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Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role

in immunity by killing virally infected or tumor cells and secreting cytokines and

chemokines. NK cell-mediated immunotherapy has emerged as a promising

approach for cancer treatment due to its safety and effectiveness. NK cell

engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE

(trispecific killer cell engager), are a novel class of antibody-based therapeutics

that exhibit several advantages over other cancer immunotherapies harnessing

NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to

tumor cell lysis. A growing number of NKCEs are currently undergoing

development, with some already in clinical trials. However, there is a need for

more comprehensive studies to determine how the molecular design of NKCEs

affects their functionality and manufacturability, which are crucial for their

development as off-the-shelf drugs for cancer treatment. In this review, we

summarize current knowledge on NKCE development and discuss critical factors

required for the production of effective NKCEs.
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1 Introduction

Immunotherapy has profoundly impacted cancer treatment, spurring a multi-billion-

dollar industry devoted to discovering and developing novel immunotherapeutic drugs.

Unlike conventional chemotherapy or radiotherapy, which directly targets tumor cells,

immunotherapy harnesses immune cells to combat cancer. Therapeutic antibodies against

immune checkpoint receptors, such as PD-1 and CTLA-4, along with adoptive transfer of

genetically engineered chimeric antigen-receptor (CAR)-T cells, have demonstrated

tremendous success in treating some cancers. Specifically, checkpoint inhibitors have

been notably effective against skin and lung cancers, while CAR-T therapy has been
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remarkably successful in the treatment of some haematological

malignancies, with both unleashing the full antitumor activities of T

cells (1).

While T-cell immunotherapies exhibit remarkable advantages,

they also present some constraints and limitations. For example,

although anti-PD-1 and anti-CTLA-4 monoclonal antibodies show

spectacular clinical outcomes (>70% efficacy) against cancers such

as melanoma, they can only achieve less than 20-30% efficacy in

most other cancer types, exhibiting considerable variability among

patient responses and often leading to relapse in initial responders

(2, 3). Likewise, the USA FDA-approved CAR-T cell therapy, such

as Yescarta and Kymriah, was initially perceived as a medical

miracle as a single dose could cure certain blood cancers. Still,

ongoing research uncovers several challenges, including disease

relapse, limited success in solid tumors, and severe side effects

such as cytokine release syndrome (CRS) and neurotoxicity, which

hinder their broad adoption (4–7). Additionally, CAR-T therapy is

limited by the quantity and quality of autologous T cells obtained

from cancer patients, who are often immune compromised as a

result of the disease or treatments. The prolonged and complex

process of scaling up the production of autologous CAR-T cells for

patients with limited life span and its daunting price tag also pose

significant hurdles (8, 9).

These challenges underscore the urgent need to develop new

immunotherapeutic modalities and the exploration of other types of

immune cells, such as Natural Killer (NK) cells. NK cells could

potentially circumvent some of the inherent limitations of T-cell

immunotherapy. As one of the initial defences in antitumor

immunity, NK cells naturally possess the ability to kill tumor cells

without prior sensitization and modulate antitumor functions via

cytokine secretion (10). Therapeutic antibodies inducing NK cell

antibody-dependent cellular cytotoxicity (ADCC) and genetically

engineered CAR-NK cells have been developed for cancer

treatment. However, these two modalities bear some inherent

limitations. For instance, polymorphism at positions 48 and 158

of CD16a has been reported to impact human IgG1 binding and

subsequently influence NK cell ADCC (11–14). Moreover, it is well-

known that CAR-NK cells present significant challenges in genetic

manipulation, and their antitumor efficacy is limited by the short

life of NK cells (15, 16). Another class of immunotherapeutic

modalities harnessing NK cells, known as NK cell engagers

(NKCEs), has recently emerged and exhibited several advantages

over NK cell ADCC and CAR-NK cell strategies. In this review, we

will discuss various aspects with regard to NKCE development,

including the selection of target molecules for NK activation by

NKCEs, the design of NKCE formats, and factors impacting the

functionality and manufacturability of NKCEs. Moreover, we aim

to illuminate the challenges and opportunities in developing

NKCEs as potent immunotherapeutics for cancer treatment.
2 Biology of NK cells

NK cells are a type of innate immune cells belonging to the

group 1 innate lymphoid cell (ILC) family. They play a crucial role

in the body’s first line of defence by identifying and eliminating
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stressed cells, including those infected by viruses and tumor cells

(17, 18). Unlike T cells, NK cells do not express CD3; instead, they

express CD56 on their cell surface. They constitute 5% to 15% of

circulating lymphocytes in the blood (19). NK cells can be

categorized into two major subsets based on their CD56 and

CD16a expression: (1) immature CD56brightCD16adim NK cells,

known for their high production of cytokines, such as IFNg, and
(2) mature CD56dimCD16bright NK cells, making up 90% of

peripheral blood NK cells, primarily exerting cytotoxic

function (19).

NK cells recognize membrane-bound ligands on target cells

through an array of germline-encoded activating and inhibitory

receptors on their cell surface (17). The activation status of NK cells

is determined by the balance of activating and inhibitory signals

they receive upon contact with other cells. Major histocompatibility

complex class I molecules (MHC I)/Human leukocyte antigens

(HLA), which are abundantly expressed on healthy cells, inhibit NK

cell activation through the killer immunoglobulin-like (KIR) family

of inhibitory receptors present on the surface of NK cells.

Conversely, NK cells become activated when there is a

downregulation of HLA molecules on the target cells or an

upregulation of the ligands for NK activating receptors, such as

NKp46 and NKG2D. NK cells also get activated when their CD16a

receptors are engaged by antigen-bound IgGs. When activating

signals prevail over inhibitory signals, NK cells become activated

and release cytotoxic granules loaded with perforin and granzymes,

causing target cells to lyse. In addition, NK cells can induce

apoptosis of target cells through Fas-L or TRAIL (20), especially

during the later phases of NK cell serial killing (21).

Compared to T cells, NK cells have several unique advantages in

the context of immune cell therapy. As they are not HLA-restricted,

NK cells can be sourced allogenically, thereby making them a

feasible “off-the-shelf” therapeutic option. KIR-ligand-mismatch

between donors and recipients can even potentially enhance the

effectiveness of adoptive NK cell therapy by circumventing

inhibitory signals on host cells (22, 23). Additionally, unlike T

cells, NK cells do not secrete high levels of cytokines that could

trigger CRS. They also do not cause graft-versus-host (GVH)

reactions, making them a safer treatment option. As of 2021,

more than 400 reported clinical trials for cancer treatment based

on NK cells have been reported (24) including monotherapies

involving NK cells from various sources, such as peripheral blood,

umbilical cord blood, hematopoietic stem cell-derived NK, and

CAR-NK cells (24). Additionally, combination therapies have been

explored, which pair NK cells with other therapeutic agents, such as

immune checkpoint inhibitors, antibodies or NK cell engagers (24).
3 Cancer immunotherapies directing
NK cells

There are three primary approaches directing NK cells for

cancer treatment: 1) employing NK cell antibody-dependent

cellular cytotoxicity (NK cell ADCC), which is initiated through

the Fc receptor CD16a on NK cells and directed by a monoclonal

antibody (mAb); 2) genetically engineering CAR-NK cells that
frontiersin.org
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specifically target tumor antigens using the CAR and become

activated; 3) developing recombinant proteins, known as NK cell

engagers (NKCE), that bring tumor and NK cells into proximity

and activate the NK cells (Figure 1).

NK cell ADCC leverages the antigen-specificity of mAbs to

redirect NK cells towards tumor cells. This approach relies on the

binding of the Fc region of the mAbs to the Fcg receptor IIIa (or

CD16a) of NK cells, thereby triggering CD16a activation signalling

and inducing the lysis of the mAb-coated target cells by NK cells

(25). Currently, there are many mAbs available on the market that

target different cancers, such as Trastuzumab, Pertuzumab, and

Margetuximab for HER2+ cancers (25), Rituximab for non-

Hodgkin’s lymphoma (26), and Cetuximab for EGFR+ colorectal

cancer (27). The versatility of mAbs positions the NK cell ADCC

method as an effective approach for various cancer treatments.

However, not all patients respond well to this approach. The

presence of the 158F variant of CD16a can decrease its binding

affinity for IgG mAbs, which is the primary isotype of therapeutic

mAbs (28, 29). Remarkably, a majority of the population carries at

least one CD16a allele of this variant (15), which could potentially

undermine the effectiveness of NK cell ADCC treatment (28, 30).

Nevertheless, the issue of CD16a polymorphism could potentially

be mitigated through afucoslylation or engineering of the Fc region

of mAbs to enhance their binding affinity to CD16a (31).

CAR-NK cell therapy can circumvent the issue of CD16a

polymorphism present in NK cell ADCC as the genetically

engineered CAR-NK cells recognize and target cancer cells using

their antigen-specific CARs, which signal and activate NK cells

through their signalling module-bearing cytoplasmic tails (32).

Compared to CAR-T cell therapies, CAR-NK cells can be

produced more efficiently from an allogenic source (32).

Additionally, CAR-NK therapy is safer due to the lower risk of

GVHD and CRS (33). A variety of CAR-NK cells are currently
Frontiers in Immunology 03
undergoing assessment for their efficacy against haematological and

solid tumors in both preclinical and clinical studies (24, 32, 34).

Despite its promising potential, CAR-NK cell therapy is still in

the early stage of development, with many challenges yet to be

addressed. A key issue is the short lifespan of CAR-NK cells, which

do not persist in the body for long (35). This necessitates frequent

infusion, thereby increasing the treatment costs (32). Therefore, it is

crucial to find a solution to extend the in vivo survival of CAR-NK

cells. Furthermore, CAR-NK cells present more significant

challenges in genetic manipulation compared to CAR-T cells.

Their lower transduction efficiency of NK cells necessitates a

larger initial NK cell number, followed by sorting and expansion

(34), increasing the overall costs and extending the production time.

NKCEs, such as BiKE (bispecific killer cell engager) or TriKE

(trispecific killer cell engager), provide several advantages over the

earlier two strategies. Compared to bispecific BiKEs, TriKEs possess

an additional antigen specificity, enabling more precise targeting

and enhanced functionalities. In contrast to tumor-targeting mAbs,

CD16a-targeted NKCEs are not necessarily affected by the CD16a

polymorphism, as they may recognize regions not influenced by the

polymorphism (36). Additionally, NKCEs engaging activating

receptors on NK cells other than CD16a are not affected by

CD16a polymorphism or its expression level. Unlike in the case

of NK cell ADCC, these NKCEs do not compete with endogenous

IgG1 for CD16a binding. Besides activating NK cells, NKCEs could

also activate other immune cells and redirect them towards tumor

cells if they target receptors commonly expressed in NK and other

immune cells. For example, NK cell activating receptor NKG2D is

also expressed in NKT, some CD8+ T and a subset of gd T cells (37),

thus NKG2D-targeting NKCEs can potentially activate these

immune cells in addition to NK cells. Moreover, NKCEs are

easier to manufacture and much less expensive than CAR-NK cell

therapy. Appropriately designed NKCEs also have an extended
FIGURE 1

Three strategies for NK immunotherapy. Pros of each strategy are denoted in red, and limitation is marked in blue. NK ADCC targets tumor cells
using monoclonal antibodies (mAbs) and activates NK cells through the CD16a Fc receptor. However, the efficacy of NK ADCC can be reduced by
polymorphism of CD16a, resulting in lower binding of mAbs. In contrast, CAR-NK therapy avoids the problems associated with CD16a polymorphism
but it suffers from difficulties in genetic manipulation of NK cells. On the other hand, NKCE offers a balanced profile and a cost-effective solution for
NK cell-based cancer immunotherapy.
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retention time in the body (38), making NKCEs a more cost-

effective strategy compared to CAR-NK cell therapy (34).

NKCEs can also be combined with adoptive NK cell transfer by

forming complexes with allogenic NK cells (15, 39). A study combining

AFM13 and cord-blood NK cells has shown that this combination

stimulates the NK cells against CD30+ tumor cells (40). This approach

circumvents the need for genetic engineering of CAR-NK cells, as

retaining NKCEs on the NK surface eliminates the requirement for

recurrent genetic modifications of NK cells (41, 42). Several clinical

studies are currently in progress to assess the effects of co-administering

adoptive NK cell CYNK-101, anNK cell line optimized for IgG binding,

with anti-CD38 mAb Daratumumab (43) or anti-HER2 Trastuzumab

and Pembrolizumab (NCT05207722) for cancer treatment.

AlthoughNKCEs offer several advantages as an immunotherapeutic

modality, substantial efforts towards optimization are required to

develop potent and effective NKCEs. Therefore, several critical factors

must be carefully considered during NKCE development.
4 Developing potent NKCEs by
targeting various NK cell receptors

4.1 Engaging conventional activating
receptors on NK cells

4.1.1 CD16a
CD16a, also known as Fcg receptor IIIa (FcgRIIIa), is an

activating receptor abundantly expressed in CD56dim NK cells. It

is anchored to the plasma membrane of NK cells and is associated

with CD3z and/or FcϵRIg chain (44) (Table 1). Upon engagement

by IgG antibodies, CD16a molecules cluster together, leading to the

phosphorylation of the tyrosine residues of the ITAM motifs of

CD3z and/or FcϵRIg chains by Src-family kinases. Subsequently,

signalling cascades involving phosphatidyl-inositol-3-OH kinase

(PI3K), phospholipase C g (PLCg) (45), and Vav (46) are

triggered in NK cells. Unlike other NK cell activating receptors

that require co-engagement of additional receptors to achieve

optimal activation, engagement of CD16a alone can fully activate

NK cells (47). The full activation of NK cells by CD16a engagement

also differs from the optimal activation of T cells, which necessitates

the ligation of both T cell receptors and co-stimulatory receptors.

Certain bispecific T cell engagers (BiTEs), which require

engagement of the costimulatory receptor CD28 to fully activate

T cells and eliminate tumor cells (48). Therefore, NKCEs that

engage CD16 are capable of inducing complete activation of NK

cel l s without the need for tr igger ing other NK cel l

activating receptors.

Currently, CD16a is the most popular target for NKCE

development, with many products currently in preclinical

development or clinical trials (Table 2). For example, AFM13, a

tetravalent bispecific anti-CD30xCD16a NKCE, is formed by

homodimerization of a tandem diabody (TandAb), which is

constructed through a special arrangement of Fv heavy and light

chain domains of anti-CD30 and -CD16a antibodies with a 9-

amino acid-long peptide linker (Table 2 and Figure 2). This 104 kDa

TandAb has demonstrated CD30-dependent activation of NK cells,
Frontiers in Immunology 04
with a half-life of 19 hours (68). Clinical trials have shown AMF13

to be effective in treating patients with relapsed or brentuximab

vedotin-refractory Hodgkin’s lymphoma, and it was well-tolerated

during continuous treatment (68, 91, 92). With the proven

effectiveness of AFM13, NKCEs with similar structures (AFM22/

24/26) (Table 2) have also been developed to target EGFR vIII,

EGFR, and BCMA, respectively (93, 94). AFM22 and AFM24 are

designed for the treatment of solid tumors. AFM24 is currently

undergoing a Phase 1/2a clinical trial for advanced solid cancers

(NCT04259450) and is also being tested in combination with

Atezolizumab for EGFR-expressing advanced solid malignancies

(NCT05109442). On the other hand, AFM22, which specifically

targets EGFR vIII is still in the preclinical development stage. In

addition, preclinical evaluation of BCMA-targeted AFM26 has

shown that it binds to NK cells with high avidity and is largely

unaffected by low BCMA expression levels on multiple myeloma

(MM) cells (94).

It is noteworthy that CD16a is rapidly cleaved from NK cells

after activation by metalloproteases, such as ADAM17 (95, 96), or

matrix metalloproteases (MMPs), like MMP25 (97). The

downregulation of CD16a expression may facilitate NK cells to

detach from their current target after cytolysis, enabling them to

engage the next target cell (98). On the other hand, this process may

also pose a disadvantage for CD16a-engaging NKCE development,

as CD16a downregulation may make CD16a-targeted NKCEs less

effective. The use of MMP inhibitors in combination with CD16a-

targeting NKCEs could be a potential strategy to prevent CD16a

shedding from NK cells and enhance their activation (99).

Noteworthy, NKCEs that target CD16a can also bind to the

membrane-bound CD16b receptors on neutrophils, whose

extracellular domain is remarkably similar to that of CD16a on

NK cells (100). In addition, soluble CD16 present in the serum,

primarily consisting CD16b shed from the surface of neutrophils

(101) and a smaller amount of CD16a shed from NK cells (96),

creates a considerable “sink” effect. This effect could potentially

compete with CD16a on NK cells for the binding of CD16a-

engaging NKCEs, considerably diminishing their effectiveness.

4.1.2 NKG2D
NKG2D is a disulfide-linked homodimeric C-type lectin-like

receptor expressed in NK cells, NKT cells, a subset of CD8+ T

cells, and a subset of gd T cells (37). Although its intracellular

domain lacks ITAMs and does not bind with an ITAM-bearing

adaptor, NKG2D associates with an adaptor protein known as

DAP10. DAP10 contains a tyrosine-based YxxM motif in its

cytoplasmic tail. Upon tyrosine phosphorylation by Src-family

kinases (102, 103), DAP10 induces the recruitment and activation

of PI3K (104) and the Grb2/Vav1/PLCg signalling complex

(102) (Table 1).

The engagement of NKG2D activates the cytotoxic function and

cytokine release of NK cells (105, 106). Notably, NKG2D-mediated

tumor cell killing occurs more swiftly than that mediated by CD16a

(98), although its activation strength is comparatively weaker.

Interestingly, NKG2D-activated NK cells demonstrate a higher

likelihood of sequential killing tumor cells compared to those

activated by CD16a (98). Furthermore, NK cells are less motile in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1207276
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1207276
TABLE 1 The structures and properties of NK cell activating and inhibitory receptors targeted by NKCEs.

Name Structure Advantages Limitations

CD16a Inducing strong activation
Decreased surface expression upon NK cell
activation

NKG2D
Expression in both NK and CD8+ T cells
Triggering rapid NK cell activation

Inducing weaker activation than CD16a

Nkp30 Constitutive expression in NK cells
Low expression in NK cells
Inducing weaker activation than CD16a

Nkp46 Specific and constitutive expression in NK cells Inducing weaker activation than CD16a

Nkp80 Specific expression in NK cells Lower expression in NK cells

NKG2C/CD94
Signifying a "memory" NK cell phenotype
Inducing strong activation

Lower and variable expression in NK cells

(Continued)
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TABLE 1 Continued

Name Structure Advantages Limitations

KIR2DS/
KIR3DS

Constitutive expression in NK cells High homology to inhibitory KIRs

CD160 Expression in both NK and CD8+ T cells Downregulation upon NK cell activation

DNAM-1 Promoting NK cell adhesion to target cells Inability of activating NK cells directly

2B4
Inducing strong activation by synergizing with other
activating receptors

Inability of activating NK cells directly

IL-2/IL-15 Enhancing NK cell proliferation and cytotoxicity
Inability of activating NK cells directly
Unspecific activation of Treg by IL-2

PD-1
Antagonizing NK cell and CD8+ T cell exhaustion by receptor
blockade

Inability of activating NK cells directly
Requirement of high dosage for effective
blockade

(Continued)
F
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TABLE 1 Continued

Name Structure Advantages Limitations

NKG2A
Antagonizing NK cell and CD8+ T cells exhaustion by
receptor blockade

Inability of activating NK cells directly

TIGIT
Antagonizing NK cell exhaustion by receptor blockade
Combinatory therapy with the PD-1 blockade

Inability of activating NK cells directly

TIM-3 Antagonizing NK cell exhaustion by receptor blockade Inability of activating NK cells directly

KIR2DL/
KIR3DL

Enhancing NK cell activation by receptor blockade Inability of activating NK cells directly

CD96
(TACTILE)

Antagonizing NK cell exhaustion by receptor blockade
Combinatory therapy with the PD-1 blockade

Inability of activating NK cells directly
F
rontiers in Immun
ology
 07
Different receptors have distinct advantages and limitations when used as NKCE targets. CD16a has strong activation strength but suffers from downregulation in activated NK cells. Cytokines
IL-15 and IL-2 can enhance NK cell activity greatly but require specific delivery to NK cells, which can be facilitated by NKCEs. Nkp30 and Nkp46 are constitutively expressed on activated NK
cells which makes the NKCE has longer effects, but they may need a co-activation receptor for stronger NK activation. NKG2D NKCE has the potential to recruit CD8+ T cells and thus further
boost tumor cell killing. Moreover, blockade of immune checkpoint receptor like PD-1, TIGIT or CD96 etc. on NK cells can recover NK from exhaustion, but the immune checkpoint blockade
strategies are not able to activate NK cells directly.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1207276
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1207276
TABLE 2 NKCEs that are currently undergoing development.

Category Name Format Cancer type Reference

Linked scFv

CD16axEpCAM Linked scFv, HMA linker Carcinoma (49)

CD16axCD33 Linked scFv
Myelodysplastic syndromes; Refractory

Acute Myeloid Leukemia.
(50, 51)

CD16axCD19 Linked scFv non-Hodgkins lymphoma (52)

CD16axCD19xCD22 Linked scFv, HMA linker non-Hodgkins lymphoma (52)

CD16axCD133 Linked scFv, HMA linker Colorectal Cancer (53)

NKG2DxCS1 Linked scFv, HMA linker Multiple myeloma (54)

Linked VHH

CD16AxEGFR Linked VHH EGFR+ cancers, e.g Lung cancer (55)

CD16axIL-15xHER2
(CAM1615HER2)

Linked VHH & scFv Ovarian cancer (56)

CD16axHER2 Linked VHH via HMA linker Breast cancer (36)

CD16axIL-15xB7H3
(CAM1615B7H3)

Linked VHH & scFv Ovarian carcinoma (57)

Linked affibody CD16axBCMA
Linked non-immunoglobulin affibody affinity

proteins
Multiple myeloma (58)

Linked scFv
with cytokine

1615133 TriKE
(CD16axIL-
15xCD133)

Linked scFv plus cytokine motif Carcinoma (59)

CD16axIL-
15xEpCAMxCD133

Linked scFv plus cytokine motif,
Linkers: a 20aa segment of human muscle

aldolase (HMA), EASGGPE, and mutated IgG
hinge

Carcinoma (60)

CD16axIL-
15xCLEC12A
(CLEC12A TriKE)

VHH & scFv plus cytokine motif Acute myeloid leukemia (61)

NKG2CxIL-15xCD33 Linked scFv plus cytokine motif Myeloid leukemia (62)

161519 (CD16axIL-
15xCD19)

Linked scFv plus cytokine motif
Chronic lymphocytic leukemia; non-

Hodgkin’s lymphoma
(63, 64)

GTB-3550/161533
TriKE (CD16axIL-
15xCD33)

Linked scFv plus cytokine motif
CD33+ malignancies, e.g Systemic

mastocytosis, Acute myeloid leukemia
(38, 65)

Ligand peptide
fused with scFv

AICLxHER2
Extracellular domain of ligand fused to HER2-

scFv
Breast cancer (66)

B7-H6xHER2
Extracellular domain of ligand fused to HER2-

scFv
Breast cancer (66)

ULBP2xHER2
Extracellular domain of ligand fused to HER2-

scFv
Breast cancer (66)

PVRxHER2
Extracellular domain of ligand fused to HER2-

scFv
Breast cancer (66).

2A9-MICA
(MICAxBCMA)

Extracellular domain of ligand fused to BCMA-
scFv

Multiple myeloma (67)

Fab

AFM13
(CD16axCD30)

Tand Ab.
CD30+ malignancies, e.g Hodgkin

lymphoma
(40, 68, 69)

AFM22 (CD16ax
EGFRvIII)

Tand Ab.
EGFRvIII malignancies: certain solid

tumors e.g. glioblastoma, prostate cancer
and head and neck cancer

Affimed

AFM24
(CD16axEGFR)

Tand Ab. (AFM24_T) & Symmetrical adapted
IgG1 antibody with C-terminal appendage

(AFM24_I)
EGFR+ cancers, e.g Lung cancer

AACR 2020 Jun 22-24
Poster 5659 – AFM24,
Affimed Company;

(Continued)
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tumors lacking NKG2D ligands than those with NKG2D ligands

(107), suggesting that targeted blockage of NKG2D ligands in

tumors could help retain tumor-infiltrated NK cells within

the tumor.
Frontiers in Immunology 09
Several studies have evaluated the effectiveness of NKCEs

that target NKG2D for treating multiple myeloma (MM)

(Table 2). A linked single-chain variable fragment (scFv)

NKCE, known as CS1xNKG2D, which targets CS1 (also called
TABLE 2 Continued

Category Name Format Cancer type Reference

(70);
NCT04259450

AFM26
(CD16axBCMA)/
RO7297089

Tand Ab. & Symmetrical adapted IgG1
antibody with C-terminal appendage

Multiple myeloma (71–73)

(HER2)2xCD16a Tribody Breast cancer (74)

CD16axEGFR Diabody EGFR+ cancers, e.g Lung cancer (75)

CD16axCD200xBCMA Flexibody Multiple myeloma (76, 77)

NKG2DxHER2
Bispecific (bsFab) or bivalent Fab-like (bvFab)

antibodies with VHH
Breast cancer (78)

NKG2DxFMDV
Bispecific (bsFab) or bivalent Fab-like (bvFab)

antibodies with VHH
Foot-and-Mouth Disease Virus (78)

Asymmetrical
single-armed
IgG-adapted

Nkp46xTumor Ag Single-armed IgG-adapted Not specified (79)

NKp46xCD19/20 Single-armed IgG-adapted
B-cell Precursor Acute Lymphoblastic

Leukemia
(80)

NKp30xCD19/20 Single-armed IgG-adapted
B-cell Precursor Acute Lymphoblastic

Leukemia
(80)

Asymmetrical
IgG adapted

CD16axEGFRxPD-1 Asymmetrical adapted IgG EGFR+ cancers, e.g Lung cancer (81)

B7-H6xEGFR
Asymmetrical adapted IgG: 1 Fab is replaced
by Ig-like V-type domain of the extracellular

region of B7-H6
EGFR+ cancers, e.g Lung cancer (82)

Symmetrical
IgG adapted

AFM28
(CD16axCD123)

Symmetrical adapted IgG1 antibody
Acute myeloid leukemia &
myelodysplastic syndrome

ASH 2021, Affimed
Company.

CTX-8573
(NKp30xBCMAxNK
ADCC)

Symmetrical adapted IgG with C-terminal
common light-chain appendage

Multiple myeloma
(83)

Compass Therapeutics

CTX-4419
(NKp30xBCMAxNK
ADCC)

Symmetrical adapted IgG with C-terminal
common light-chain appendage

Multiple myeloma
(84)

Compass Therapeutics

CYT-338
(Nkp46xCD38xNK
ADCC)

Symmetrical adapted IgG (FLEX-NK) Multiple Myeloma
(85)

Cytovia Therapeutics Inc.

CYT-303
(NKp46x GPC3xNK
ADCC)

Symmetrical adapted IgG (FLEX-NK) Hepatocellular carcinoma
(86)

Cytovia Therapeutics Inc.

Multiple
formats

NKG2Dx2B4
Available in 3 formats: 2 different symmetrical
adapted IgG (with appendage at either N- or

C-termini), 1 linked scFv
Not available (87)

Nanoengager CD16Ax4-1BBxEGFR Nanoengager EGFR+ cancers, e.g Lung cancer (88)

Fused ligand
peptides

OMCPxIL-2
Fusing OMCP peptide with IL-2 mutant with

lower affinity for IL-2Ra
Not available (89)

ULBP2xBB4 (ULBP2-
BB4)

Linked extracellular domain of receptor ligand Multiple Myeloma (90)

TriNKET DF1001
(HER2 targeting)

Not disclosed Breast cancer
Dragonfly Therapeutics

Company
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SLAMF7, a tumor antigen expressed on MM), has been

demonstrated to induce dose-dependent cytotoxicity against

CS1+ MM cells in vitro, stimulate IFN-g production, and

enhance the survival of NSG mice implanted with human MM

cells (54). Moreover, various NKG2D+ cytotoxic immune cells,
Frontiers in Immunology 10
including NK, NKT, and CD8+ T cells, have been demonstrated

to lyse MM cells additively when induced by the NKG2D-

targeted NKCE (54).

Another NKCE that targets NKG2D, BCMAxMICA (also

known as 2A9-MICA), utilizes the MHC I-related chain A
FIGURE 2

NKCE formats that are currently under development. Different color (red, blue, and green) indicates different antigen specificity. The dark and light
colors label the heavy chain (VH) and light chain (VL), respectively. The fragmented format contains a variety of structures by different linkages of the
VH and VL, including scFv and Fab. The adapted IgG format contains structures that generally have the constant region of the IgG antibody. Single-
arm IgG adapted format uses Fc region CH2 domain to bind to CD16a. Please refer to Table 2 for specific NKCEs.
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(MICA), which is a ligand of NKG2D, to activate NKG2D on NK

cells (67). 2A9-MICA is comprised of the extracellular region of

human MICA and an scFv against BCMA, connected by a G4S

linker (67). It has been reported that adding 2A9-MICA to a co-

culture of NK-92 and MM cells increases NK-92 cell degranulation

and enhances the cytolysis of BCMA+ MM cells by NK-92 cells.

Additionally, 2A9-MICA could significantly suppress tumor growth

in a nude mouse model without evident toxicity (67). However, it is

noteworthy that several cancers exhibit high levels of soluble MICA

(108), which could potentially compete with MICA-bearing NKCEs

for binding of NKG2D, thereby reducing their effectiveness.

Bispecific antibodies targeting NKG2D and 2B4 receptors have

been evaluated for cytotoxicity and IFNg production of NK cells

(87). These antibodies, designed in various formats, such as linked

scFv, and symmetrical IgG with appendage at C- or N-terminus,

have demonstrated a superior capability for activating NK cells

compared to a combination of monospecific antibodies against

NKG2D and 2B4, suggesting that co-engagement of these two

receptors could synergize NK cell activation (87). It is thus

intriguing to hypothesize that NKCEs, simultaneously engaging

NKG2D, 2B4, and a tumor-associated antigen, could induce a more

potent NK cell activation and more robust anti-tumor activity.

4.1.3 Nkp30
Nkp30 is an Ig-like transmembrane protein with a single V-type

extracellular domain (109). It is constitutively expressed in resting

and activated NK cells (110). Similar to CD16a, Nkp30 is also

associated with disulfide-linked homodimers or heterodimers of

CD3z (109) and/or FcϵRIg (111) chain for signal transduction

(Table 1). As a natural cytotoxicity receptor (NCR) family

member, Nkp30 triggers NK cell degranulation and cytokine

release upon engagement (66, 111). Unlike CD16a, Nkp30 is not

rapidly downregulated following NK activation, rendering it a more

promising target over CD16a for better efficacy and persistence.

An NKCE incorporating the Nkp30-specific ligand, B7-H6, can

adequately activate NK cells and direct them towards tumor cells

(66), leading to the secretion of IFN-g and TNF-a (112). Studies

have shown that the cytolysis of HER2+ cells by NK cells, mediated

by the Nkp30xHER2 NKCE, is comparable to or slightly superior to

that mediated by therapeutic mAbs Trastuzumab and Cetuximab

(66). Currently, two Nkp30xBCMA NKCEs, CTX-4419, and CTX-

8573, are undergoing preclinical assessment for their effects in

treating MM (83, 84). Both NKCEs were constructed using anti-

Nkp30 and anti-BCMA antibodies that share a common light chain.

The two anti-Nkp30 Fab fragments are appended at the C-terminus

of the heavy chain of the anti-BCMA IgG1 antibody, which has an

afucosylated Fc for enhanced binding with CD16a (Table 2). These

NKCEs have been demonstrated to induce greater tumor cell killing

and IFN-g release than therapeutic mAbs, such as Elotuzumab or

Daratumumab (83, 84). Notably, even without CD16a engagement

by the Fc region, both NKCEs can still elicit the lysis of tumor cells
Frontiers in Immunology 11
via Nkp30 (83, 84). Both CTX-4419 and CTX-8573 activate NK

cells in the presence of BCMA+ tumor cells, indicating good safety

due to minimal tonic activation (83, 84).

However, the lower cell surface expression of Nkp30 might be a

concern when considering it as a target for NCKE development. A

study has shown that each NK cell has approximately 1000 Nkp30

molecules expressed on the cell surface, which is considerably lower

than the density of CD16a (~70,000 molecules per NK cell) (66).

Therefore, designing Nkp30-targeted NKCEs to accommodate the

larger spacing between antigens might necessitate a more

flexible structure.

4.1.4 Nkp46
Nkp46 is an NCR expressed on all mature NK cells and is

associated with CD3z and/or FcϵRIg homodimers or heterodimers

for signal transduction (113). Despite sharing many characteristics

with Nkp30, Nkp46 has two extracellular C-type Ig domains (114),

whereas Nkp30 has only one Ig domain (Table 1). Engagement of

Nkp46 alone only weakly activates resting NK cells (115), but co-

engagement with other activating receptors, such as 2B4, DNAM1,

or CD2, can significantly enhance NK cell activation (115). Notably,

unlike CD16a, Nkp46 is not downregulated in the tumor-infiltrated

NK cells in several cancers, including lung carcinoma (116), acute

myeloid leukaemia (117), and breast cancer (118). Therefore,

NKP46 holds promise as a target for NKCE development.

A Nkp46xTAA NKCE is constructed using a single-armed

adapted IgG format, targeting Nkp46 by the Fab at the C-

terminus and the tumor antigen at the N-terminus (79)

(Figure 2). Besides activating NK cells by engaging Nkp46, this

NKCE also promotes NK cell ADCC through its Fc region via

CD16a binding. It has demonstrated better suppression of CD19+

or CD20+ tumor cell growth compared to the therapeutic mAb

Rituximab or Obinutuzumab in both in vitro (80) and in vivo

studies (79).

Another tetravalent NKCE, Nkp46xCD38 (CYT-338), is also

undergoing development. CYT-338 has an IgG1 backbone that can

mediate NK cell ADCC through its Fc region. It recognizes Nkp46

through its Fab regions; additional Fab fragments targeting the

tumor antigen are symmetrically appended at the N-terminus of

heavy chains of the IgG backbone (FLEX-NK, Figure 2). Mutations

have been introduced at the IgG backbone’s constant regions (CH1

and CL) to minimize the mispairing of heavy and light chains and

facilitate the proper chain pairing. CYT-338 has shown a 3-fold

higher binding to MM cell lines than Daratumumab and has

demonstrated greater dose-dependent NK cell cytolysis and

cytokine production (119). Notably, these NKCEs may link two

NK cells together by co-engaging Nkp46 and CD16a or Nkp46 and

CD38 on NK cells. Thus, it is yet to be determined if there is a risk of

fratricide of two neighbouring NK cells that could potentially be co-

engaged by the same NKCE. This is especially pertinent given that

the monospecific, bivalent therapeutic mAb Dratumumab, which
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targets CD38 on NK cells, has been reported to induce NK cell

fratricide (120).

4.1.5 Nkp80
Nkp80 (KLRF1) is a homodimeric C-type lectin-like receptor

similar to NKG2D (121). It is primarily expressed in NK cells (122)

(Table 1). The cytoplasmic tail of Nkp80 bears a hemi-ITAM-like

sequence (YxxL), which, upon binding, associates with Lck and Syk

kinases (123). The only known natural ligand for Nkp80 is the

activation-induced C-type lectin (AICL) (121).

An Nkp80-targeting NKCE, known as AICLxHER2-scFv, has

been developed using AICL to engage Nkp80 (66). This NKCE

contains the extracellular domain of AICL and the scFv of an anti-

HER2 antibody. AICLxHER2-scFv has demonstrated its capability

to activate NK cells and direct NK cytolysis towards HER2+ tumor

cells, exhibiting synergistic effects with therapeutic mAb

Trastuzumab or Cetuximab (66). Interestingly, it has been

suggested that simultaneous Nkp80 and DNAM-1 activation

could significantly enhance NK activation, whereas Nkp80 does

not show synergy with Nkp30 (66). These findings highlight Nkp80

as a promising target for NKCE development. However, the

relatively low surface expression Nkp80 (about 5,000 copies per

NK cell) (66) may require some special NKCE design

considerations such as enhanced flexibility and multivalency to

improve the efficacy of Nkp80-targeted NKCE.

4.1.6 NKG2C
NKG2C, also known as CD159a, is an activating receptor that

specifically recognizes HLA-E (124). It forms a heterodimer with CD94

and is associated with DAP-12 through a positively charged residue in

its transmembrane domain (125). (Table 1) NKG2C is predominantly

expressed in mature NK cells that lack NKG2A, and its increased

expression signifies a “memory” NK cell phenotype (126).

Similar to CD16a, NKG2C can trigger strong activation of NK

cells even without co-activation (127). However, in contrast to

CD16a, NKG2C does not rapidly shed off post-NK cell activation,

making it a promising candidate for NKCE development. An

NKCE, known as NKG2CxIL-15xCD33, comprising an anti-

NKG2C scFv and an anti-CD33 scFv, linked by a wild-type IL-15

in the middle (62), has demonstrated satisfactory NK cell activation,

expansion, and cytotoxicity against CD33+ myeloid leukaemia cells

both in vitro and in vivo in an NSG mouse model (62). Its efficacy in

suppressing tumor growth suppression is comparable to 161533

NKCE (62).

However, one potential limitation of NKG2C compared to

CD16a is its lower and variable expression level on the surface of

NK cells (62, 128). The population of NKG2C+ NK cells correlates

with an individual’s history of human cytomegalovirus (CMV)

exposure. Individuals with previous CMV exposure will likely

have a larger NKG2C+ NK cell population than those who are

naïve to the virus (62). Even among CMV-seropositive individuals,

the frequency of NKG2C+ NK cells could vary considerably (128,

129). Therefore, NKG2C-NKCE may not be effective for some

patients due to a low population of NKG2C+ NK cells.
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4.2 Engaging other potential activating
receptors for NKCE development

Unlike most of the killer cell Ig-like receptor (KIR) family

members, which are inhibitory, KIR2DS and KIR3DS are two

activating receptors of the KIR family (130, 131). Despite sharing

two or three Ig-like extracellular domains with other inhibitory

KIRs, KIR2DS and KIR3DS possess a short cytoplasmic tail without

ITIMs. Instead, they associate with ITAM-bearing adaptor DAP12

(132) (Table 1). Studies have shown that KIR2DS expression in NK

cells is positively correlated with improved NK activation and

cytokine production (133). Therefore, KIR2DS and KIR3DS are

potential candidates for NKCE development. However, the high

homology in the extracellular domains of the activating and

inhibitory KIRs might make it challenging to generate specific

antibodies or CDR sequences that can distinguish these two types

of KIRs (131).

CD160 is an Ig-like glycosyl phosphatidyl inositol (GPI)-

anchored transmembrane protein, similar to KIR receptors. It is

expressed in a fraction of NK cells with high cytotoxicity and a

subset of T cells (134) (Table 1). Upon engagement by its ligand

HLA-C, CD160 can trigger robust NK cell activation leading to

efficient tumor cell lysis (135) and secretion of TNF-a, IFN-g, and
IL-6 (136, 137), making it a potential target for NKCE development.

However, CD160 has been shown to undergo downregulation

following NK cell activation by phorbol ester (138).

DNAM-1, also known as CD226, is another activating receptor

constitutively expressed in NK cells, T cells, and certain myeloid

cells. It is a transmembrane glycoprotein with two Ig-like domains

(139, 140) (Table 1). Unlike other Ig superfamily members, the

cytoplasmic tail of DNAM-1 contains four tyrosine residues (Y293,

Y300, Y322, and Y325), one asparagine residue (N324) and one

serine residue (S329), which can recruit Src family kinase Fyn,

adaptor Grb2 and PKC upon phosphorylation (140). Although

engagement of DNAM-1 alone does not increase NK cell

cytotoxicity, it promotes NK cell adhesion to the target cell and

granule polarization (140) and can synergize with 2B4 to enhance

NK cell cytotoxicity (47). DNAM-1 competes with inhibitory

receptor TIGIT and CD96 for binding with their shared ligands

PVR (CD155) and Nectin-2 (CD112) (141). A study showed that a

DNAM-1-engaged NKCE, PVRxHER2-scFv, failed to display

potent cytotoxicity, probably due to PVR’s competitive binding

with inhibitory receptors (66). Moreover, DNAM-1 has a low

surface expression on NK cells. Therefore, future DNAM-1-

engaged NKCE deve lopment requ i res more spec ific

design strategies.

2B4 (SLAMF4, CD244) belongs to SLAM (Signaling

Lymphocytic Activation Molecule) family and is expressed in NK

and CD8+ T cells (142). It has two Ig-like extracellular domains and

a cytoplasmic tail with four immunoreceptor tyrosine-based switch

motifs (ITSMs), which can recruit SAP and protein tyrosine kinase

Fyn, and SHP1/2 (143, 144). Although engagement of 2B4 alone

does not activate NK cells, it can synergize with Nkp46, NKG2D,

and DNAM-1 to achieve significantly enhanced NK cell activation
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(47). Therefore, 2B4 is frequently employed as an auxiliary receptor

in the design of some multispecific NKCEs.
4.3 Incorporating stimulatory cytokine into
NKCEs

Stimulatory cytokines can dramatically enhance NK cell

proliferation and cytotoxicity. For example, the anti-tumor

capabilities of functionally impaired tumor-infiltrated NK cells

can be fully restored with interleukin (IL)-2 and IL-15 (145, 146).

A clinical trial also revealed that IL-15 infusion in cancer patients

could significantly expand NK and memory CD8+ T cell

populations (147). These findings suggest that incorporating

stimulatory cytokines, such as IL-2 or IL-15, into NKCEs may

synergistically enhance their antitumor potency.

The incorporation of an IL-15 moiety into an NKCE that has

two scFv-segments, with one binding CD16a on NK cells and the

other one binding tumor-associated antigens on tumor cells, can

significantly enhance the cytotoxicity of NK cells and their pro-

inflammatory cytokine production compared to NKCE without IL-

15 (38, 59, 60) (Table 2 and Figure 2). An IL-15-incorporated

NKCE against acute myeloid leukaemia (AML), referred to as

CLEC12A TriKE or CD16axIL-15xCLEC12A (Table 2), has been

shown to specifically expand NK cells, but not T cells, leading to the

potent killing of AML cells by NK cells (61). Another study showed

that IL-15-incorporated NKCE (161533 TriKE/GTB-3550) rectified

the functional defects of NK cells and extended the survival of

cancer patients post-hematopoietic stem cell transplantation (38).

GTB-3550 has shown promise in treating CD33+ malignancies

(NCT03214666). These findings demonstrate the significant

clinical values of incorporating IL-15 into NK cell therapy for

cancer treatment.

Similar to IL-15, IL-2 is also a potential stimulator for NKCE.

However, the unspecific activation of Treg cells by IL-2 (148) can be

problematic. The activity of IL-2 can be limited to NK cells by

incorporating it into an NKCE but negating its effect on Treg cells,

which can suppress many immune cells, including NK cells (149). A

fusion protein consisting of NKG2D ligand OMCP and a modified

IL-2 has shown the feasibility of this restricted delivery of IL-2,

resulting in specific activation of NKG2D+ cytotoxic cells (89).

Additionally, combining IL-15, IL-12, and IL-18 can induce

memory-like NK phenotype, leading to extended persistence and

superior cytotoxicity of NK cells (150). Hence, it would be

interesting to investigate if NKCEs incorporating IL-15, IL-12,

and IL-18 can induce more potent NK cell cytotoxicity than

NKCEs without cytokine incorporation.
4.4 Integrating immune checkpoint
receptor blockade into NKCEs

4.4.1 Blockade of PD-(L)1
Although NKCEs that engage activating receptors can facilitate

the formation of immune synapses between healthy NK and tumor
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cells, leading to NK cell activation and tumor cell lysis, the

immunosuppressive tumor microenvironment (TME) can

dampen the expression of these activating receptors on the NK

cell surface (151, 152). This may weaken the engagement of tumor-

infiltrated NK cells by NKCEs, resulting in reduced NK cell

activation and expansion. On the other hand, tumors and other

cells in the TME upregulate the expression of ligands for NK cell

inhibitory receptors, which is a mechanism that inhibits the

antitumor function of NK cells. Preventing the engagement of

these inhibitory receptors on NK cells by their ligands can

potentiate the antitumor function of NKCEs. For instance,

EGFRxCD16axPD-L1 is a trispecific NKCE that activates NK cell-

induced killing of EGFR+ tumor cells through CD16a while

blocking the binding of PD-L1 to the immune checkpoint

receptor PD-1 on activated NK cells, thus reducing NK cell

exhaustion (81). Moreover, the anti-PD-L1 arm on NKCE

provides additional recognition of tumor cells, as tumor cells

often express PD-L1 (153). Studies have demonstrated that the

trispecific EGFRxCD16axPD-L1 NKCE exhibits superior antitumor

potency compared to the bispecific EGFRxCD16a NKCE or anti-

EGFR mAb (81).

However, one potential issue that may arise when integrating

checkpoint blockage into NKCEs concerns dosing. Optimal effects

from immune checkpoint blockade typically require high dosage

levels (154). However, such high dosages could potentially cause

severe toxicity, especially considering that the NK-activating

component of the NKCE is typically designed to function

effectively at low concentrations.

4.4.2 Blockade of other inhibitory immune
checkpoints

Several other inhibitory receptors are also known to suppress

NK cell antitumor function, particularly within the TME of various

cancers. These receptors include NKG2A, TIGIT, TIM3, CD96, and

KIR2DL/KIR3DL, in addition to PD-1/PD-L1. NKG2A can

suppress NK cell function by recruiting SHP-1/2 through its

cytoplasmic tail’s ITIMs upon the engagement by non-classical

class I MHC molecules HLA-E (155). Monalizumab, an NKG2A-

blocking IgG4 mAb, has been shown to boost NK cell activation and

synergistically control tumor size with limited toxicity when

combined with a PD-L1 blocking mAb in Phase 2 clinical trial

(156). A blocking antibody against TIGIT, an inhibitory receptor on

NK cells bearing ITIM- and Ig tail-tyrosine (ITT)-like motif, can

reverse the exhausted phenotype of TIGIT-upregulated tumor-

infiltrated NK cells, constrain tumor growth, and improve the

survival tumor-bearing mice in vivo (157, 158). TIM-3, another

NK exhaustion receptor, inhibits NK cell function (159, 160). TIM-

3 blockade enhances NK cell cytotoxicity against MM cells (161)

and cells chronically infected by the hepatitis B virus (162).

Moreover, another mAb, IPH4102, which blocks inhibitory

KIR3DL2, has demonstrated promising clinical activity in patients

with cutaneous T-cell lymphoma (163). CD96 is another inhibitory

receptor, also described as TACTILE (164). Human CD96+ NK cells

demonstrate an exhausted phenotype with reduced IFN-g, TNF-a,
perforin, and granzyme B expression, and blocking CD96
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interaction with its ligands enhances the cytotoxicity of NK cells

(165, 166). NK cells in tumor tissue show a higher level of CD96

than those in the peritumoral region (165). Moreover, the

combinatory blockade of PD-1 and CD96 has significantly

suppressed tumor growth compared to blocking PD-1 alone

(167). Therefore, blocking CD96 can be a novel strategy for

reviving NK cells from exhaustion.

It is important to note that the blockade of immune checkpoints

may not be effective for all types of cancers. For example, a study

investigating the blocking of PD-1 and/or TIM-3 in early chronic

lymphocytic leukemia patients failed to demonstrate any significant

effect (168). Therefore, the effectiveness of immune checkpoint

blockade therapy is ultimately contingent on the unique biology

of each specific cancer disease.
5 Developing NKCEs with desirable
functionality and manufacturability

Engaging the appropriate target receptors is crucial, as it

determines the strength and persistence of NK cell activation and

the subset of NK cells that get activated. Therefore, substantial

efforts are being devoted to selecting more suitable target receptors

for NKCE development. However, the ultimate goal of NKCE

development for cancer treatment is to generate potent NKCEs

with desirable functionality and manufacturability, both of which

are also significantly impacted by their molecular structures. In the

following sections, we will discuss several critical aspects that

influence the functionality and manufacturability of NKCEs.
5.1 Formation of an optimal cytolytic
immune synapse

The formation of a cytolytic immune synapse (IS) between NK

and cancer cells is a prerequisite for an NKCE to eradicate cancer

cells effectively. The IS formation involves three phases: the

recognition and activation phase, the effector/lysis phase, and

finally, the detachment or termination phase (107, 169). The

crucial role of NKCEs is facilitating IS formation during the early

recognition and activation phase by bridging the interaction

between NK and target cells. This interaction subsequently

triggers NK cell activation through receptor engagement, resulting

in cancer cell lysis (169).

Efficient clustering of receptors on both NK and target cells

during their early stages of interaction is crucial for IS formation

and NK cell activation (170). Enhancing the valency of a

monospecific antibody has been shown to potentially improve the

target binding by increasing its avidity (171, 172). This principle is

equally applicable to bispecific antibodies. For example, the CD20-

targeted T-cell bispecific antibody (RG6026, Roche), which has two

CD20-binding Fabs and one CD3-binding Fab, has demonstrated

superior potency than a similar format with only one CD20-binding

Fab (173). Similarly, the loss in binding and killing ability in the T-

cell bispecific antibody with low-affinity variants of HER2-binding
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Fab can be rectified by the bivalent engagement of two low-affinity

Fab variants (174). It is noteworthy that receptor density also

impacts the avidi ty-mediated binding of ant ibodies .

Downregulation of some tumor cell surface antigens is a

prevalent mechanism for immune escape (175), such as the

downregulation of BCMA in MM cells (176). The cell surface

BCMA antigens shed from MM cells and become soluble

antigens, which might even compete with those membrane-bound

BCMA antigens to bind BCMA-targeted NKCEs and reduce their

efficacies. Therefore, the efficient interaction of NKCEs with NK

and target cells is critical for developing NKCEs with high efficacy.

Spatial constraint in the synaptic cleft is another critical factor

for optimal NKCE-meditated IS formation between NK and target

cells. The synaptic cleft of most physiological IS is approximately

10-30 nm in size (177). Molecules exceeding this size could be

excluded from the synaptic cleft and unable to induce IS formation

(178). Thus, there is a size limit for NKCE molecules. Monoclonal

antibodies, typically about 10 nm in diameter (179, 180), fit nicely

into the synaptic cleft, thereby promoting stable IS formation.

However, the addition of antibody moieties in NKCEs, necessary

for achieving multispecificity, or increased valency, inevitably

increases their size and compromises their ability to mediate

stable IS formation due to the synapse structure distortion.

Replacing larger antibody fragments with smaller ones, such as

scFv or nanobody, may overcome the size constraint. For example,

the ability of a NKG2Dx2B4 NKCE to activate NK cells has been

assessed in different formats, including modified IgG format and

linked scFv (87). The NKG2Dx2B4 NKCE, formatted as an scFv

and smaller size than the IgG format, exhibited comparable efficacy

of inducing IFN-g and granzyme B secretion, with only a marginal

lesser capacity to induce NK cell degranulation (87). These findings

indicate that it is feasible to maintain full functionality even when

larger antibody moieties are replaced with smaller ones in the

design of NKCEs.

Furthermore, the physical protrusion and conformation of the

tumor antigens and NK cell receptors in the extracellular region

could affect the design of NKCEs due to the spatial constraints of

the IS. The NKCE’s appropriate size is crucial for stable IS

formation, bridging the ectodomains of both NK receptors and

tumor antigens. For example, CD20 is less protruding from the cell

surface compared to CD19 (181, 182), suggesting that different

designs may be required when constructing NKCEs that engage

with CD19 or CD20, even though both antigens are expressed on

the same B cells and the NKCEs target the same NK cells.
5.2 Format design for NKCE development

To date, various NKCE formats have been evaluated for their

functionality and manufacturability, with many adapted from the

formats used for T cell engagers. Based on their molecular structure

design, NKCE formats can be broadly classified into two major

categories: fragmented formats and adapted IgG formats. The

fragmented formats generally have smaller sizes than the adapted

IgG formats due to the absence of the Fc region (Figure 2).
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5.2.1 Fragmented formats
Most of the fragmented formats are derived from the variable

(V) region of the heavy (H) and light (L) chains of IgGs and lack the

constant regions (Figure 2). The linker between different V regions

is the most common component of these fragmented formats. This

linker connects two V regions, typically a pair of VH and VL, to

form an scFv and construct the NKCE. The linker’s length between

the two V regions determines their pairing (183). Linkers shorter

than 10 amino acids do not allow the V regions to rotate and fold,

leading to inter-chain pairing, as seen in the diabody (Figure 2).

Studies suggest that the scFv’s linker should span at least 3.5 nm to

permit the two V regions to fold and pair to form scFv (184). A

typical linker is flexible and hydrophilic, minimizing structural

interferences during protein folding within the cell. Several linker

options are available to bridge the V regions, such as (G4S)n/(G3S)n
linker (185), 218s linker (GSTSGSGKPGSGEGSTKG) (186), or

HMA linker (PSGQAGAAASESLFVSNHAY) (49) (Table 3). The

(G4S)n linker is most commonly used (187, 188), due to its high

flexibility, low immunogenicity, and serine residues’ contribution to

solubility. Moreover, the 218s linker is reported to be more

proteolytic stable and has reduced aggregation (186), while the

HMA linker exhibits lower immunogenicity (189). In addition to

these conventional linkers, other linker designs are also possible.

Phage display can tailor the linker sequence for a specific antibody,

especially when conventional linkers do not work well (190).

Secondary bonds, like disulfide bonds, are critical to successfully

assembling fragmented-type NKCEs. For example, in the tribody

format (Fab construct, see Figure 2), the disulfide bond between the

heavy and light chains facilitates the pairing. Additionally,

introducing a disulfide bond between intra-domain regions can

help stabilize the structure of engineered IgG antibodies,

particularly when the domain structure lacks intrinsic stability (191).

5.2.2 Adapted IgG formats
Adapted IgG formats, which retain the antibody’s Fc region, are

larger than fragmented formats (Figure 2). Typical engineering

methods of this type of NKCE involve changing the specificity of

one arm of the IgG backbone and/or appending an antigen-

recognizing moiety, either scFv or Fab, to the N- or C-terminus

of the original IgG (Figure 2). Depending on the position of the

modifications, adapted IgG formats could be further subdivided

into asymmetrical and symmetrical types (Figure 2).

Compared to the relatively simple folding requirement of the

fragmented format of NKCEs, asymmetrical adapted IgG NKCEs

present more challenges during protein folding. The main issues are
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the unsought homodimerization of heavy chains and the mispairing

of the heavy and light chains of asymmetric IgG NKCEs when

different NKCE parts are produced in the same cell (Figure 2).

Previously, the production of those asymmetric IgGs through the

hybrid hybridomas has encountered low yield due to the undesired

homodimers of the heavy chains and mispaired light chains with

non-cognate heavy chains (192).

To date, various techniques have been developed to overcome

these problems. For example, chimeric rat/mouse-derived

quadroma (193), knobs-into-holes (194), strand-exchange

engineered domain (SEED) (195), and heterodimerization/

electrostatic steering interaction (196) methods are used to

enhance the heterodimerization of the heavy chains. CrossMab

(197), CH1/CL interface engineering, or IgG/TCR chimaera (198)

approaches are employed to minimize the mispairing of heavy and

light chains. These technologies create and utilize a higher affinity

for one chain to its desired pairing chain over other chains, thereby

increasing the yield of NKCEs with the correct chain pairing.

Another potential solution to the issue of the mispairing of heavy

and light chains could involve using a common light chain.

However, this strategy might not be applicable to all the

antibodies, particularly those where the CDR sequences of both

heavy and light chains are equally critical for determining the

antigen-binding specificity.

Alternatively, instead of producing different parts of an NKCE

in one single cell, these parts could be synthesized separately and

subsequently assembled to form the functional format. This

approach, known as co-culture (199), involves producing two

distinct half-antibodies in two separate cell lines and combining

them to generate the complete structure in a 1:1 molar ratio. While

the co-culture method can yield substantial protein quantities, it

may escalate costs and contamination risks due to the need for

additional purification steps (199).

Due to their symmetrical structures, the symmetrical IgG

formats can easily circumvent the chain pairing issues inherent to

the asymmetrical formats, potentially reducing production costs.

However, a concern for the symmetrical IgG formats is their

considerably larger size than the asymmetrical formats when

achieving the same multispecificity. The increased size could

theoret ical ly compromise the yield and increase the

immunogenicity of the symmetrical NKCEs (200, 201).

It is noteworthy that the choice of the antigen recognition

moiety can significantly impact the function of NKCEs. Although

the Fab format for antigen recognition poses a challenge in correctly

pairing heavy and light chains, it is functionally more potent than
TABLE 3 Commonly used linkers in NKCE design.

Linker Amino Acid Sequence Features

(G4S/G3S)n linker (GGGGS)n or (GGGS)n * Conventionally used, length adjustable;
* High flexibility, low immunogenicity, and good solubility

218s linker GSTSGSGKPGSGEGSTKG * Proteolytic stable
* Reduced scFv aggregation

HMA linker PSGQAGAAASESLFVSNHAY * Low immunogenicity
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the scFv format. A study has shown that certain scFvs, which failed

to function in vivo, could operate once switched to the Fab

format (202).

5.2.3 Other non-antibody-based formats
Some unconventional formats, which are not purely antibody-

based, can also be employed in NKCE development (Figure 2). One

such format involves fusing the ligands of the corresponding

receptors on both the tumor and NK cells to engage the NK cell

with the tumor cell (90). This strategy offers a broader range of

receptor targets for NKCE engineering; however, it does not prevent

competition with the endogenous ligand binding to the receptors.

Another approach, known as nano-engager, utilizes the ability of

nanoparticles to be coated with multiple antibodies (88) (Figure 2).

This method allows a single nanoparticle to display multiple

specificities, directing NK cells towards tumor cells.

Nanobodies, also known as VHH (Variable Heavy domain of

Heavy chain) antibodies, present a promising alternative for antigen

recognition in NKCEs. Unlike scFv or Fab, which is constructed

using VH and VL, nanobodies are camelid single-domain

antibodies that can achieve specific antigen-binding using heavy

chains only (203). Therefore, nanobodies can circumvent the

pairing issue of the Fab format and the folding issue of scFv,

making them a promising candidate in future NKCE designs. The

feasibility of incorporating nanobody into NKCE has been

demonstrated by the CD16axIL-15xCLEC12A NKCE (61)

(Table 2). In this NKCE, a humanized anti-CD16a VHH

fragment, instead of the conventional anti-CD16a scFv, was

incorporated into the NKCE and could mediate efficient NK cell

activation and tumor cell lysis (61).

Recently, a new form of antigen recognition called affibody has

also emerged due to advancements in protein engineering

technologies (204). Affibodies are constructed using three-helix

subdomains, approximately 7 kDa in size (205). Randomization

of the amino acids on two of the helices has been found to generate

a large library, from which some potent antigen binders to the

antigen can be isolated (205–208). For instance, a CD16axBCMA

NKCE developed using affibodies has illustrated the potential of this

new format to replace the conventional scFv moieties in the design

of NKCEs (Table 2). This compact NKCE (15-23 kDa), consisting

of CD16a- and BCMA-specific affibodies connected by a linker, has

demonstrated potent efficacy in activating primary NK cells,

initiating synapse formation, and specifically lysing MM cells (58).
5.3 Other factors affecting
NKCEs’ functionality

In addition to the direct effect of format design on the

functionality of an NKCE, other factors, such as tissue infiltration

and persistence, should also be considered during the development

of NKCEs. These factors can significantly influence the

therapeutical efficacy of NKCEs.

Currently, most NKCEs undergoing preclinical testing are of

fragmented formats (Table 2). Their smaller size (50-100 kDa)
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affords them excellent tissue infiltration properties and substantially

lower immunogenicities. However, these small-size NKCEs often

lack in vivo persistence due to renal clearance and degradation (209,

210), requiring frequent infusions to the body to maintain effective

drug levels. This will increase treatment costs due to the recurrent

patient hospital visit for repeat infusions. Thus, strategies to extend

the in vivo lifespan of these small-size NKCEs have been proposed.

One such approach is to bind or fuse them to long-lived serum

proteins, like albumin (half-life 2-4 weeks) (211, 212), or conjugate

them to the Fc region of IgG (212, 213). Additionally, attaching the

small-size protein to a chemical polyethene glycol (PEG), which

could also prolong its half-life (209), might be feasible to extend the

half-life of the smaller NKCEs. Several approved protein drugs, such

as interferon-a 2b (IFN-a 2b), granulocyte-colony-stimulating

factor (G-CSF), or human growth hormone (hGH), have used

this method for longer persistence (214). Another strategy

involves multimerizing NKCEs in fragmented format to increase

their size. For instance, AFM13, a tetravalent bispecific NKCE that

binds to CD16a and CD30 on NK and tumor cells, is achieved by

dimerizing two V domains. In a Phase 2 trial, AFM13 demonstrated

promising results for treating multi-refractory Hodgkin Lymphoma

patients (91, 215).

As mentioned earlier, adapted IgG formats typically have a

larger size, usually exceeding 150 kDa (Figure 2). While their larger

size may present challenges in tissue penetration, the inclusion of

the Fc region significantly enhances their in vivo persistence (216).

Additionally, the Fc region could recruit mechanisms such as

ADCC, complement-dependent cytotoxicity (CDC), and

antibody-dependent cellular phagocytosis (ADCP) in immune

cells other than NK cells, adding a bonus to tumor cell killing

(217). The most common approach to achieve multispecificity of

the adapted IgG format is to add appendages with different antigen

specificities to the C- or N-terminus of the IgG protein (81, 193,

218–222). (Figure 2) Nevertheless, incorporating appendages into

NKCEs would inevitably increase their size, making tissue

penetration more challenging and potentially enhancing

immunogenicity (223, 224). Hence, balancing multispecificity,

desired tissue penetration, and low immunogenicity is critical for

developing NKCEs in the adapted IgG format to achieve

satisfactory therapeutical efficacy.
5.4 Manufacturing of NKCEs

The choice of the production system of NKCE is also an

essential factor in their development, as it determines the yield of

NKCEs and the necessity for further downstream processing.

Generally, two host systems are most commonly employed:

bacterial and mammalian systems (refer to Table 4 for specific

systems used for individual NKCE). The bacterial system is

frequently used for producing fragmented formats, such as

linked-scFv type NKCEs, although some are also produced using

the mammalian system, such as HEK 293 cells. On the other hand,

adapted IgG formats are primarily produced in mammalian cells,

such as CHO cells, due to the need for post-translational processing

for successful chain pairing.
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TABLE 4 Host systems for NKCE production.

Host
system NKCE name Format Reference

Bacteria

CD16axEpCAM Linked scFv (49)

CD16axCD33 Linked scFv (50, 51)

CD16axCD19 Linked scFv (52)

CD16axCD19xCD22 Linked scFv (52)

CD16axCD133 Linked scFv (53)

1615133 TriKE (CD16axIL-
15xCD133)

Linked scFv fused with cytokine (59)

CD16axIL-
15xEpCAMxCD133

Linked scFv fused with cytokine (60)

161519 (CD16axIL-
15xCD19)

Linked scFv fused with cytokine (63, 64)

GTB-3550/161533 TriKE
(CD16axIL-15xCD33)

Linked scFv fused with cytokine
(38, 65)

GT Biopharma

CD16axEGFR Diabody (75)

CD16axIL-15xHER2
(CAM1615HER2)

Linked VHH fused with scFv (56)

CD16axIL-15xB7H3
(CAM1615B7H3)

Linked VHH fused with scFv (57)

CHO cells

AFM13 (CD16axCD30) Tand Ab (40, 68, 69)

CTX-8573
(NKp30xBCMAxNK

ADCC)
Symmetrical adapted IgG with common light-chain appendage (83)

CD16axNkp46xTumor Ag. Single-armed IgG-adapted (79)

CHO-S cell
line

NKG2DxCS1 Linked scFv (54)

CHO-ZEN
cells

CYT-338 (Nkp46xCD38x
NK ADCC)

Symmetrical adapted IgG (FLEX-NK)
(85)

Cytovia Therapeutics Inc.

Flp-In CHO
cells

AFM22 (CD16ax
EGFRvIII)

Tand Ab Affimed

AFM24 (CD16axEGFR)
Tand Ab. (AFM24_T) and Symmetrical adapted IgG1 antibody

with C-terminal appendage (AFM24_I)
AACR 2020 Jun 22-24 Poster 5659 – AFM24,

Affimed Company (93);; NCT04259450

Expi 293
cells

B7-H6xEGFR
Asymmetrical adapted IgG with Fab replaced by Ig-like V-type

domain of the extracellular region of B7-H6
(82)

NKG2CxIL-15XCD33 Linked scFv fused with cytokine (62)

CD16axNkp46xTumor Ag. Single-armed IgG-adapted (79)

NKp46xCD19/20 Single-armed IgG-adapted (80)

NKp30xCD16axCD19/20 Single-armed IgG-adapted (80)

CD16axEGFRxPD-1 Asymmetrical adapted IgG (81)

CD16axIL-15xCLEC12A
(CLEC12A TriKE)

sdAb (VHH a-CD16a) & scFv (a-CLEC12A) plus cytokine motif (61)

FreeStyle
293F cells

NKG2DxHER2 Bispecific (bsFab) or bivalent Fab-like (bvFab) antibodies with VHH (78)

NKG2DxFMDV Bispecific (bsFab) or bivalent Fab-like (bvFab) antibodies with VHH (78)

OMCPxIL-2 Peptide fused with IL-2 mutant with lower affinity for IL-2Ra (89)

HEK 293
cells

2A9-MICA
(MICAxBCMA)

Ligand peptide fused with scFv (67)

(Continued)
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The bacterial system allows inexpensive, rapid, and high-

volume production of NKCEs, but proteins produced often

require refolding (225). Typically, NKCE genes are inserted

into an expression plasmid vector with an inducible promoter.

When the bacteria culture reaches high density, the NKCE

expression is induced. The NKCE proteins produced are

isolated from the bacteria’s inclusion body. Harvesting raw

NKCE proteins from the bacteria system usually take

approximately 1-2 days (49), followed by another 2-3 days for

refolding and purification (49).

On the other hand, expressing NKCEs in mammalian cell

systems, such as HEK 293T or CHO cells, can bypass the
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refolding process as these cells can secrete fully functional

NKCEs, which can be isolated from the supernatant. However,

the yield from the mammalian cell system is typically lower than

that of the bacterial system (54, 55). Usually, mammalian cells are

co-transfected or transduced with expression vectors encoding the

light or heavy chains. After around 6 days of culture, the

supernatants are collected for the purification of NKCEs, followed

by analyses of chain size and pairing (79). Although HEK 293T cells

can offer post-translational modifications closest to those found in

the human body (226), they are not as effective as CHO cells for

large-scale production due to limitations in growth capacity, yield,

and doubling time (227).
TABLE 4 Continued

Host
system NKCE name Format Reference

NKG2Dx2B4
Available in 3 formats: 2 different symmetrical adapted IgG (with

appendage at either N- or C-termini), 1 linked scFv
(87)

CD16axEGFR Linked VHH (55)

HEK 293T &
COS cells

ULBP2xBB4 (ULBP2-BB4) Linked extracellular domain of the receptor and the ligand (90)

Lenti-X 293T
cells

AICLxHER2 Extracellular domain of the ligand fused to HER2-scFv (66)

B7-H6xHER2 Extracellular domain of the ligand fused to HER2-scFv (66)

ULBP2xHER2 Extracellular domain of the ligand fused to HER2-scFv (66)

PVRxHER2 Extracellular domain of the ligand fused to HER2-scFv (66)

(HER2)2xCD16a Tribody (74)

Non-cell
system

CD16ax4-1BBxEGFR Nanoengager (88)
FIGURE 3

Characteristics of an effective NKCE. The characteristics of an effective NKCE include high specificity and selectivitity to tumor antigen (Recognition),
being able to infiltrate into the tumor tissue effectively, enhance NK proliferation (within tumor), reduce NK exhaustion in TME, and persist in vivo for
long period.
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6 Conclusion

NKCEs have exhibited considerable potential as a new

immunotherapeutic modality for cancer treatment. While the

majority of current NKCEs targets CD16a and NKG2D, other

activating receptors also display promising therapeutic potential

and deserve further exploration. Moreover, a strategy that combines

triggering activating receptors with blocking inhibitory receptors

presents an effective approach to achieving enhanced NK cell

activation. The inclusion of stimulatory cytokines in NKCEs has

been shown to improve their therapeutical efficacies in preclinical

studies. However, there is a need for more extensive studies to

systematically evaluate how different molecular structures of NKCE

impact immune synapse formation, pharmacokinetics, effector

functions, and in vivo efficacy. Compared to T cell engagers, the

current pool of NKCE formats is limited; hence, further exploration

of additional NKCE formats is necessary to achieve the desired

antitumor activities. Moreover, challenges such as potential on-

target-off-tumor effects, NK cell exhaustion, and poor NK cell

survival in the immunosuppressive TME have to be addressed

during NKCE development (Figure 3). Therefore, further research

is urgently needed to guide the development of NKCEs into off-the-

shelf cancer treatment drugs.
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Glossary

ADCC Antibody-dependent cellular cytotoxicity

ADCP Antibody-dependent cellular phagocytosis

AICL Activation-induced C-type lectin

AML Acute myeloid leukemia

BCMA B-cell maturation antigen

BiKE Bispecific killer cell engager

CAR Chimeric antigen-receptor

CDC Complement-dependent cytotoxicity

CDR Complementarity-determining regions

CHO Chinese hamster ovary

CLEC12A C-type lectin domain family 12 member A

CMV Human cytomegalovirus

CRS Cytokine release syndrome

CS1 CD2 subset-1

CTLA4 Cytotoxic T-lymphocyte–associated antigen-4

DAP10/
DAP12

DNAX-activating protein of 10kDa/12kDa

DNAM-1 DNAX accessory molecule-1

EGFR Epidermal growth factor receptor

EGFRvIII Epidermal growth factor receptor variant III

Fab Fragment antigen binding

Fas-L Fas ligand

Fc Fragment crystallizable region

FcgRIIIa Fc g receptor IIIa

FcϵRIg High-affinity IgE receptor g

G-CSF Granulocyte colony-stimulating factor

GPI Glycosyl phosphatidyl inositol

Grb2 Growth factor receptor-bound protein-2

GVHD Graft versus host disease

HEK Human embryonic kidney

HER2 Human epidermal growth factor receptor-2

hGH Human growth hormone

HLA Human leukocyte antigens

IFN-g Interferon g

IgG Immunoglobulin G

IL Interleukin

ILC Innate lymphoid cell

IS Immune synapse

ITAM Immunoreceptor tyrosine-based activation motif

(Continued)
F
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ITSM Immunoreceptor tyrosine-based switch motif

ITT Ig tail-tyrosine

kDa Kilodalton

KIR Killer immunoglobulin-like receptor

KIR2DS/
KIR3DS

Killer cell immunoglobulin like receptor, two/three Ig domains
and short cytoplasmic tail

mAb Monoclonal antibodies

MHC I Major histocompatibility complex class I

MICA MHC I-related chain A

MM Multiple myeloma

NCR Natural cytotoxicity receptor

NK Natural killer

NKCE Natural killer cell engager

NKG2A Natural killer group 2A

NKG2C Natural killer group 2C

NKG2D Natural killer group 2D

Nkp30 Natural cytotoxicity receptor-3

NKp46 Natural cytotoxicity receptor-1

Nkp80 Killer cell lectin-like receptor subfamily F member-1

NSG NOD scid g

OMCP Orthopoxvirus major histocompatibility complex class I-like
protein

PD-1 Programmed cell death protein-1

PD-L1 Programmed cell death protein-1 ligand

PEG Polyethylene glycol

PI3K Phosphatidyl-inositol-3-OH kinase

PKC Protein kinase C

PLC Phospholipase C

PVR Poliovirus receptor

SAP Signaling lymphocytic activation molecule–associated protein

scFv Single-chain fragment variable

SEED Strand-exchange engineered domain

SHP SH2 domain-containing protein tyrosine phosphatase

SLAM Signaling lymphocytic activation molecule

TAA Tumor associated antigen

TACTILE T cell activation, increased late expression

TIGIT T cell immunoreceptor with Ig and ITIM domains

TIM3 T cell immunoglobulin and mucin domain-3

TME Tumor microenvironment

TNF-a Tumor necrosis factor alpha

TRAIL TNF-related apoptosis-inducing ligand

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1207276
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1207276
Continued

TriKE Trispecific killer cell engager

Vav Vav guanine nucleotide exchange factors

VHH Variable heavy domain of heavy chain
F
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