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COVID-19 and the risk of
neuromyelitis optica spectrum
disorder: a Mendelian
randomization study

Dongren Sun, Qin Du, Rui Wang, Ziyan Shi, Hongxi Chen
and Hongyu Zhou*

Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang, Chengdu, China
Background: An increasing number of studies have elucidated a close nexus

between COVID-19 phenotypes and neuromyelitis optica spectrum disorder

(NMOSD), yet the causality between them remains enigmatic.

Methods: In this study, we conducted a Mendelian randomization (MR) analysis

employing summary data sourced from genome-wide association studies

(GWAS) pertaining to COVID-19 susceptibility, hospitalization, severity, and

NMOSD. The primary MR analysis employed the Inverse variance weighted

(IVW) approach, which was supplemented by MR-Egger, weighted median,

simple mode, and weighted mode methods. We implemented various

sensitivity analyses including Cochran’s Q test, MR-PRESSO method, MR-Egger

intercept, leave-one-out analysis, and funnel plot.

Results: The MR results demonstrated a nominal association between COVID-19

susceptibility and the risk of AQP4+ NMOSD, as evidenced by the IVW method

(OR = 4.958; 95% CI: 1.322-18.585; P = 0.018). Conversely, no causal association

was observed between COVID-19 susceptibility, hospitalization, or severity and

the increased risk of NMOSD, AQP4-NMOSD, or AQP4+ NMOSD. The

comprehensive sensitivity analyses further bolstered the robustness and

consistency of the MR estimates.

Conclusion: Our findings provide compelling evidence for a causal effect of

COVID-19 phenotype on AQP4+ NMOSD, shedding new light on the

understanding of the comorbidity between COVID-19 and NMOSD.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a

global panic and posed a significant public health threat (1). The

phenotype of COVID-19 including susceptibility, hospitalization

and severity showed a high degree of heterogeneity (2). Specifically,

most patients presented as asymptomatic, and a small proportion

required hospitalization or even death. Changes in the neurological

and psychiatric sequelae of COVID-19 survivors were tracked (1).

The COVID-19 pandemic spans less than four years to date.

Therefore, the physical and mental effects of COVID-19 over a

longer timeline are still unknown.

Accumulating evidence suggests that SARS-CoV-2 can

penetrate the blood-brain barrier and multiple pro-inflammatory

cytokines such as IL-6, IL-10, and IFN-g, trigger a cytokine storm

that induces immune dysregulation leading to CNS demyelinating

lesions (3–5). These factors are closely related to neuromyelitis

optica spectrum disorder (NMOSD). A growing body of case

reports or series has documented the emergence of NMOSD

subsequent to COVID-19 infection or COVID-19 vaccination (6–

9). Although these studies show a clear chronological sequence, it

remains uncertain whether COVID-19 infection caused or triggered

latent NMOSD. Clarifying the causal relationship between them is

urgent in the COVID-19 era.

Mendelian randomization (MR) is a robust approach employed

to evaluate the causal relationship between exposure factors and

outcomes, leveraging single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) (10, 11). The utilization of the MR

approach offers notable advantages in mitigating residual

confounding, as the random allocation of genetic variants during

conception ensures minimal association with confounding factors.

Moreover, this method effectively mitigates the issue of reverse

causality, as the genetic variations utilized to approximate the effects

of exposure remain unaffected by the occurrence and progression of

the outcome (12). Herein, we applied a two-sample MR approach to

investigate the causal effects of COVID-19 susceptibility,
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hospitalization, and severity on NMOSD. The overall design flow

of this study is shown in Figure 1.
Methods

Data sources and genetic instruments

Exposure sources
COVID-19

We used the most current available data pertaining to COVID-

19 phenotypes, sourced from the COVID-19 Host Genetics

Initiative (2) (RELEASE 7, updated April 2022). This

comprehensive dataset encompasses three distinct components:

COVID-19 susceptibility, COVID-19 hospitalization, and

COVID-19 severity. Notably, COVID-19 susceptibility involved

the analysis of 159,840 cases and 2,782,977 controls, with reliable

SARS-CoV-2 infection serving as the defining criterion. The

examination of COVID-19 hospitalization encompassed 44,986

cases and 2,356,386 controls, focusing on patients who required

hospitalization due to COVID-19. Additionally, the assessment of

severe COVID-19 phenotypes entailed 18,152 cases and 1,145,546

controls, specifically targeting individuals who either succumbed to

the illness or necessitated respiratory support (13). Detailed

information regarding these parameters can be found in Tables 1, 2.
Outcome sources

The NMOSD trait analyzed in this study was derived from an

extensive GWAS dataset, comprising 215 individuals diagnosed

with NMOSD, including 132 with aquaporin-4 antibody-positive

NMOSD (AQP4+NMOSD), 83 with aquaporin-4 antibody-

negative NMOSD (AQP4-NMOSD), and a control group of 1,244

healthy individuals (14). The researchers conducted a preliminary

study (Stage I) that included 86 individuals diagnosed with

NMOSD and a control group of 460 healthy participants. In the
FIGURE 1

Study overview. IVs, instrumental variables; SNP, single nucleotide polymorphism; AQP4, aquaporin-4 antibody; +/-, positive/negative; NMOSD,
neuromyelitis optica spectrum disease. Three core assumptions: (I) genetic variants that are IVs must be strongly associated with the exposure of
interest; (II) SNPs should not be associated with any potential confounders; and (III) SNPs can only influence outcome trait through risk factors that
represent the exposure not through other causal pathways.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1207514
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1207514
subsequent phase (Stage II), they expanded their investigation to

include 129 individuals with NMOSD and an additional 784 healthy

controls. Following these phases, a comprehensive meta-analysis

was conducted. Through meticulous analysis, this study successfully

identified two distinct signals within the major histocompatibility

complex region that are significantly associated with NMOSD.

Notably, the findings revealed that AQP4+NMOSD exhibits a

greater genetic resemblance to systemic lupus erythematosus

(SLE) than to multiple sclerosis (MS). The clinical characteristics

of the NMOSD sample at both stages are shown in Table 3.
Selection of instrumental variables

First, we identified SNPs that exhibited strong associations (P <

5E-8) with COVID-19 phenotypes. Second, a clumping procedure

was applied to SNPs representing the COVID-19 phenotypes,

employing a cut-off value of R2 < 0.001 and a clumping window

of 10,000 kb. Third, SNP proxies were used if no IVs were extracted

from the outcome trait (minimum LD R2 value 0.8). Fourth, we

harmonized the selected IVs and removed palindromic SNPs to

avoid potential reverse causality. In addition, the F-statistic was

computed for each SNP to address weak instrument bias (10). F-

statistic > 10 implies strong instrument strength. The F-statistic was

derived using the following formula: R2 × (N-k-1)/[(1-R2) × k],

where N represents the sample size of the COVID-19 phenotype

GWAS, k denotes the number of SNPs, and R2 signifies the
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proportion of variability in the COVID-19 phenotype that can be

explained by each SNP. Additionally, R2 was computed using the

formula: 2 × beta2 × (1-EAF) × EAF, with EAF representing the

effect allele frequency and beta representing the estimated genetic

effect of each SNP on the COVID-19 phenotype (15, 16).
MR analysis and sensitivity analysis

The primary estimation of causal effects was conducted using

the random-effects inverse-variance weighted (IVW) method,

which combines the Wald ratio of each SNP pair outcome to

generate an overall causal estimate (17). We also employed MR-

Egger, weighted median, simple mode, and weighted mode methods

to complement the IVW. The Cochran’s Q test of the IVW

approach was used to investigate heterogeneity. To detect

horizontal pleiotropy, we utilized the MR-Egger intercept test and

MR Pleiotropy Residual Sum and Outlier test (MR-PRESSO).

Robustness and consistency of the MR results were evaluated

through leave-one-out analysis and funnel plot (18). In addition,

we utilized a widely used tool (https://shiny.cnsgenomics.com/

mRnd/) to evaluate the statistical power of our MR estimates.

Although any violations of the MR hypothesis were evaluated in

extensive sensitivity analyses, we used the PhenoScanner tool (19,

20) to assess whether genetic variants were associated with potential

confounders including age, sex, and autoimmune disease (21–23).

Multiple comparisons were corrected by Bonferroni measures
TABLE 2 Definition of case and control for the COVID-19 phenotype.

Trait Definition for case Definition for control

COVID-19
susceptibility
(COVID-19
infection)

a positive SARS-CoV-2 infection (e.g., RNA RT-PCR or serloogy test), electronic health record evidence of
SARS-CoV-2 infection (using International Classification of Diseases or physician notes), or self-reported

infections from the patients

any individuals without a history of
COVID-19

COVID-19
hospitalization

hospitalized patients with COVID-19

any individuals not experiencing a
hospitalization for COVID-19,
which includes those without

COVID-19

COVID-19
severity

(severe COVID-
19)

hospitalized individuals with COVID-19 who died or required respiraonry support. Respiraonry support was
defined as intubation, continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP),

continuous external negative pressure, or high-flow nasal cannula.

individuals without severe COVID-
19 (including those without

COVID-19)
TABLE 1 An overview of the summary data from the GWAS used in the present study.

Trait Ancestry Ncase Ncontrol Sample size PMID/URL

COVID-19 susceptibility Mixed 159,840 2,782,977 2,942,817 https://www.covid19hg.org/results/r7/

COVID-19 hospitalization Mixed 44,986 2,356,386 2,401,372 https://www.covid19hg.org/results/r7/

COVID-19 severity Mixed 18,152 1,145,546 1,163,698 https://www.covid19hg.org/results/r7/

NMOSD European 215 1,244 1,459 29769526

AQP4+NMOSD European 132 1,244 1,376 29769526

AQP4-NMOSD European 83 1,244 1,327 29769526
Mixed represents a wide range of countries from around the world, but the European population is the majority (87.2% - 99.3%). PMID/URL: the PubMed ID or web link. NMOSD, neuromyelitis
optica spectrum disorder; AQP4, aquaporin-4; +/-, Positive or negative antibody.
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(P=0.05/9 = 0.001). P < 0.001 was considered statistically

significant. P < 0.05 was regarded as nominally significant. Our

study followed the STROBE-MR Statement (24). All statistical

analyses were performed using the TwoSampleMR package (v

0.5.6) within the R software (v 4.2.1).
Results

In our MR studies, we obtained strongly correlated (P < 5E-8)

independent (R2 < 0.001) SNPs for exposure. All F-statistics were

greater than 10 (from 729 to 99007). These SNPs explained between

1.73% and 24.08% of the variance of exposure. All MR estimates of

power were greater than 0.8, representing sufficient (Supplementary

Table S1).
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MR effect of COVID-19 phenotypes
on NMOSD

We observed no statistically significant effect of COVID-19

susceptibility on the increased risk of NMOSD or AQP4-NMOSD

(NMOSD: OR = 1.915, 95% CI: 0.647 - 5.667, P = 0.240; AQP4-

NMOSD: OR = 0.565, 95% CI: 0.099 to 3.212, P = 0.520;

Supplementary Figures S1-3). Similarly, we found no evidence to

support a causal association between COVID-19 hospitalization

and severity on NMOSD, AQP4+NMOSD or AQP4-NMOSD

(Figure 2). Interestingly, genetic liability to COVID-19

susceptibility was nominally associated with AQP4+NMOSD by

implementing the IVW approach (OR = 4.958, 95% CI: 1.322-

18.585, P = 0.018; Figure 2), consistent with MR Egger, weighted

median and weighted mode (Supplementary Figures S1-3).
FIGURE 2

IVW results of COVID−19 phenotypes on risk of NMOSD. IVW, inverse-variance weighted method; NMOSD, neuromyelitis optica spectrum disease.
TABLE 3 Clinical picture in the NMOSD patients.

Stage I Stage II

Ancestry European European

Age 45.5 years 46 years

Female-to-male ratio 42:1 NA

Ncase total: 86; AQP4+: 66; AQP4-: 20 total: 129; AQP4+: 66; AQP4-: 63

Ncontrol 460 784

Definition for case
Patients from the University of Texas Southwestern and the Accelerated

Cure Project who met the 2006 NMO diagnostic criteria.
Patients from the Accelerated Cure Project extension who

meet the 2006 NMO diagnostic criteria.

Definition for control normal individuals from the Genomic Psychiatry Cohort neurological normal individuals from Coriell collections

Type of first symptoms

Visual total: 28/86; AQP4+: 21/66; AQP4-: 7/20 NA

Spinal total: 46/86; AQP4+: 39/66; AQP4-: 7/20 NA

Both total: 8/86; AQP4+: 4/66; AQP4-: 4/20 NA

Smoker total: 57/86; AQP4+: 43/66; AQP4-: 14/20 NA

Years Diagnosed (mean ±
standard deviation)

total: NA; AQP4+: 2.26 ± 2.19; AQP4-: 2.18 ± 2.39 NA

Years Symptoms
(mean ± standard

deviation)
total: NA; AQP4+: 5.79 ± 6.12; AQP4-: 6.47 ± 7.21 NA
NA, not available; AQP4, aquaporin-4; +/-, Positive or negative antibody.
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Sensitivity analysis

In our comprehensive MR analyses, the Cochran’s Q test

yielded p-values greater than 0.05, suggesting the absence of

heterogeneity. The Egger intercept, approaching zero with a p-

value exceeding 0.05, indicated no potential horizontal pleiotropy.

Furthermore, the MR-PRESSO test detected no outliers of

horizontal pleiotropy that could compromise our MR estimates

(all Global Test p-values > 0.05) (Table 4). The robustness of our

findings was confirmed by leave-one-out analyses, which

demonstrated that MR estimates were not influenced by

individual SNPs. Funnel plots were almost symmetrical with the

IVW method (Supplementary Figures S1-3). These results further

strengthen the robustness and consistency of MR results.
Confounding analysis

Although extensive sensitivity analyses indicated no bias in MR

estimates, we manually retrieved potential confounders using the

Phenoscanner online tool. We identified associations of rs505922

with Graves’ disease, rs9916158 with ulcerative colitis, rs1634761

and rs1128175 with self-reported MS, and rs13107325, rs914615

and rs646327 with Crohn’s disease. After excluding these SNPs, the

causal association of COVID-19 susceptibility with AQP4

+NMOSD remained nominally significant (IVW: OR = 5.090,

95% CI: 1.151-22.505, P = 0.032). The remaining MR analyses

were consistent with previous results (Supplementary Table S2).
Discussion

To our knowledge, we have comprehensively assessed the causal

association between COVID-19 phenotypes and NMOSD for the

first time. In this MR study, our findings showed that genetically

predicted COVID-19 susceptibility was associated with a high risk

of AQP4+ NMOSD. Extensive sensitivity analysis was consistent
Frontiers in Immunology 05
with the primary results, consolidating the stability and consistency

of the MR analysis.

Accumulating evidence shows an inextricable association

between SARS-CoV-2 infection and neuroimmune diseases (4).

The underlying pathogenesis is that SARS-CoV-2 infection of

multiple cells, including macrophages, neutrophils, and dendritic

cells, induces an immune response in T cells and B cells by

producing interferon and drives the accumulation of pro-

inflammatory chemokines and cytokines, creating a “cytokine

storm” that invades and damages the central and peripheral

nervous system, leading to neuroinflammation and demyelination

(4, 25). The development of these processes is related to the

mechanisms by which viruses trigger autoimmunity including

viral mimicry, propagation of epitopes, activation of bystanders,

and presentation of cryptogenic antigens (26).

However, current studies on COVID-19 phenotypes in

NMOSD are limited to a few case reports or case series, making it

difficult to accurately assess the association between them. Several

cases of optic neuritis or transverse myelitis accompanying SARS-

CoV-2 infection have been reported (27–30). Other individuals

have developed MRI manifestations consistent with NMOSD and

positive AQP4 IgG after receiving the COVID-19 vaccine (31–33).

More importantly, an increasing number of case reports

demonstrate the development of NMOSD in patients after

COVID-19 infection, with a proportion detecting positive AQP4

antibodies (8, 9, 34–38). Our study found the causal effect of

COVID-19 susceptibility on AQP4+NMOSD, which supports

previous observational findings. But the underlying mechanisms

need to be clarified. Notably, although we did not find evidence for

causal effects of COVID-19 phenotypes on NMOSD or AQP4-

NMOSD, we had sufficient power (>0.8) to assess these associations

in the current study.

To the best of our knowledge, there are currently no studies

utilizing MR approach to investigate the causal effects of other

infections on NMOSD. However, a recent review has highlighted

the association between COVID-19 and central nervous system

demyelination, emphasizing the critical importance of establishing
TABLE 4 Sensitivity analysis of the causal association between COVID-19 phenotype and the risk of NMOSD.

MR analysis Heterogeneity Horizontal pleiotropy MR-PRESSO

Exposure Outcome Cochran’s Q P value Egger intercept P value P value Outlier

COVID-19 susceptibility NMOSD 13.6 0.805 -0.0253 0.595 0.832 0

AQP4+NMOSD 16.2 0.647 -0.0477 0.417 0.686 0

AQP4-NMOSD 14 0.784 0.0135 0.857 0.83 0

COVID-19 hospitalization NMOSD 31.2 0.653 0.0192 0.628 0.677 0

AQP4+NMOSD 30.6 0.633 0.0083 0.865 0.658 0

AQP4-NMOSD 20.7 0.938 0.0258 0.679 0.947 0

COVID-19 severity NMOSD 19.3 0.933 0.0481 0.263 0.932 0

AQP4+NMOSD 20.3 0.907 0.0517 0.332 0.905 0

AQP4-NMOSD 18.9 0.9 0.0352 0.6 0.91 0
fron
MR, Mendelian randomization; NMOSD, neuromyelitis optica spectrum disorder; AQP4, aquaporin-4 antibody; +/-, positive/negative.
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a causal relationship (4). MS, as a distinct entity of demyelinating

disorders separate from NMOSD, has received considerable

attention. Despite several studies using MR methods to

investigate the association between various COVID-19

phenotypes and MS, research results have yielded inconsistent

conclusions. For example, Shang et al. investigated the causal

effect of COVID-19 using phenotype data from the COVID-19

Host Genetics Initiative (Release 6), but found no positive

association with MS (39), in agreement with the conclusions of

Larsson et al. (40). However, using the largest available dataset from

the COVID-19 Host Genetics Initiative (Release 7), Baranova et al.

showed that genetic susceptibility to hospitalized COVID-19 had a

causal effect on MS (OR: 1.15, 95%CI: 1.02-1.30, p = 0.022, FDR =

0.044) (41). The use of the most comprehensive COVID-19

phenotype data to date by Baranova et al. makes their findings

more reliable and consistent with certain case reports or case series

observations (6, 42, 43).

It is important to note that although MR studies have

genetically confirmed the potential causal relationship between

COVID phenotypes and NMOSD or MS, further validation of

these findings is needed, particularly in the absence of large

cohort studies. This means that MR studies can be considered as

preliminary research that to some extent fills these gaps.

The advantage of the current study is that compared to traditional

observational studies, we have utilized MR methods to minimize the

interference of reverse causality and residual confounders. Sensitivity

analysis also supported the robustness of MR estimates.

Nevertheless, several limitations exist in our study. First, our

GWAS data were mainly from European populations, so estimates

of the overall population still need to be clarified. Second, we could

not specify the proportion of participants with a possible overlap in

exposure and outcome. Third, due to the different origins of data on

different COVID-19 phenotypes, individuals affected by COVID-19

may manifest phenotypic variation influenced by local factors, such

as the standard of health care. Fourth, the genetic explanatory

power of significant SNPs is not entirely satisfactory, suggesting the

potential involvement of other factors in the occurrence of

NMOSD. Due to the large sample size, this study achieved an

ideal statistical power (>0.8), which implies the reliability of the

statistical conclusions derived from the present research. Fifth, due

to data limitations, it becomes challenging to present the clinical

characteristics of COVID-19 phenotype data, such as age and

gender. This limitation may hinder the clinical applicability.

Ongoing MR studies have begun preliminary explorations of the

causal effects of different COVID-19 phenotypes on NMOSD,

which warrant further verification through cohort studies.

In conclusion, we provide strong evidence supporting the

genetic liability to COVID-19 susceptibility was positively

associated with the high risk of AQP4+ NMOSD. These

contribute to our understanding of the prevention, diagnosis,

treatment, and potential pathogenesis of NMOSD during the

COVID-19 pandemic. Further studies are still warranted.
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