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Monitoring immunomodulation
strategies in type 1 diabetes
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Thomas W. H. Kay1,2, Helen E. Thomas1,2

and Stuart I. Mannering1,2

1Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia, 2Department of
Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term

treatment with agents targeting T cells, B cells and inflammatory cytokines to

modify the disease course resulted in a short-term pause in disease activity.

Lessons learnt from these trials will be discussed in this review. It is expected that

effective disease-modifying agents will become available for use in earlier stages

of T1D. Progress has been made to analyze antigen-specific T cells with

standardization of T cell assay and discovery of antigen epitopes but there are

many challenges. High-dimensional profiling of gene, protein and TCR

expression at single cell level with innovative computational tools should lead

to novel biomarker discovery. With this, assays to detect, quantify and

characterize the phenotype and function of antigen-specific T cells will

continuously evolve. An improved understanding of T cell responses will help

researchers and clinicians to better predict disease onset, and progression, and

the therapeutic efficacy of interventions to prevent or arrest T1D.
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1 Introduction

In Type 1 Diabetes (T1D), loss of immune tolerance allows autoreactive T cells to

destroy the insulin-producing beta cells in the pancreatic islets (1). Successive failures in

self-regulatory checkpoints are required to both achieve and perpetuate this end-stage

of immunopathology.

For over 100 years, insulin has been the sole effective treatment for T1D. Insulin-based

treatments are complex, costly, and limited by the risk of hypoglycaemia (2). Knowledge

gained from cumulative work over many years has helped us to understand the process

leading to the beta-cell’s demise. Recognizing the contribution of human leukocyte antigen

(HLA) genes (and other genes) to the risk of developing T1D (3, 4), as well as defining the

natural history of islet autoantibodies in subjects at risk for T1D (5), has enabled the staging

of pre-symptomatic T1D into four stages Stage 0 (or Pre-Stage 1), genetic risk, Stage 1,

development of islet autoantibodies, Stage 2, development of prodromal metabolic
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abnormalities and finally, Stage 3, onset of clinical symptoms (6).

The classification of T1D stages highlight the development of beta

cell autoimmunity and beta cell loss that occurs prior to the onset of

clinical disease. This framework now allows a more targeted

disease-modifying therapy based on the patient’s disease stage.

Both CD4+ and CD8+ T cells participate in the pathogenesis of

T1D (7, 8). CD4+ T cells are implicated because of the strong

association of T1D with HLA class II, specifically the haplotypes

HLA-DR4-DQ8 and HLA-DR3-DQ2. Islet antigen specific CD4+ T

cells, restricted by HLA-DR4, DR3, DQ2 and DQ8, have been

detected in the blood and pancreatic islets of organ donors who had

T1D patients (8–13). CD4+ T cells provide ‘help’ to B and CD8+ T

cells. CD8+ T cells reactive to islet antigens are the predominant T

cells in insulitis and they mediate beta cell killing in T1D (14–17).

As the diagnosis of T1D approaches, T cells reactive to numerous

islet autoantigens undergo clonal expansion (11, 18–23). These are

long-lived, self-renewing memory CD8+ T cells and have a capacity

to differentiate into effector T cells (15, 24, 25). The challenge of

reversing pathogenic immune responses in T1D requires not only

directed therapy directed against effector T cells, but also prevention

of reactivation of memory responses when therapy is discontinued.

Over the last three decades, an array of immune therapeutics

targeting T cells (anti-thymocyte globulin and antibodies targeting

CD2, CD3 and CD80/CD86), B cells (antibody targeting CD20),

and cytokines (IL-1, IL-2, IL-6, IL-12/IL-23, IL-21, TNF-a) have

been evaluated in clinical trials for efficacy in altering the course of

T1D (26, 27). The results of many such trials indicate that the

immune therapies can preserve or slow the loss of beta cell function

for a short period of time [reviewed in (27)]. But no long-lasting

maintenance of C-peptide was achieved. However, despite not

achieving their ultimate goal of long-term retention of C-peptide,

many important lessons have been learnt from the mechanistic

findings of these trials. In this review, we aim to address how we

could apply the knowledge gained by the mechanistic studies of the

clinical trials in monitoring immunotherapy for T1D.
2 Antigen-specific therapy

It has long been thought that the limitations of current therapies

could potentially be addressed by the introduction of antigen-

specific approaches. These strategies typically require

administration of autoantigenic proteins, or peptides, or

autoantigen-encoding nucleic acids. Although the mechanisms

have not been fully elucidated, these approaches generally operate

by functionally inactivating and/or deleting cognate autoreactive T

cells (28–31). Various forms of (pro)insulin (32–38) and GAD65

(39–43) have been administered in clinical trials, with the goal of

maintaining residual endogenous beta cell function in stage 3, or

with the goal of preventing the progression to stage 3 of disease in

individuals with stage 1 and stage 2 disease. None of the antigen-

specific therapy clinical trials delayed or stopped the autoimmune

process preceding onset of T1D. Proinsulin and proinsulin DNA

preserved C-peptide transiently. Treatment with GAD did not

consistently meet primary efficacy endpoints in recent onset T1D
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subjects (39, 44). Antigen-specific therapies induced a myriad of

different responses including increased (45, 46) or blunted (38)

antigen specific antibody response, increased (46, 47) or decreased

(45, 48) T cell proliferative response, decrease in antigen induced

IFNg (38), increase in TGFb (47), IL-10 (49) or Th2 cytokine

response (50), increased regulatory T cells (51) and decreased

antigen specific CD8+ T cells (32). Thus, from trials that

characterized the T-cell response, it is difficult to understand the

reason for failure to achieve therapeutic benefit. A set of validated

biomarker assays focused on the quantity and quality of islet

antigen-specific T cells is needed to assess directly whether

candidate therapies are achieving their mechanistic goals (52).
3 Preclinical antigen-specific therapies

Mechanistic studies in NOD mice, a spontaneous model for

T1D, have helped us to understand aspects of antigen therapy in the

context of autoimmune diabetes. In NOD mice proinsulin is the

driver antigen for diabetes. Disabling proinsulin specific immune

response by either deletion of proinsulin antigen (53) or deletion of

proinsulin specific T cells prevents diabetes (29, 54). In contrast, a

similar approach with GAD-65 (28, 55), IA-2 (56) or IGRP (30, 57,

58) did not prevent diabetes in NOD mice (28–30, 53–58). This

indicates that proinsulin occupies a key position in the autoimmune

responses against beta cells. As the disease progresses ‘epitope

spreading’ occurs, when the number of antigens targeted by T cells

increases (30). It is therefore not surprising that functional

inactivation, or deletion, of T cells targeting disease-initiating

autoantigens can blunt disease progression following early

intervention, yet fail to have an impact at more advanced stages of

disease (59), as is usually the case in human clinical trials. In order

for antigen-specific therapies against T1D to be successful, treatment

should induce T cells that can suppress immune responses to as wide

an array of islet antigens as possible (60). Importantly, any antigens

specific suppression should be measurable to determine if ongoing

treatment is required to maintain immune tolerance status. We

previously showed that deletion of IGRP specific T cells by

expressing IGRP in the antigen presenting cells from birth did not

protect NOD mice from diabetes (30). Expression of IGRP in the

antigen presenting cells after 10 weeks of age when the IGRP-specific

T cells have increased in number and developed into memory T cells

after encountering antigen in the islet induced exhaustion of IGRP-

specific T cells instead of deleting them (31). NOD mice can be

protected from diabetes at a time when an immune response is

established against multiple antigens by transgenic IGRP expression

via inducing exhaustion in T cells specific for IGRP (31). This

suggests a dominant tolerance mechanism i.e. that dominant

tolerance to IGRP-inhibits T cells specific for other islet antigens.

Dominant tolerance with protection from diabetes in NOD mice

have also been noted with subcutaneous liposomal co-delivery of

IGRP peptide with a Vitamin D3 analogue and nanoparticle coated

with IGRP peptide-MHC class I complexes (61). These results show

that inducing T-cell exhaustion rather than deletion of antigen-

specific T cells is desirable.
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4 T-cell exhaustion and
T-cell regulation

T-cell exhaustion is a state of dysfunction in CD8+ T cells that

develops during chronic antigen exposure. It is characterized by loss

of functional capabilities such as cytokine production, cytotoxicity

and proliferative capacity. Following stimulation, exhausted T cells

have reduced capacity to generate effector CD8+ T cells and these T

cells have decreased effector function. Exhausted T cells express

multiple co-inhibitory receptors (e.g. CTLA-4, PD-1, LAG-3, TIM3,

and TIGIT) and respond poorly to cytokines resulting in less long-

term survival (62, 63). While T cell exhaustion has been described in

CD4+ T cells, the field is still evolving. T cell exhaustion in CD8+ T

cells is well established and hence we will focus the review on CD8+

T cell exhaustion.

Tumors and chronic viral infections exploit T cell exhaustion to

avoid clearance by effector mechanisms. The exhausted phenotype

results from a differentiation process in which T cells stably adjust

their proliferative and effector capacity to a lower level and this

phenotype is optimized to cause minimal tissue damage while still

mediating a critical level of pathogen or tumor control. Exhausted T

cells are not only hypofunctional but also upregulate molecules that

suppress local T cell immunity such as CD39 and IL-10. A recent

study has shown that CD39 expressing exhausted cells have

suppressive capacity similar to conventional FoxP3 expressing

CD4+ regulatory T cells (64). Several reports have identified that

IL-10 secreting CD8+ T cells play a regulatory role in protecting

against autoimmune disease (65). Conversely, blocking of IL-10

signaling improved the function of exhausted T cells in chronic viral

infections (66) and simultaneous blockade of IL-10 and PD-1

pathways resulted in elimination of persistent viral infection (67).

Pathways related to T-cell exhaustion play an important role in

restraining T cells in autoimmunity. It takes months (in mice) to

years (in humans) after onset of autoimmunity to develop diabetes.

In contrast, autoimmune diabetes is rapidly induced by blocking the

PD-1 pathway in NOD mice (68). We and others have shown that

rapid onset of T1D follows checkpoint inhibition in humans with

pre-existing islet autoimmunity (69, 70). Recent studies have

identified exhausted T cells in islets of NOD mice (71–73).

Transcriptomic profiling of T cells from patients with

autoimmunity showed that a T cell exhaustion signature

correlated with a more benign form of autoimmune disease,

indicating that mechanisms associated with T cell exhaustion may

be important in controlling autoimmunity (74). Following

teplizumab (anti-CD3) and alefacept (LFA-3_Ig fusion protein)

treatment, subjects with a greater proportion of exhausted islet

specific CD8+ T cells demonstrated slower progression of T1D

(75, 76).
5 Lessons from clinical trials

Clinical trials using a broad range of immunotherapy strategies

in new-onset T1D resulted in preservation of insulin secretory

capacity. This pattern has been true for therapies that target
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different components of the immune response, including B-cell

depletion (rituximab, anti-CD20) (77, 78), co-stimulation blockade

(abatacept, CTLA4-Ig fusion protein) (79, 80), T cell depletion with

low-dose anti-thymocyte globulin (2.5 mg/kg) (81) or suppressing

T cell function with anti-CD3 (using teplizumab or otelixizumab)

(82–85) and anti-CD2 (alefacept) (86, 87). Similar effects were also

achieved using therapies directed against cytokines that contribute

to the inflammatory islet environment, to inhibit the processes that

support effector or memory T cells and suppress regulatory T cells.

Inhibition of TNF-a (using the antibodies etanercept or

golimumab) (88, 89) and anti-IL-21 (90), for example, resulted in

preservation of C-peptide, although no benefit was seen with IL-6

receptor blockade (tocilizumab) (91) or IL-1b blockade

(canakinumab) (92). An important question regarding approaches

that target cytokines is whether blocking individual cytokines is

sufficient, given the redundancy in cytokine pathways. The aim of

treatments that target cytokines is to push the antigen experienced

T cells towards a regulatory and anti-inflammatory pathway.

However, it is not known whether the autoantigen exposure that

naturally occurs in islets in T1D is sufficient to push towards

regulatory/anti-inflammatory pathways given the preclinical data

suggesting most of the islet reactive T cells reside in peripheral

lymphoid organs (31) and minimal antigen exposure in the islets by

the time of diagnosis of T1D. It is quite possible that it will be

necessary to provide additional antigen, or TCR stimulation with

anti CD3 antibody, simultaneously with cytokine blockade for the

desired long-term response.

Until recently, the lack of sophisticated technologies had

precluded deep analyses of T-cell subsets to represent meaningful

immune alterations for clinical contexts. The use of MHC

multimers and mass cytometry to phenotype T cells in recent

trials has helped us better understand phenotypic and functional

changes following treatment. T lymphocytes drive many arms of the

immune response. T1D evolves over many years and this chronicity

is likely to be due to a balance between the autoimmune attack and

processes such as T cell regulation via Treg and T cell exhaustion,

that reduce its effectiveness. Immunotherapy can alter this balance

as has been shown in some of the recent clinical trials. Anti-

thymocyte globulin in higher dose (6.5 mg/kg) was used to

deplete cellular immune effector compartments as an attempt to

arrest immune-mediated damage to beta cells (93). T-cell depletion

was highly effective, however, there was also loss of regulatory T

cells resulting in no alteration of the balance of effector and

regulatory arms. There was no metabolic benefit from drug

administration. With anti-CD3 antibody there was metabolic

benefit (94, 95) and deep analysis of immune biomarkers revealed

upregulation of markers of T cell exhaustion in CD8 T cells (76, 96).

Instead of T cell depletion, anti CD3 treatment induced a

developmental program towards a regulatory exhaustion

phenotype. This pathway was also noted with anti-CD2 treatment

and was associated with beneficial clinical outcome (75). While

anti-CD3 and anti-CD2 were developed for inducing T cell deletion,

clinical response was correlated with T cell exhaustion. This

suggests that induction of an exhaustion phenotype rather than

depletion of T cells is desirable for the best outcome. This is

consistent with our data in NOD mice (31). Treatment with low
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dose IL-2 to boost regulatory T cells in recent onset T1D resulted in

expected expansion of regulatory T cells in treated subjects but the

trial was terminated early due to unexpected rapid loss of C-peptide

that implied potential acceleration of disease (97). Biomarker

studies of these subjects documented no changes in T effector or

memory cells but an increase in CD56hi NK effector cells due to IL2

stimulatory effect, counterbalancing the increased regulatory T cells.
6 Biomarkers

Biomarkers have potential applicability in multiple disease

phases of T1D. Biomarkers could be used to predict disease onset,

disease progression, stratify patients for appropriate treatment, and

to monitor effect of treatment. Biomarkers could be particularly

useful in determining the response to pharmacological treatment.

Clinical trials in T1D measure C-peptide and various glycaemic

parameters (HbA1c, glucose time in range, glycemic variability on

continuous glucose monitoring) to provide an indirect assessment

of beta-cell function. Measuring changes in the number and

phenotype of immune cell subsets, as well as more specifically

monitoring changes in (a) the immune populations that are directly

related to the drug mechanism of action (eg, depletion of T cells

with anti-thymocyte globulin or increasing in regulatory T cells

with IL-2 treatment) and (b) the phenotype and function of islet

antigen-specific T cells in response to treatment will be important

for improving clinical trials. This information will also guide

subsequent approaches to therapeutic interventions. There are

excellent recent reviews on factors impeding progress toward the

development of effective T-cell biomarkers in T1D (52, 98, 99).

Major assays in current use to identify and quantify islet-

reactive T cells include measuring proliferation via or dye-

dilution such as the CFSE-based proliferation assay (100),

upregulation of activation markers upon stimulation (101), or

measuring cytokine secretion (19) (eg ELISpot) following

stimulation with islet associated protein or peptide. The

underlying challenge of faced by all assays is the very low

frequency of antigen specific T cells in the peripheral blood and

small quantity of blood available for analysis particularly from

children. The benefit of these assays is that reactivity to multiple

different antigens, or epitopes, may be tested simultaneously, and

the assay is not restricted to individuals with a particular HLA.

However, detection depends on the ability of the T cells to respond

to the stimuli by proliferation or cytokine production. With

ELISPOT assay only a limited number of cytokines is measurable

in a single assay. Quantifying multiple cytokines in stimulated cell

assay supernatants using multiplex immunoassays (such as

Luminex) has been used, but such approaches do not quantify the

proportion of responding cells.

A more direct way to analyze T cells is by assessing the binding

to labelled major histocompatibility complex (MHC)–peptide

multimers. Using peptide–MHC multimers, the frequency of

antigen specific T cells along with their phenotype and function

can be analyzed, but the scope is reduced by technical limits to

relatively small numbers of target peptides and HLA types. A
Frontiers in Immunology
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limited number of parameters can be analyzed using standard flow

cytometry and the number of parameters (up to 40) can be

increased using spectral flow cytometry or mass cytometry. Using

single-cell mass cytometry along with a combinatorial pooled

peptide–loaded MHC tetramer staining approach, CD8+ T cell

number, function and phenotype was assessed in the peripheral

blood T1D subjects (76). Islet antigen specific T cells expressed

CXCR3 indicating that these cells were activated and enroute to

islets as inflamed islets express its ligand CXCL10 (102–104). Islet

antigen specific T cells were phenotypically heterogenous but

enriched either in memory or exhausted phenotypes. Memory

phenotype of islet-specific T cells were more frequent in in

subjects with rapid decline in C-peptide, whereas an exhausted

phenotype was more prevalent in subjects whose C-peptide level

was preserved or declined slowly. The exhaustion phenotype was

confirmed functionally in that they proliferated less to stimulation.

The use of combinatorial multimers and mass cytometry has

enabled deeper understanding into cell phenotype and antigen

specificity in T1D (75, 76, 105, 106). They allow detection of up

to 40-50 of predetermined markers. While this gives a thorough

phenotypic picture of the cells it may limit the potential to discover

novel markers that change with the treatment and determine the

outcome of the treatment. There are challenges in ex vivo assays on

peripheral blood mononuclear cells (52) such as low frequency of

autoreactive T cells, high receptor diversity of autoreactive T cells,

limited known T cell epitopes, low volume of blood for analysis and

analysis of T cells usually limited to peripheral blood but islet

antigen-specific T cells reside predominantly in the lymph nodes

(and islets). Analysis of T cells from the islets and novel approach to

identify neo-epitopes targeted by T cells (11, 13, 23) will make it

possible to capture antigen-specific T cells more widely. These

assays can be refined by information from comprehensive and in-

depth analysis and with unbiased approach such as scRNA-seq and

single-cell TCR-seq to assess the clinical significance of T cells. For

the immunomodulatory agents used in clinical trials for T1D, it is

important to discover the pathways that change specifically in the

islet antigen specific T cells following treatment. Single cell RNA

sequencing (scRNA-seq) through the identification of genes that are

differentially expressed in T cells and other immune cells following

treatment has potential to discover novel outcome determining

markers after immunotherapy. Combining the use of combinatorial

peptide MHC multimers and surface antibodies with scRNA-seq

(cellular indexing and Transcriptomes and Epitopes by sequencing,

Cite-seq) allows simultaneous capture of cell surface protein and

mRNA expression of single cells allowing optimal annotation of cell

populations and identification of rare islet antigen specific T cells

(107, 108). Cite-seq allows multiplexing the pre, during and after

treatment samples using cell hash-tagging to reduce the batch

effects and costs. The recovered TCR sequences can be used to

determine the T-cell clonality of multimer positive cells (107). This

approach can be used to define distinct cell states and their

molecular circuitry of rare antigen specific T cells and then link

these features with distinct disease outcomes and has potential to

he lp us unders tand the mechanisms that dr ive the

disease pathology.
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7 Future directions

Clinical trials in T1D give us the opportunity to perform in-

depth mechanistic studies to understand the disease process. The

aim of the mechanistic study is to discover biomarkers and

pathways in disease pathogenesis by unbiased analysis of proteins

and genes in the relevant cells using modern technology. The

discovered biomarkers can be further validated and applied to

immune monitoring in further studies and clinical follow up

using standard flow cytometry (Figure 1). The modern

technology has just begun to be utilized in clinical trials of T1D.

Further understanding the requirement of samples (processing

time, transportation temperature of blood samples and effect of

cryopreservation) for the modern assays is required. Also, the effect

of age, pubertal status and different phases of disease on the

expression of proteins and genes in the cells need to be

understood for proper analysis and interpretation of the data. The

cells are analyzed from peripheral blood, but cells from lymph

nodes, spleen and islets should also be analyzed from T1D organ

donors and compared to cells from peripheral blood. In T1D

frequency of antigen specific T cells is low, the T cell-antigen

interaction is low affinity, only a limited number of T-cell

epitopes have been discovered and there is vast TCR diversity for

a given epitope. All these factors make detection of antigen specific

T cells difficult. Technological innovations in epitope discovery will

allow multimer generation [eg., spheromers (109) to improve T cell-

antigen interaction particular incorporating hybrid peptides (13)]

for the identification of antigen-specific T cells and increase the

understanding of T-cell correlates of disease protection.
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FIGURE 1

T cell monitoring during immune intervention in type 1 diabetes: Ex vivo assays on peripheral blood mononuclear cells are utilised for assessing drug
efficacy and monitoring therapeutic response in clinical intervention trials. Basic research to identify neo-epitopes targeted by T cells will make it
possible to capture antigen-specific T cells more widely. High-dimensional analysis of gene, protein and TCR expression will identify novel markers
expressed on T cells during different stages of the disease and in response to treatment. This information will be utilised to refine ex vivo peripheral
blood analysis to detect, quantify, and characterise T cell populations.
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