being an initiating factor of irAEs. The immune

response is a double-edge sword in that an appropriate immune

response can serve as a defense against invading pathogenic

microbes, eliminating damaged and aging cells and surveilling the

oncogenic cells, whereas a disordered immune response will induce

harmful effects. Checkpoints, including positive and negative

checkpoints, play a crucial role in limiting the immune response

and mediating immune tolerance. In this manner, these

checkpoints contribute substantially to the maintenance of

immune homeostasis, although it might be used by tumors to

suppress immunity. From this perspective, ICIs may induce the

non-specific enhancement of immune activity, including both

increased cytotoxicity and broadened immune targets, thereby
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giving rise to an over-activated immune response. Such

overactivation can manifest as irAE, and cutaneous irAEs

commonly occur early for the distinctive immune signature of the

skin as discussed above. For the broad use of ICIs in comprehensive

cancer therapy, predicting and identifying irAEs is necessary,

especially cirAEs. Previous studies have primarily conducted

epidemiological investigations or measured the serum levels of

some immune molecules, failing to identify satisfying biomarkers

due to the heterogeneity of irAEs. Multi-omics analysis has shed

light on the precise mechanism of irAEs and identify several genetic

variants, non-coding RNAs and enzymes, which can potentially

serve as biomarkers for predicting cirAEs; however, further clinical

validation is required. Nevertheless, we believe that multi-omics

research will continue to contribute more for both uncovering the

mechanism and identifying of biomarkers.

Although various of PD-1/PD-L1 blockers have been applicated

in clinical practice, the complete mechanisms of checkpoints such

as TIM-3 and LAG-3 still remain unclear and the distinct

mechanisms of irAEs induced by different types of ICBs need

more researches to elucidate. The clinical manifestations of irAEs

also provide a novel pathway to uncover the role of these immune

checkpoints in regulating immune homeostasis. More precise

understanding of cutaneous immunity and cutaneous immune

diseases such as psoriasis and atopic dermatitis is also needed for

exploring the mechanisms of cirAEs. The predictive biomarkers for

cirAEs will be more precise, specific to certain type and severity of

cirAEs. Finally, the developing multi-omics analysis technologies,

especially single-cell and spatial multi-omics analysis, will provide

more and more information which helps not only to find predictive

biomarkers but also to uncover the mechanisms of cirAEs.
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