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guidance proteins
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Department of Anesthesiology and Intensive Care Medicine; Eberhard Karls University Tübingen,
Tübingen, Germany
Platelets are anucleate blood cells derived from megakaryocytes. They link the

fundamental functions of hemostasis, inflammation and host defense. They

undergo intracellular calcium flux, negatively charged phospholipid

translocation, granule release and shape change to adhere to collagen, fibrin

and each other, forming aggregates, which are key to several of their functions.

In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal

guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal

axon navigation and thus refine neuronal circuits. By binding to their target

receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In

recent decades, evidence has indicated that NGPs perform important

immunomodulatory functions and influence platelet function. In this review,

we highlight the roles of NGPs in platelet formation and activation.
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1 Introduction

Platelets are blood cells with fundamental functions. Platelets have been recognized as

hemostasis-maintaining cells that sense vascular injury, adhere to collagen and each other

to aggregate, and thus form thrombi to stop bleeding. Moreover, their functions in

inflammation, cancer, and other physiological and pathophysiological processes have

been described recently (1–3). During inflammatory responses, platelets directly interact

with immune cells, including neutrophils (4–7), lymphocytes (8), monocytes (9–12), and

macrophages (13–19), to mediate the activation, polarization, transmigration, and cytokine

secretion of these cells. The interaction between platelets and the immune system has been

established, and several specific terms have been applied to their intensive interactions. For

instance, Stoll G. and Nieswandt B. coined the term ‘thrombo-inflammation’ to indicate

that T-cell and platelet interactions occur during ischemia–reperfusion injury in stroke (8).

Engelmann B. and Massberg S. introduced the term ‘immunothrombosis’ to describe the

critical function of thrombosis in innate immunity. Immunothrombosis involves local

platelets, fibrin, neutrophils, and monocytes, which interact and contribute to pathogen

recognition and suppression (20). These ideas have been thoroughly reviewed (20–22).
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The challenging roles played by platelets are possible because of

the high reactivity of platelets to different molecules and stimuli and

the precise intracellular and extracellular control of their responses

and activities. Without sufficient regulatory structure, dysregulated

hemostasis or excessive thrombosis can cause a range of fatal

diseases, from hemophilia and von Willebrand disease to stroke,

deep vein thrombosis, and pulmonary embolism.

Neuronal guidance proteins (NGPs) were originally identified

by their attraction and repulsion functions, which promote synapse

formation in the nervous system (23–26). In recent decades, an

increasing number of studies have demonstrated the functions of

NGPs in regulating basic immune functions, inflammation,

oncology and platelet activation (2, 27–31). In this review, we

summarize current knowledge about the modulatory functions of

NGPs in platelet formation and activation.
2 Platelets

2.1 Platelet formation

Platelets are discoid anucleate cells generated from

megakaryocyte (MK) cytoplasm. Hematopoietic stem cells (HSCs)

exposed to thrombopoietin (TPO) differentiate into MKs (32, 33).

MKs undergo polyploidization through DNA replication without

cell division, accumulating from 2n to 64n and even 128n DNA

pairs in a multilobe nucleus, a process named endomitosis (34, 35).

The formation of an invaginated membrane system (IMS) is

another characteristic of MK maturation, and the process is well

established (36). Membrane assembly starts at the cell periphery

and is positioned precisely between nuclear lobes. The amount of

invaginated membrane and extent of nuclear lobulation are

correlated, and there is a close association between cleavage

furrow formation and inhibited cytokinesis during the formation

of the IMS (36). During the process, Golgi complexes and the

endoplasmic reticulum (ER) are in close contact with the IMS,

suggesting the mechanism by which membranes are formed and

lipids are transferred (36).

After maturation via polyploidization and IMS formation,

cytoplasmic branches called proplatelets protrude from MKs.

Proplatelets are elongated MK protrusions that extend into

sinusoidal microvessels in the bone marrow and shed platelets

from the tips of the protrusion branches (37). This process was

clearly demonstrated in vitro by J. E. Italiano et al. (37). Mature

MKs spread and form large pseudopodia on the polarized side

opposite the side with polyploid nuclei. The pseudopodia extend

and bend dynamically and form new branches into bending sites

until the whole cytoplasm transforms into proplatelet tubes, which

may undergo anastomosis with each other. Proplatelets contract

discontinuously along the long axis to produce areas of swelling into

‘beads’. Subsequently, proplatelet tips adhere and extend to form

flat lamellipodia, and during this process, the ends of a proplatelet

crawl away from the cell center (37). The process of proplatelet

formation and platelet release in vivo (38) is slightly different from

that in vitro, where sinusoidal vessel walls, blood flow shear stress in

microvessels and the microenvironment in bone marrow are absent.
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With multiphoton intravital microscopy, T. Junt et al.

demonstrated that MKs are in close proximity to bone marrow

sinusoids and are relatively stationary compared to resident bone

marrow cells (39). MKs form protrusions into bone marrow, and

these protrusions extend faster in vivo than they do in vitro (3.9 µm/

min vs. 0.85 µm/min) (39). Proplatelets extend through the

sinusoidal wall into the microvessel lumen in the bone marrow

and are cleaved and released into blood circulation. In contrast to an

in vitromodel, in which all of the MK cytoplasm can be observed to

transform into proplatelet nets within 4 hours (37), the proplatelets

extended in vivo consist of ~6% of the average volume of an MK,

and proplatelets are released approximately every 7 hours (39). This

variation indicates that in vivo, proplatelet protrusion and

elongation is a gradual process that is effectively controlled.

Released proplatelets are easily recognized in the peripheral blood

circulation, providing further evidence for the theory that platelets

are ultimately formed in peripheral circulatory structures, such as

pulmonary arterioles (40, 41), and blood flow shear stress plays

critical roles in this process (38).
2.2 Role of the cytoskeleton in
platelet formation

In the dynamic morphogenesis of proplatelets and final platelet

formation, the intracellular cytoskeletal system in MKs, comprising

actin, myosin, and microtubules, plays crucial roles (Figure 1).

When actin filament polymerization is inhibited by

cytochalasin B (42), the bending dynamics of MK protrusions

and branching of proplatelets are significantly decreased (37).

Indicating the importance of F-actin in platelet formation,

platelet-like swelling areas in a proplatelet consist of a meshwork

of densely packed F-actin (37).

In the presence of cytochalasin B, MKs produce proplatelet

extension without swollen bead formation (37). This outcome is

unsurprising since cytochalasin B reduces actomyosin viscosity and

contractile microfilament formation (43), inhibiting segmental

contraction and intermediate contractile narrowing in the

proplatelets. When myosin-9, also called nonmuscle myosin

heavy chain-IIa (NMMHC-IIA), is rendered defective by

mutation of the gene that encodes it, MYH9, myosin filament

formation is disrupted (44), and contractile function is inhibited

(45); therefore, MKs produce giant platelets (46–50). For example,

these large platelets are characteristic of May–Hegglin anomaly

(47), Fechtner syndrome, Sebastian syndrome (46, 48), and Epstein

syndrome (49), which are considered MYH9-related genetic

diseases (49, 50).

The nonmuscle myosin II molecule is a hexamer composed of

two 230 kDa heavy chains, two essential light chains (ELCs) of 17

kDa, and two regulatory light chains (RLCs) of 20 kDa (51). The

regulation of nonmuscle myosin II relies on the phosphorylation of

serine 19 and threonine 18 on RLCs, which is mediated by different

kinases, but in MKs and platelets, the most important players are

Rho-GTPases, especially RhoA and CDC42 (52, 53). Tissue-specific

gene knockout of RhoA in MKs led to macrothrombocytopenia.

RhoA-/- MKs produce 50% fewer platelets and exhibit a 25%
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increase in total platelet volume, with the large platelets formed in

RhoA-/- MKs being rounder than those in wild-type MKs (54).

RhoA regulates proplatelet formation by inhibiting cytoplasmic

protrusion extension (55–57). In vitro, retroviral overexpression

of RhoA leads to reduced MK formation, but MKs transfected with

retroviruses encoding dominant-negative RhoA produce more

proplatelets (56). Inhibition of RhoA and its main downstream

effector ROCK leads to reduced phosphorylation of RLCs in NM II

and increased proplatelet formation (56). In contrast to the ‘STOP’

signal function of RhoA, CDC42 seems to exert a ‘GO’ signal

function, driving MK proplatelet formation. Inhibition of CDC42

expression significantly reduces proplatelet formation, while MKs

overexpressing CDC42 produce markedly more proplatelet

protrusions (58).

Electron micrographs have clearly revealed the parallel bundles of

structural microtubule skeletons in proplatelets, and increasing evidence

indicates a fundamental function for microtubules in proplatelet

protrusion and elongation (37, 39, 59, 60). Stabilizing microtubules
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with Taxol significantly decreases the number and length of proplatelet

protrusions from MKs and leads to fewer and shorter but thicker

protrusions18. Moreover, microtubules disrupted by nocodazole (39),

vincristine sulfate or colchicine show highly suppressed proplatelet

formation and elongation (59). A b1-tubulin gene (TUBB1) mutation

in humans results in the formation of abnormally large proplatelets and

macrothrombocytopenia (60). Mice lacking the transcription factor NF-

E2, which inhibits the transcription of b1-tubulin, a main tubulin

isoform in MKs, exhibit severe thrombocytopenia. MKs with NF-E2

knocked out undergo polyploidy, and invaginated membranes

accumulate but never form proplatelets (61).
2.3 Platelet activation

At the intracellular and molecular levels, platelet activation

involves intracellular calcium flux, negatively charged

phospholipid translocation, granule release, and shape change.
FIGURE 1

Role of NGP and cytoskeleton in platelet formation. Megakaryocytes (MKs) are differentiated from hematopoietic stem cells (HSCs), and their maturation
is marked by the polyploidized nucleus and the formation of an invaginated membrane system. Mature MKs extend cytoplasmic branches, named
proplatelets, into sinusoidal microvessels in the bone marrow and shed platelets. In this process, microtubules are fundamental for proplatelet protrusion
and elongation. Actin polymerization plays an important role in the dynamic bending and branching of proplatelets. Actomyosin provides mechanical
force for proplatelet segmental contraction and intermediate narrowing, by which the size of platelets is limited. The NGP known as Sema7A has been
shown to regulate platelet formation by inhibiting MKs differentiation. This is the only known NGP with this capability.
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Platelet calcium flux is stimulated by agonists mainly through G

protein-coupled receptors (GPCRs) or ITAM-linked receptors

(ILRs) (62, 63). Receptors for thrombin, ADP and thromboxane

A2 (TxA2) are GPCRs and signal through phospholipase (PLC) b.
ILRs include GPVI and C-type lectin-like receptor 2 (CLEC-2),

which regulate PLCg isoforms (62). Activation of both pathways

generates inositol 1,4,5 trisphosphate (IP3), which binds to the

inositol phosphate-sensitive (IPS) receptor on dense tubules to

promote Ca2+ release and increase the cytoplasmic Ca2+

concentration. Subsequently, the increase in Ca2+ level activates

the cytoskeletal system and regulates various cell processes, such as

phospholipid translocation; granule release; cell shape change; and

protein trafficking, redistribution and activation (1). Negatively

charged phospholipids translocate from the inner leaflet to the

outer membrane surface in activated platelets. The negatively

charged platelet surface facilitates coagulation by enabling platelet

binding to the coagulation enzyme complex, which activates serine

proteases and subsequently activates thrombin (64). Activated

platelets release a-granules, dense granules, and lysosomes. These

components play various roles in regulating physical processes,

including hemostasis and coagulat ion, inflammation,

vasoconstriction, and angiogenesis (56, 65–71). Notably, some of

these components, such as vWF, fibrinogen, and growth factors, are

released into the extracellular microenvironment. Other

components, such as integrin aIIbb3, GPVI, components of the

GPIb-IX-V complex and P-selectin, are fused or redistributed into

the cytoplasmic membrane, where they play critical roles in signal

transduction. Activated platelets transform from a regularly round

discoid shape to an irregular shape, forming actin-enriched sheets

in lamellipodia and numerous extended filopodia that facilitate

platelet aggregation and adhesion (1).

Activated platelets fulfill their function in hemostasis,

thrombosis and inflammation via adhesion (to collagen or other

types of cells) and aggregation (to other platelets). In injured vessels,

collagen in the subendothelial matrix is exposed and binds to two

prominent receptors on platelets, GPVI and GPIa/IIa (integrin

a2b1). Endothelial cells undergoing injury or inflammatory

responses release von Willebrand factor (vWF) from Weibel-

Palade bodies (WPBs), which bind to the platelet GPIb/V/IX

complex (1, 72). These binding events initiate the activation of a

signaling cascade, leading to Ca2+ release and the subsequent

activation processes in platelets and ultimately to GPIIb/IIIa

(integrin aIIbb3) activation (1, 73). Activated platelets redistribute

more GPIIb/IIIa onto the cell surface by granule secretion, and

more importantly, these receptors are activated, showing high

affinity for their ligand fibrinogen (74). One fibrinogen binds two

molecules of GPIIb/IIIa, promoting stable platelet aggregates (75).
2.4 Platelet activation and cytoskeleton

From the information presented thus far, it is clear that platelet

activation is a profoundly dynamic and orchestrated process.

Therefore, it is not surprising that the cytoskeletal system exhibits

fundamental functions in this process (1, 76–78). Actin
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polymerization is not only critical for filopodia formation and

extension (1) but also important for a-granule secretion (76). In

activated platelets, peripheral microtubule coils expand due to the

increased Ca2+ concentration and fold into the cell center. This

change promotes platelet transformation from a discoid to a

spherical shape (78).

The platelet cytoskeleton is regulated by the Rho GTPase family

members RhoA (54, 79–82), Rac1 and Cdc42, which collectively

mediate platelet activation. Specifically, RhoA is essential for

platelet shape change, a-granule and dense granule secretion,

integrin aIIbb3 activation, integrin-mediated clot retraction, and

stable thrombus formation (54). Rac1 deficiency blocks granule

secretion, lamellipodia formation and platelet aggregation (80, 81).

Cdc42 and actin polymerization are critical for integrin a2b1 (also
known as GPIa/IIa) activation, which induces the tight attachment

of platelets to collagen (82).
2.5 Regulation of platelet activation

In the blood, platelet activation needs to be quick and effective

to limit blood loss and restore blood vessel integrity.

Simultaneously, platelet activation requires tight control to limit

the scale of thrombosis and to maintain vascular patency and blood

supply to tissues. Therefore, platelet functions must be both

positively and negatively regulated to maintain a balance of

effective reactions and controlled scale.

Positive drivers of platelet activation include thrombin,

adenosine diphosphate (ADP), TxA2, and epinephrine. All of

these agonists cooperate with one or more GPCRs and

subsequently elevate the Ca2+ concentration and facilitate various

platelet activation processes (83, 84).

The negative regulators of platelet activation maintain platelet

quiescence in the blood circulation and control the degree of

thrombosis. These inhibitory factors are generated in endothelial

cells (nitric oxide, NO and prostacyclin PGI2), on the platelet

surface (platelet endothelial cell adhesion molecule-1, PECAM-1),

or in platelets (85). Knowledge obtained to date on these regulators

has been effectively summarized elsewhere (85, 86).

Another emerging group of platelet functional regulators

comprises neurona l guidance prote ins (NGPs) . Our

understanding of these factors is still in its infancy, but increasing

evidence indicates their promising prospects.
3 Neuronal guidance proteins
influence platelet formation and
activation by regulating the
cytoskeletal system

3.1 Neuronal guidance proteins

Neuronal guidance proteins (NGPs), also named axon guidance

proteins, are various proteins that guide neurons in nervous system
frontiersin.org
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development both during embryogenesis and in neonates (87, 88).

NGPs are composed of (but not limited to) netrin and its receptor

called deleted in colorectal cancer (DCC); slit and its receptor Robo;

Ephs and their receptors called ephrins; RGM and its receptor

neogenin; Wnt and the receptor Frizzled; and protocadherins

(Pcdhs) and semaphorins and their receptors called plexins (23,

87, 88). Many NGPs are evolutionarily conserved (89). NGPs

engage in overlapping attraction or repulsion signaling with

billions of neurons to induce the assembly or collapse of growth

cones (23), suppress or promote the growth of axons and dendrites

(24), modulate synaptic contacts (25) and prune axons (26) to refine

neuronal circuits. During this complicated process, some NGPs

provide long-distance chemoattractive or chemorepulsive signals to

guide neuron axons; for example, netrin-DCC and Slit-Robo

navigate neurons during spinal cord development (87, 90). Some

NGPs serve as surrounding repulsive signals to inhibit

inappropriate synaptic contacts, such as that between

semaphorins and plexins (87, 91), and Pcdhs generate self-

avoidance signaling that inhibits neurons from inducing

nonfunctional synapse formation (87, 92). Although various and

redundant signaling proteins are involved, the effectors for all NGPs

are consistent and unique and originate in the cytoskeletal system.

By binding to their receptors, NGPs regulate the action of small

GTPases and subsequently influence cytoskeleton rearrangement

and neuron motility (87, 88, 93). Given the fundamental function of

the cytoskeletal system in platelet formation and activation, it is not

surprising that NGPs play critical roles in regulating

platelet activity.

Increasing evidence has proven that NGPs are involved in many

physiological and pathological processes, such as immune reactions

(29), tumor invasion and metastasis (94, 95), and tissue repair and

regeneration (96, 97). In this review, we provide up-to-date

knowledge about their regulatory functions in platelet formation
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and activation. All NGPs involved in platelet formation and

activation are shown in (Table 1).
3.2 Semaphorin 3A inhibits
platelet activation

Semaphorin 3A (Sema3A) is a secreted homodimer that

functions through the receptor complex comprising neuropilin-1

and PlexinA1 (106). Sema3A binds to neuropilin-1, while PlexinA1

mediates intracellular signaling (107, 108). In the nervous system,

Sema3A inhibits sympathetic neuron migration and modulates

sympathetic neuron arrest and aggregation in the proper position

(109). The genes for Sema3A, neuropilin-1 and PlexinA1

(PLXNA1) are all orthologous between humans and mice, and

sequence alignment analysis with the Constraint-based Multiple

Alignment Tool (COBALT) from the National Center for

Biotechnology Information (NCBI) has shown a 100% match for

all three protein-encoding genes (110). The functions of Sema3A in

the immune system have been established: i) Sema3A inhibits T-

lymphocyte activation, proliferation, and cytokine production

(111–113); ii) Sema3A stimulates dendritic cell (DC) activation

and plays a chemorepellent role in DC migration; and iii) Sema3A

regulates monocyte and macrophage migration and polarization.
Western blotting and RT−PCR have demonstrated that the

Sema3A receptors neuropilin-1 and PlexinA1 are abundantly

expressed on human platelets (98). Sema3A inhibits GPIIb/IIIa

activation on human platelets and subsequent platelet aggregation

(98). Sema3A has also been proven to downregulate a-granule and
dense granule secretion of human platelets (98). Moreover, it

suppresses human platelet adhesion and spreading on fibrinogen-

coated and uncoated surfaces, indicating that this inhibitory

function is either GPIIb/IIIa-dependent or GPIIb/IIIa-
TABLE 1 NGP involvement in platelet development and activation.

Ligands* Receptors* Function Molecular
mechanism

Refs

Sema3A neuropilin-1
PlexinA1

downregulates a-granule and dense granule secretion, inhibits integrin aIIbb3 activation,
suppresses platelet adhesion and aggregation

Rac-1
cofilin
actin

(98)

Sema7A GPIb upregulates granule secretion and P-selectin and integrin aIIbb3 distribution, enhances platelet
aggregation.

(2)

b1 integrin inhibits platelet formation. (99)

Sema4D PlexinB1 CD72 promotes platelet activation and aggregation Syk
Ca2+

(100)

PlexinB2 downregulates P-selectin expression, inhibits platelet adhesion to fibrinogen targeted by
miRNA-126-3p

(101)

EphA4
EphB1

ephrinB1 induces a-granule secretion, promotes platelet adhesion and aggregation Rap1B
myosin-integrin b3
binding

(102,
103)

Slit2 Robo-1 inhibits platelet spreading, adhesion and granule secretion; inhibits thrombus formation Akt (104)
fronti
*The role as ligand or receptor for some NGPs is alternative. For instance, Sema4D usually functions as a ligand for PlexinB2, but some research has also proven that Sema4D works as a receptor,
while PlexinB2 functions as a ligand (105).
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independent (98). All of these inhibitory functions can be explained

by the significant inhibition mediated by Sema3A on Rac-1

activation in stimulated human platelets, which decreases cofilin

phosphorylation and inhibits actin polymerization (98). In

addition, the inhibitory function of Sema3A does not depend on

either intracellular Ca2+ concentrations or changes in cAMP or

cGMP levels in activated platelets (98).

The inhibitory effect of Sema3A on platelet activation is

consistent with some clinical research (114). Guo Q et al. showed

that in certain autoimmune diseases, such as systemic lupus

erythematosus (SLE), the serum concentration of Sema3A is

significantly lower than that in serum from healthy individuals. In

SLE patients with thrombocytopenia, the Sema3A concentration in

serum is even lower than that in uncomplicated SLE cases and is

highly correlated with the platelet count (114).

3.3 Semaphorin 7A regulates platelet formation
and activation

Semaphorin 7A (Sema7A, also named CD108) is a

glycosylphosphatidylinositol (GPI)-anchored membrane protein

that functions through its receptors PlexinC1 (also known as

CD232) (115), b1 integrin (also known as CD29) (116) and

platelet GPIb (2). The SEMA7A, PLXNC1 and ITGB1 (b1
integrin) genes are orthologous between humans and mice and

are conserved in humans, rhesus monkeys, mice, rats, chickens,

zebrafish, and frogs (110). In the nervous system, Sema7A promotes

axon outgrowth and regulates axon tract formation, and this

function depends on Sema7A binding to integrin b1 but not to

PlexinC1 (116). In the immune system, Sema7A interacts with

PlexinC1 to promote monocyte activation (115, 117). Sema7A also

promotes neutrophil extravasation in hypoxia-induced

inflammation (118). Sema7A is also expressed on activated T

lymphocytes and stimulates monocytes and macrophages to

produce cytokines by binding to integrin a1b1 (also named very

late antigen-1, VLA-1) (119).

Our research group found that Sema7A increased platelet

activation in myocardial ischemia−reperfusion injury (MIRI) (2).

After MIRI model mice were injected with recombinant mouse

Sema7A (rmSema7A), platelet granule secretion was elevated, and

P-selectin distribution on the cytoplasmic membrane was increased.

Platelet aggregation was also enhanced with additional activated

integrin aIIbb3 molecules on the cell surface. Moreover, Sema7A

knockout or antibody blockade led to reduced platelet activation in

MIRI mouse models, as proven by the diminished expression of P-

selectin and integrin aIIbb3 on the platelet surface (2). Knocking out

Sema7A decreased platelet neutrophil complex (PNC) formation,

decreased the neutrophil transmigration rate into injured

myocardial tissues, and markedly reduced the infarct area in the

mouse model of MIRI (2).

However, Sema7A alone did not induce resting platelet

activation or aggregation under static conditions but facilitated

shear stress-activated platelet adhesion and thrombus formation by

increasing P-selectin secretion onto the platelet surface and by
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activating integrin aIIbb3 (2). This explanation is reasonable since

Sema7A has been proven to promote intracellular actin

polymerization and cytoskeletal rearrangement (120).

Interestingly, this function of Sema7A depends on GPIb on

platelets; when we blocked GPIb with p0p/B (121), the function

of Sema7A was no longer detected (2).

In contrast to the promoting effect of Sema7A on platelet

activation, Sema7A has been proven to inhibit platelet formation

from MKs (99) (Figure 1). Hematopoietic CD34+ progenitor cells

differentiate into all blood cell lines, including MKs and platelets

(122). In vitro Sema7A exposure reduces hematopoietic stem cell

(CD34+) differentiation into MKs and decreases the platelet

formation rate, and these functions depend on Sema7A binding

to its receptor b1 integrin (99). Sema7A facilitates hematopoietic

progenitor cell differentiation into CD14+ cells (99) (monocytes

(123)) and induces MKs and platelets to produce increased levels of

proinflammatory cytokines, including IL-6, IL-8, and granulocyte-

macrophage colony-stimulating factor GM-CSF (99). In

chemotherapy patients, Sema7A expression is upregulated both

on the surface of peripheral blood mononuclear cells (PBMCs)

and in serum (99). The proinflammatory and inhibitory effects of

Sema7A on MK differentiation and platelet formation together may

lead to thrombocytopenia in chemotherapy patients (99).
3.4 Semaphorin 4D enhances
platelet reaction

Semaphorin 4D (Sema4D, also named CD100) is a

transmembrane protein expressed on various cell types, including

platelets, neutrophils, T cells, B cells, monocytes and dendritic cells

(DCs), in the immune system and can be found in the lungs, brain,

kidneys, heart, and spleen (105, 124–127). It was discovered on

human T lymphocytes and named CD100 (128) in 1992, and its

discovery was the primary evidence for Semaphorin expression in

the immune system (125). On the cell membrane, Sema4D forms

homodimers with monomers linked by disulfide bridges (129). The

extracellular region of Sema4D is cleaved, releasing a soluble form,

and this exodomain cleavage is mediated by the metalloprotease

ADAM17 (130). Sema4D binds three receptors, PlexinB1, PlexinB2

and CD72 (105, 131), and its binding affinity for these receptors

seems to vary depending on the cell type with the expressed

receptors and the cell condition (131). The SEMA4D, PLXNB1

and PLXNB2 genes are orthologous between humans and mice and

are conserved in humans, rhesus monkeys, mice, rats, chickens and

zebrafish (110).

Research has proven that Sema4D and its receptors play critical

roles in the immune system. For example, Ponnat I. et al. proved that

Sema4D binds to PlexinB1 on monocytes and DCs to influence the

immune cell migration process (27). A Sema4D-knockout mouse

model of foreign antigen-induced crescentic glomerulonephritis has

been found to recruit fewer macrophages to the glomeruli and exhibit

fewer activated T and B cells in lymph nodes than wild-typemice (132).
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Nishide M. et al. (105) illustrated that the soluble Sema4D

concentration was increased in patients presenting with

antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis

(AAV) and that this increase was accompanied by decreased

expression of Sema4D on the neutrophil surface. Soluble Sema4D

facilitated endothelial cell inflammation, while PlexinB2 on endothelial

cells bound to membrane Sema4D on neutrophils and inhibited

neutrophil extracellular trap (NET) formation.

The role of Sema4D in regulating platelet activation has been

demonstrated mainly by the research group of Lawrence F. Brass (100,

133, 134), who proved with western blots and flow cytometry that

human platelets expressed Sema4D and that the expression increased

2-fold after PMA stimulation, after which total cleavage occurred that

was mediated through ADAM17 action (100). This cleavage seemed to

depend on and follow platelet aggregation since blocking the binding of

fibrinogen to integrin aIIbb3 inhibited Sema4D cleavage (100). Platelets

also express the receptors of Sema4D with CD72 in human platelets

and with PlexinB1 in both human and mouse platelets.

Immunoblotting confirmed that the expression of CD72 on human

platelets was significantly upregulated by PMA stimulation (100).

Platelets from Sema4D-knockout mice showed impaired aggregation

in vitro, while coagulation and thrombus formation after vascular

injury were inhibited in vivo (100). Brass et al. concluded that platelet

membrane Sema4D promoted platelet activation and aggregation by

binding CD72 or PlexinB1 on adjacent platelets (100).

Subsequent research from the same group revealed the

mechanism for impaired collagen-induced platelet aggregation in

Sema4D-knockout mice. They found that Sema4D was crucial for

splenic tyrosine kinase (Syk) activation in collagen-stimulated

platelets (133). Knocking out Sema4D in mice suppressed the

activation of Syk, which subsequently caused lower levels of Ca2+

to be released after collagen-induced platelet activation (133). The

important role played by Syk in regulating the cytoskeletal system

has been shown by other studies (135–137). In thrombin-stimulated

platelets, Syk is relocated to the actin filament network and

promotes actin polymerization (136). Syk also regulates

microtubules by binding and phosphorylating b-tubulin and a-
tubulin (135, 137).

Moreover, the function of Sema4D in dyslipidemia-induced

atherosclerosis has been described (134). Platelet activation plays

important roles in promoting atherosclerosis in dyslipidemia (134,

138). Both native and oxidized low-density lipoprotein (LDL) lead

to platelet hypersensitivity to agonists and increased aggressive

adhesion, granule secretion and aggregation, which increases the

risk of athero-occlusion and death via cardiovascular disease (138).

In mice with dyslipidemia, platelet accumulation in the injured

endothelium is 3-fold greater than that in the endothelia of healthy

mice (138). Sema4D knockout inhibits collagen-induced platelet

accumulation and contact in vitro, and it leads to decreased platelet

accumulation in the acutely injured endothelium in mice with

normal lipid levels and those with dyslipidemia (134).

Cleavage of the Sema4D exodomain (130) seems to involve the

same mechanism as that underlying the shedding of GPIba (139),

GPVI (140), and PECAM-1 from platelets (141). In resting platelets,
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calmodulin binds the Sema4D cytoplasmic domain Arg762-Lys779,

whereas inhibition or deletion of calmodulin causes Sema4D

cleavage without triggering platelet activation (with the P-selectin

level as the measured marker) or ADAM17 reaction (130).
3.5 Plexin B2 suppresses platelet activation

Although platelets are anucleate cells and do not carry genomic

DNA, increasing evidence has proven that platelets can respond to

stimuli at the protein translational level because they contain

abundant messenger RNA (mRNA); microRNA (miRNA), which

functionally regulates mRNA transcription; and necessary

organelles, such as the rough endoplasmic reticulum and

ribosomes (142–145). Platelets express 32% of all human genes at

the mRNA level (146, 147) and can synthesize various proteins,

including the major membrane glycoproteins GPIb, GPIIb, and

GPIIIa and granule proteins such as vWF and fibrinogen (148). In

platelets, mRNA translation is regulated by miRNAs, which

represent the majority of all small RNAs (~80%) (142).

The function of PlexinB2 in platelet formation and activation

has been highlighted by research performed with miRNA-126-3p

(101). In human platelets, the mRNA of PLXNB2 (the gene

encoding the protein PlexinB2) has been confirmed to be a target

of miR-126-3p. After MKs were transfected with miR-126-3p, the

expression of PLXNB2 mRNA and protein was significantly

downregulated (101). Compared to the mock cells, miR-126-3p-

transfected human MKs expressed 30% more CD62P in thrombin-

stimulated PLS (platelet-like structures) and exhibited 156 ± 14.9%

greater adhesion to the fibrinogen-coated chamber (101). In line

with this finding, silencing PlexinB2 in human MKs enhanced

platelet adhesion to the fibrinogen-coated channel. These results

indicate the inhibitory function of PlexinB2 in platelet activation.

However, as PlexinB2 is the main receptor of Sema4D, the

inhibitory function of PlexinB2 appears to slightly contradict the

facilitative effect of Sema4D on platelet responses.
3.6 Ephrins and Eph promote platelet
activation mediated by Rap1B

Ephrins and Eph receptors belong to the receptor tyrosine

kinase (RTK) superfamily, and ligand binding induces tyrosine

phosphorylation of their cytoplasmic region (149). Eph receptors

are composed of two classes, EphA (EphA1-EphA10) and EphB

(EphB1-EphB6), which are distinguished and named according to

extracellular domain sequence (149). The ligands of Eph receptors,

ephrinA1-A5 and ephrinB1-B3, are membrane-binding proteins

and are anchored to the cytoplasmic membrane via their GPI

domain (ephrinA) and transmembrane region (ephrinB) (149).

Membrane-bound ephrin binding induces Eph receptor

phosphorylation, but soluble ephrin binding to Eph receptors

does not trigger receptor c-terminal phosphorylation (149).

During nervous system development, the Eph receptor density
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gradient on retinal ganglion cells is similar to the density gradient of

ephrin expressed on subcortical neurons, which helps maintain

proper neuronal axon projection via a ‘topographic mapping’

function (87). EPH and EPH-related receptors are evolutionarily

conserved; for instance, the EPHA4 and EPHB1 genes are

orthologous between humans and mice (110). These proteins

have been proven to be important after an inflammatory response

(150); for example, EphA2 and ephrin-A1 regulate endothelial

permeability by increasing the Src kinase level and upregulating

Rho-GTP expression, which subsequently leads to the opening of

adherens junctions (151, 152). Additionally, Eph/ephrin plays roles

in angiogenesis (153) and the response to spinal cord injury (154).

Human platelets have been proven to express the Eph kinases

EphA4 and EphB1 and the ligand ephrinB1 by Lawrence F. Brass

with western blots and fluorescence staining (102). With actin

visualization by rhodamine-phalloidin, they proved that clustering

of both EphA4 and ephrinB1 promoted human platelet adhesion

and spreading on a fibrinogen-coated surface. In addition, a-
granule secretion and P-selectin expression on human platelets

were also induced by clustering of both EphA4 and ephrinB1, as

demonstrated by flow cytometry. All these responses indicated

cytoskeletal reorganization, although the platelet cytosolic Ca2+

concentration was not increased by EphA4 and ephrinB1

clustering (102). The interaction of EphA4 and ephrinB1

activated Rap1B, a member of the Ras superfamily, in human

platelets (102, 103). Moreover, blocking the Eph/ephrin

interaction inhibited human platelet aggregation, suggesting that

the Eph/ephrin interaction plays a critical role in stabilizing platelet

plugs (102, 103). In subsequent research, this research group

demonstrated that blocking the Eph/ephrin interaction

significantly inhibited platelet clot retraction, which is

fundamental for thrombus stability (155). The basic mechanism is

based on the Eph/ephrin interaction promoting integrin b3 binding
to myosin, which provides the force needed for platelet clot

retraction (155).
3.7 The Slit2 and Roundabout interaction
inhibits platelet activation

Insects and vertebrates employ a symmetric bilateral nervous

system in which the two sides are mirror images that are closely

connected with contralateral commissural axons that cross the

midline structure. During the development of this symmetric

nervous system, commissural axons are guided across the midline

by long- and short-range attractive and repulsive signals (156). The

long-range signals are emitted by chemoattractants called netrins,

and the short-range signals are emitted by the contact-mediated

repellent Slits and Roundabout (Robo) (156). Slits and Robo are

evolutionarily conserved (89, 156). For example, the Slit2 gene is

conserved in humans, rats, mice, zebrafish and C. elegans, and an

analysis with multiple sequence alignment (MSA) showed 100%

matches between human and mouse Robo 1 (110). Robo receptors

are immunoglobulin proteins that inhibit axons from crossing the
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midline. When axon growth cones express high Robo levels, they

never cross the midline; in contrast, midline-crossing axons express

high Robo receptor levels only after crossing the midline, not before.

Robo gene mutation leads to axon crossing and recrossing multiple

times. Subsequent research has identified slits as ligands of Robo

receptors, and in slit-mutant embryos, axon growth cones cross the

midline but do not migrate further (157).

Evidence has proven that slits and Robo are important for the

development of non-nervous system organs, such as the lungs,

kidneys and heart (158–161). An increasing number of studies have

shown that slits and Robo play fundamental roles in inflammation.

Slit2 has been proven to inhibit lymphocyte and neutrophil

migration due to chemotaxis (162, 163), decrease leukocyte

adhesion (164, 165), and suppress leukocyte transendothelial

migration (164, 165).

The Robo-1 receptor has been shown to be distributed on the

surfaces of both human and murine MKs and platelets by Patel S.

with western blots, flow cytometry and immunofluorescence

microscopy (104). Through the leucine-rich regions in its N-

terminus, Slit2 directly binds Robo-1 (104). By binding to Robo-

1, slit2 inhibits human platelet spreading on a fibrinogen-coated

surface by inhibiting the formation of lamellar sheets between

filopodia, platelet adhesion to immobilized collagen under fluid

shear stress and nonstress conditions, and platelet granule secretion

(104). Subsequently, slit2 inhibits thrombus formation in injured

vasculature and prolongs the bleeding time in a murine tail bleeding

model (104). These inhibitory effects are realized by the effect of

slit2 on Akt activation in human platelets. Immunoblotting has

proven that slit2 inhibits Akt phosphorylation in human platelets

but exerts no effect on Rac1, Cdc42, extracellular signal-regulated

kinase (ERK), or p38 mitogen-activated protein kinase (MAPK)

activation (104).

The regulatory function of NGPs in platelet activation is

summarized in Figure 2.
4 Summary and outlook

In conclusion, platelet formation and activation are complicated

and dynamic processes with intensive cytoskeletal system

involvement. Actin polymerization provides the mechanical force

needed for proplatelet bending and branching. The contraction of

platelet actomyosin is critical to limit the proplatelet size.

Proplatelet protrusion and elongation rely significantly on

microtubules. In the process of platelet activation, actin

polymerization is fundamental for filopodia formation and

extension and granule secretion, and microtubule expansion

enables platelet transformation. As powerful regulators of the

intracellular cytoskeletal system, NGPs play fundamental roles in

platelet formation and activation, as demonstrated by research

reported to date. Sema3A inhibits platelet activation by inhibiting

Rac-1 activation and the actin polymerization that typically follows

(98). Sema7A promotes platelet granule secretion and integrin

activation since it enhances intracellular actin polymerization and
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cytoskeletal rearrangement (2). Although Sema4D has been

demonstrated to facilitate platelet adhesion, aggregation and

granule secretion (100), its receptor PlexinB2 exerts an inhibitory

effect on platelet activation (101). EphA4 and EphB1 and their

common receptor ephrinB1 are expressed on platelets, and ligand–

receptor interactions accelerate platelet adhesion, spreading and

granule secretion (102, 103). Slit-2 binds to its receptor Robo on

platelets and inhibits platelet adhesion, lamellar sheet formation

and granule release by downregulating Akt activation (104).

Meanwhile, these NGPs have been proven to regulate immune

reactions by influencing immune cell adhesion, transmigration

and activation.
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These established modulatory functions of NGPs toward

platelets and inflammation point to their clinical application in

hematological and inflammatory diseases. For instance, Sema7A

promotes platelet activation in myocardial ischemia and

reperfusion and simultaneously enhances leukocyte extravasation,

suggesting Sema7A as a potential therapeutic target for the

treatment of thrombo-inflammatory reperfusion injury diseases,

such as acute coronary ischemic diseases and stroke. Slit-2 has been

proven to inhibit platelet adhesion and granule release (104) and to

inhibit lymphocyte and neutrophil recruitment in inflammation

(162–165). Therefore, enhancing slit-2 function will significantly

suppress thrombo-inflammation in ischemia−reperfusion injury
FIGURE 2

Platelet activation is regulated by neuronal guidance proteins (NGPs). In resting platelets, the spectrin-based skeleton supports the plasma
membrane and the open canalicular system (OCS), and the marginal microtubule coils maintain the characteristic discoid shape of platelets. When
platelets are stimulated and activated, dense tubules release Ca2+ to the cytoplasm, which increases the Ca2+ concentration and subsequently
activates the cytoskeletal system. Peripheral microtubule coils expand and fold into the cell center, promoting platelet shape change. F-actin
polymerization promotes granule release, protein trafficking and activation, and lamellipodia and filopodia extension. EphrinB1-EphA4 EphB1,
Sema4D-PlexinB1 CD72 and Sema7A facilitate platelet activation, while PlexinB2 and Slit2-Robo play inhibitory roles in this process.
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and protect the ischemic organs. We believe that additional studies

in this research field will be reported and will provide exciting

therapeutic candidates for regulating platelet activation and

inflammation in related diseases.
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