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Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue

fibrosis and impaired liver function. This condition is brought about by several

factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other

immunological injuries. The pathogenesis of liver cirrhosis is a complex process that

involves the interaction of various immune cells and cytokines, which work

together to create the hepatic homeostasis imbalance in the liver. Some studies

have indicated that alterations in the immune microenvironment of liver cirrhosis

are closely linked to the development and prognosis of the disease. The noteworthy

function of mesenchymal stem cells and their paracrine secretion lies in their ability

to promote the production of cytokines, which in turn enhance the self-repairing

capabilities of tissues. The objective of this review is to provide a summary of the

alterations in liver homeostasis and to discuss intercellular communication within

the organ. Recent research on MSCs is yielding a blueprint for cell typing and

biomarker immunoregulation. Hopefully, as MSCs researches continue to progress,

novel therapeutic approaches will emerge to address cirrhosis.

KEYWORDS

liver cirrhosis, liver immune microenvironment, mesenchymal stromal cells,
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1 Introduction

According to epidemiological data (1), approximately 1.5 billion people worldwide suffer

from chronic liver disease (CLD), with about 20,000 deaths occurring annually, of which

10,000 are caused by liver cirrhosis. The global mortality for liver cirrhosis has risen by

47.15% in recent years (2, 3). Viral hepatitis, alcoholic liver disease, and non-alcoholic

steatohepatitis are the leading causes of liver cirrhosis (4). Moreover, a wide range of other
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factors also can lead to cirrhosis, including genetic factors,

autoimmune diseases, cholestatic diseases, iron or copper overload

(5). Hepatitis B virus (HBV) and hepatitis C virus (HCV) are

responsible for more than 60% of cirrhotic cases worldwide (6).

The number of hospitalized patients with HCV-related cirrhosis is

anticipated to decrease significantly by 2025 (7). Only a small number

of patients infected with the hepatitis D virus (HDV) will develop

liver cirrhosis (8). In pregnant women, low immune function often

plays a role as a prerequisite for liver cirrhosis when infected with the

hepatitis E virus (HEV), with up to 30% of pregnant patients dying

from HEV infection (9). Alcohol-related cirrhosis (AC) has been

shown to be a significant cause of hospitalization in the United States,

with the number of hospitalized patients increasing rapidly (10). A

survey of middle-aged women in the UK found that the higher the

amount of alcohol consumed, the greater the incidence of liver

cirrhosis (11). Due to the development of hepatitis virus vaccines

and effective antiviral therapy, the incidence and prevalence of end-

stage liver cirrhosis in non-alcoholic fatty liver disease (NAFLD)
Frontiers in Immunology 02
change to has risen sharply (12). The prevalence rate of NAFLD-

related end-stage liver cirrhosis in China is growing at an alarming

rate with the accelerating urbanization process. It is estimated that the

number of NAFLD patients in China will reach 314.58 million by

2030 (13). We concluded the epidemiology and risk factors for liver

cirrhosis (Figure 1).

Cirrhosis is an end-stage pathological process caused by a

variety of chronic liver diseases that will result in persistent

chronic liver injury (14). Cirrhosis, characterized by chronic

inflammatory necrosis and dynamic fibrosis, is considered to be a

diffuse pathological state with a transformation from normal liver

tissue structure to abnormal nodular hyperplasia, which in turn

progresses from compensated cirrhosis (asymptomatic stage) to

decompensated cirrhosis (symptomatic stage) (5), eventually

leading to hepatocellular carcinoma (15). However, studies have

found that this process can be prevented, bringing about reversible

liver fibrosis and the reversal of cirrhosis (15, 16). Regardless of the

complexity and prevalence of the etiology of cirrhosis, liver fibrosis
B

A

FIGURE 1

Incidence and Etiology of Liver Cirrhosis. (A) Incidence of liver cirrhosis in chronic liver diseases worldwide. Around 1.5 billion people worldwide
suffer from chronic liver diseases that eventually progresses into fibrosis and cirrhosis, result in 10 thousand deaths globally. The data were extracted
from the GHDx database (https://ghdx.healthdata.org). (B) The etiology of cirrhosis. Leading etiologies of cirrhosis were viral, alcoholic, unhealthy
lifestyle and genetic factors.
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is a mandatory part of cirrhosis. Chronic inflammatory liver injury

and liver fibrosis continue to increase, leading to dysregulated

crosstalk between immune cells in the liver microenvironment,

which drives the progression of cirrhosis (17–19).
2 Liver cirrhosis
immune microenvironment

In addition to its role in metabolism, nutrient storage, and

detoxification, the liver is the body's most functionally complex

immune organ. It has a profound impact on immune function

(20). The liver is rich in blood circulation and the circulation

system collects blood from the portal vein and the hepatic artery,

which contains a large number of microbial-associated molecular

patterns (MAMP), pathogen-associated molecular patterns (PAMP),

damage-associated molecular patterns (DAMP), and various toxin

and antigen molecules from the intestine (19, 21). Herein, the liver

must simultaneously recognize antigenic components from the

systemic circulation and the gastrointestinal tract. These antigens

stimulate the liver through a series of pattern recognition receptors

(PRR), such as Toll-like receptors (TLR) and nucleotide-binding

oligomeric domain-like receptors (NOD-like receptors or NLR),
Frontiers in Immunology 03
which trigger unique immune responses to induce immune

activation and immunomodulatory cytokine production. TLR is

expressed on various hepatic cells, like Kupffer cells (KCs),

dendritic cells, hepatic stellate cells, endothelial cells and

hepatocytes (22). The hepatic immune microenvironment contains

a variety of immune cells and molecules performing unique roles

based on the association with non-immune cells, thus developing a

complex and dynamic network system. Although the irreplaceable

metabolic functions of the liver often obscure the perception of its

role as an immune organ, hepatic metabolic functions create a

microenvironment in which parenchymal and non-parenchymal

cells communicate; in other words, the metabolic environment can

alter the immune response in the liver (23).

The liver microenvironment consists of multiple components,

including KCs, hepatic sinusoidal endothelial cells (HSECs), HSCs,

immune cells, extracellular matrix (ECM), cytokines, and various

growth factors (24, 25). Along with the liver’s inherent immune

dysfunction, viral infections, alcohol abuse, metabolic disorders,

and autoimmune abnormalities can indirectly inflict liver injury,

inflammation, fibrosis, and cirrhosis. Changes to the immune

microenvironment in liver cirrhosis involve a decrease in CD8+ T

cells and natural killer (NK) cells and an increase in CD4+ memory

T cell infiltration (26) (Figure 2).
FIGURE 2

Changes of hepatic immune microenvironment play a pivotal role in hepatic fibrogenesis. A variety of immune cells and non-immune cells
constitute a complex and dynamic network system. Upregulation of YAP/TAZ/CYR61 in activated Hepatocytes activating monocyte differentiation
into pro-inflammatory macrophages. Activated HSCs promote lipid droplet loss and a-smooth muscle actin increase as well as secretion of
extracellular matrix proteins and accelerate the development of liver fibrosis. Hepatic Macrophages promote autophagy and activation of HSC by
secreting prostaglandin E2 and binding to receptor EP4, which leads to the development of liver fibrosis and cirrhosis. MSCs can inhibit the
inflammation and immune response, inhibit the excessive ECM deposition, and promote the hepatocyte regeneration during liver fibrosis.
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2.1 Hepatocytes

Hepatocytes are involved in the innate immune response by

undergoing organelle damage and releasing stress signals in

response to injury and inflammatory stimulation, promoting the

development of liver cirrhosis and cancer. This process occurs with

complicated crosstalk between hepatocytes and immune cells in the

liver microenvironment (27, 28). In mice, activated hepatocytes can

induce monocytes into pro-inflammatory macrophages with

increased YAP/TAZ/CYR61, stimulating liver inflammation and

fibrosis (28, 29). YAP/TAZ is the vital effector in the Hippo

pathway, which regulates TGF-b2–mediated fibrogenesis (30).

MHC-II is highly expressed in hepatocytes of alcoholic hepatitis,

and it can activate CD4-positive lymphocytes and trigger a pro-

inflammatory response (31). Lipid deposition can increase the

susceptibility of hepatocytes to apoptosis in patients with

nonalcoholic steatohepatitis (NASH), which had demonstrated in

high-fat diet (HFD) mice. Notably, lacking AMP-activated protein

kinase (AMPK) can accelerate fibrosis in NASH (32). Virus-

infected and hepatocyte-derived exocrine miR-222 promoted

fibrosis by inhibiting TFRC and TFRC-induced ferroptosis (33).

The overexpression of transcription factor FoxM1 was

dependent on Kupffer cells, and it triggered hepatocyte death and

contributed to liver inflammation and injury (34). Hepatocyte

autophagy is a steady-state process that protects against

hepatocyte death (27, 35). In CCl4-induced mouse models and

cirrhotic patients, hepatocyte autophagy was significantly inhibited

by the miR-125a/VDR axis-dependent autophagy, which finally

promoted liver fibrosis (36). Autophagy disorders were also

observed in alcoholic liver disease (ALD) and NAFLD (37). While

the situation was different in viral hepatitis. Hepatocyte autophagy

could enhance HBV DNA replication (38), while autophagy

disorders could inhibit HCV replication by enhancing

intracellular immunity (39). Telomere shortening and the absence

of telomerase in hepatocytes could lead to cell senescence,

promoting virus replication and liver cirrhosis (40, 41).
2.2 Hepatic stellate cells

HSCs reside in the Disse space between hepatic sinusoidal

endothelial cells (LSECs) and hepatocytes. In their resting state,

HSCs contain many retinol (vitamin A) lipid droplets (42).

However, when the liver was subjected to inflammatory

stimulation or hepatocyte death, HSCs received signals secreted

by immune and non-immune cells in the liver microenvironment

and underwent transdifferentiation into proliferative fibroblast

myofibroblasts (MFs) (43). Activated HSCs lost lipid droplets and

upregulated the expression of a-smooth muscle actin (a-SMA)

(44), which led to the secretion of extracellular matrix proteins and

the eventual development of liver fibrosis (17). The percentage of a-
SMA positive hepatic stellate cells was significantly increased in

patients with virus-associated cirrhosis (45). HSC activation was

driven by the increased level of platelet-derived growth factor

(PDGF) receptor b (46). Kupffer cells secreted PDGF, which

could stimulate the production and deposition of collagen.
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Additionally, activation of the acid-sensing ion channel 1a

(ASIC1a) via the PI3K/AKT pathway induced endoplasmic

reticulum stress (ERS), thereby promoting the progression of liver

fibrosis (47, 48). Apart from retinoids, cholesterol, triglycerides,

phospholipids, and free fatty acids are also present in HSC lipid

drops (49). The NPC2 protein expressed in resting HSC, as well as

the ACAT1 isoenzyme, together bound directly to free cholesterol

and played a critical role in cholesterol metabolic homeostasis. The

accumulation of free cholesterol stimulated HSC through increasing

TLR4 signaling and sensitizing HSC to transforming growth factor

b (TGF-b) (50, 51). In a high-cholesterol diet mouse model of

NASH, NPC2 and ACAT1 deficiency significantly boosted liver

fibrosis progression (52, 53).

T helper cells (Th17s) collaborated with HSCs in a pro-

inflammatory circumstance. Activated HSCs recruited more Th17

cells and provoked the secretion of IL-12A and IL-22 that

contributed to cirrhosis in chronic hepatitis B (CHB) (54).

Regulatory T cells (Tregs) possess anti-inflammatory properties.

IL-8 produced by Foxp3+CD4+ Tregs activated HSCs and promoted

liver fibrogenesis in chronic hepatitis C (43). 22-carbon hexanoic

acid (DHA) plays a critical role in anti-fibrotic activity depending

on peroxisome proliferator-activated receptor g (PPARg), while it is
absent in liver cirrhosis patients, low level of DHA promotes NF-kB
and TGF-b pathways in HSC and consecutively activates HSC (55,

56). Additionally, it was found that membrane-bound glycoprotein

CD73 promoted activation and autophagy of HSCs by promoting

AMPK/AKT/mTOR signaling pathway, which was conducive to

alcohol-related liver fibrosis (57).

Cell-derived extracellular vesicles (EVs) have emerged as

essential agents in the progression of liver injury and fibrosis (58).

Delivering diverse cargo via EVs is a critical component of cell-to-

cell communication (59). In the liver, EVs from injured hepatocytes

and LSECs activate and migrate of HSCs (1, 58). Recent research

shows that SHP2 in HSCs exerts its pro-fibrotic role by enhancing

the release offibrogenic EVs through inhibiting autophagy, REDD1,

and activating the mTOR pathway (60).
2.3 Mesenchymal stromal cells

Mesenchymal stromal cells (MSCs) are multipotent fibroblast-

like cells that have the ability to differentiate into hepatocyte-like

cells (HLCs) and immunomodulatory properties have received

much attention in a wide range of medical and health fields

(61).MSC was reported to express a specific set of surface

markers, such as CD73, CD90 and CD105 (62).

Single-cell RNA sequencing analysis unveiled that different

subsets of MSCs were functionally distinct, and even though

CMKLR1+ MSCs had lower proliferative capacity than CMKLR1-

MSCs, the former had superior immunomodulatory functions (63).

In addition, Zong et al. also identified another isoform by using the

high-throughput sequencing technology, AIF1+CSF1R+MSCs,

with high expression of SIRT1 and induced by TNF-a, exerting
pro-inflammatory and pro-tumorigenic effects (64). Similar to

HSCs, MSCs are one of the sources of MFs in the liver and are

highly differentiated (65). Nevertheless, MSCs could suppress HSC
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activation and protect hepatocytes from damage by inhibiting the

Notch pathway, thus alleviating the progression of liver fibrosis to

cirrhosis (66). It has been shown that MSCs only become

immunosuppressive when exposed to sufficiently high levels of

pro-inflammatory cytokines (67–69). Despite their higher pro-

inflammatory potential, MSCs can exhibit pro-inflammatory

phenotypes when exposed to low levels of IFN-g and TNF-a.
Through the production of chemokines, they enhance T cell

response by bringing lymphocytes to areas of inflammation (67).

MSCs have been shown to exert significant therapeutic effects

utilizing their soluble products, such as extracellular vesicles,

cytokines, trophic factors, and chemokines. Research shows that

the EVs generated by MSCs, such as exosomes, could make great

contributions to the therapeutic potential in tissue repair,

angiogenesis and immunomodulation by facilitating cell–cell

interactions, and delivering paracrine factors (70). MicroRNA-

618, the exosome of MSCs, acted as an instrumental player

targeting Smad4 to reverse the progression of fibrosis to cirrhosis

(71). Exosome-derived Bone marrow stromal cell-derived exosomes

(BMSC-Exos) attenuated collagen deposition and liver impairment,

enhanced hepatocyte proliferation and ultimately alleviated liver

fibrosis in a rabbit cirrhosis model (72). BMSC-Exos suppressed

hepatocyte pyroptosis by downregulating pyroptosis-related

proteins which included NLRP3, caspase-1, and IL-1b, thereby
remitting liver cirrhosis (73).

Moreover, the exosomes secreted by MSC have similar

physiological functions as MSCs and play a major role in cellular

communication (74, 75). They can also induce anti-inflammatory

M2 polarization and facilitate the production of anti-inflammatory

mediators such as IL-10 and TGF-b (76). HSC ferroptosis can also

be mediated by MSC-exosome (MSC-Exo) to mitigate liver

fibrosis (77).

It has been shown that MSCs regulate the innate and adaptive

immune response through intercellular contacts or paracrine

mechanisms (67). As an illustration, MSCs can produce HGF and

IL-6, which inhibit monocyte differentiation into dendritic cells,

lowering inflammation, decreasing the secretion of IL-12 and IFN-

g, and increasing the production of IL-10, continually weakening

the activation of T cells (78). MSCs inhibit the Kupffer cell activity,

reducing the production of the pro-inflammatory cytokine TNF.

Furthermore, MSCs secrete PGE2 to transform pro-inflammatory

M1 macrophages into anti-inflammatory M2 macrophages (79).

MSCs suppress CD8+ T lymphocyte proliferation and enhance

CD4+ T lymphocyte conversion from T-helper 1 to T-helper 2

phenotype by producing IDO and heme oxygenase 1 (80).

Furthermore, recent research suggests that autophagy and

senescence are mechanisms through which MSCs acquire their

antifibrotic properties. As a vital cellular process, autophagy

prevents nutritional, metabolic, and infection-mediated stress while

maintaining homeostasis (81). The efficacy of MSCs as a therapeutic

intervention is contingent upon the maintenance of optimal levels of

autophagy, which in turn can ameliorate the fibrotic cascade. Despite

this, aging-related autophagic damage is associated with a decline in

MSC number and function, which are crucial to liver fibrosis (82).
Frontiers in Immunology 05
2.4 Liver sinusoidal endothelial cells

LSECs are non-substantial hepatic endothelial cells lacking

basement membranes and rich in open window pores. These

LSECs window pores serve as a parclose to protect hepatocytes

from various damages and facilitate substance exchange by

producing nitric oxide (NO) for stimulating vascular endothelial

growth factor (VEGF) and reversing activated HSC to a resting state

(83–85). The alcohol-metabolizing enzyme Cytochrome P4502E1

(CYP2E1) was expressed in alcohol-induced LSEC, leading to

increased acetylation of mitochondrial heat shock protein 90

(Hsp90). This acetylation reduced the interaction between Hsp90

and nitric oxide synthase (eNOS), resulting in decreased NO

production and increased alcohol-induced liver injury (86).

Similarly, Notch signaling was activated in LSECs of NASH mice

and exacerbated NASH progression in an eNOS-dependent

mechanism (87). LSECs possessed endocytic and clearance

abilities and vital immune functions, impacting the homeostasis

of the liver microenvironment (88, 89). During the early stage of

liver cirrhosis, LSECs exhibited anti-inflammatory effects (90).

Upon microbial infection, LSECs triggered local activation of

effector CD8 T cells that exerted the immune surveillance

capacity of the liver (88). Immunoproteasome LMP7 levels in

LSECs were elevated in cirrhosis patients and liver fibrosis mice

models, and LSECs presented MCH-II antigen to CD4 T cells after

liver injury stimulation (91).

Hepatocyte death can lead to LSECs capillarization, immune

cell interactions, and HSCs activation (92). Hepatic sinusoidal

capillarization is the underlying pathological change of liver

cirrhosis (93). This transformation was deleterious in NASH to

form a basement membrane on LESCs’ surface, which inhibited the

release of very low-density lipoprotein (VLDL) from hepatocytes

into the Disse cavity and finally promoted hepatic steatosis.

Capillarization also invoked hedgehog (Hh) signaling and

exacerbated liver cirrhosis development (94, 95). Adipocyte fatty

acid binding protein (A-FABP) regulated lipid metabolism, and

elevated expression of A-FABP was observed in cirrhosis-associated

NAFLD. Meanwhile, A-FABP stimulated Hh signaling and

promoted LSECs vascularization, which led to HSC activation to

enhance TGF-b1 activity, resulting in more severe liver fibrosis (96).

In the progression of liver fibrosis, CXCR4 and CXCR7 exerted

opposite effects on LSECs. With the increase of HIF-1a, CXCR4
upregulated to promote the isoform PDGF-BB secretion by LSEC

and binding to its receptors, forming an intercellular crosstalk that

activated HSCs and aggravated fibrosis, promoting the development

of cirrhosis. While CXCR7 downregulation facilitated the

capillarization of LSEC to promote hepatic cirrhosis (97).
2.5 Dendritic cells

DCs, as the most important antigen-presenting cells (APC),

serve as a bridge between innate and adaptive immunity. DCs

recognized and ingested pathogenic antigens through phagocytosis
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with other immune cells and presenting MHC peptides to CD4 T

cells and CD8 T cells to initiate the immune response for exogenous

antigens (98). DCs include plasmacytoid DC (pDC) derived from

common dendritic progenitor (CDP) cells and the conventional

dendritic cell subtype generated by the entry of circulating cDC

precursors into the peripheral environment (99).

Comprehensive single-cell RNA sequencing analysis revealed

that cDCs were associated with NASH pathology. Elevated

Xcr1cDC1 was observed in the NASH model to increase pro-

inflammatory CD8T cells and exacerbated NASH to cirrhosis

(100). The deficiency of Cbl-b and c-Cbl in DCs led to the

excessive accumulation of cDC1 in the liver and promoted liver

cirrhosis and premature death in mice (101). The Wnt/b-catenin
pathway is crucial in liver homeostasis (102). Lack of Wnt/b-
catenin signal should be triggered autoimmune hepatitis (AIH)

and abnormal activation of hepatic dendritic cells (HDCs),

promoting cholestatic liver injury and fibrosis (103). DCs induced

NK cells to proliferate and produced IFN-g, and DC-NK crosstalk

severely impaired the ability of antiviral immune response in CHB

patients (104). DCs were rapidly recruited to the liver of NASH

mice model with elevated TNF-a, IL-6, and MCP-1 expression.

DCs depleting delayed intrahepatic inflammation and fibrosis

regression, thereby promoting NASH. Chronic alcohol

consumption decreased the production of cytokines such as TNF-

a, IFN-g and IL-12 in DCs, and the number of peripheral blood

DCs. It also decreased the expression of CD40, CD80, or CD86,

which reduced the stimulatory function of DCs on T cells and led to

immune deficiency in mice (105). CCL20, produced primarily by

HSCs, is a chemoattractant for immature dendritic cells with

inflammatory molecules mediating fibrosis. Interaction between

immune cells resulted in the increased expression of CCL20 in

NAFLD fibrosis patients (106). Indoleamine 2,3-dioxygenase 1

(IDO1), an immunomodulatory enzyme, was highly expressed in

choledochotomy (BDL)-induced mice, inhibiting DCs maturation

and T cell proliferation from recruiting immune cells and

promoting hepatic fibrosis (107).
2.6 Natural killer cells and natural killer
T cells

NK cells have a powerful killing function, whose amount and

activity are always affected by the liver immune microenvironment.

They serve as surveillance to monitor external infections, tumors,

inflammatory stimuli, and autoimmunity and secrete cytokines and

chemokines (108). NK cells are divided into two subgroups:

CD56dim (> 90%) group and CD56bright group. The former has a

more substantial cytotoxic effect and plays a role as an

immunomodulator (109). NK cells are the first line of defense

against viral hepatitis, exerting an antiviral immune response by

directly clearing virally infected cells or activating antigen-specific T

cells via the production of IFN-g and TNF-a (110). The decrease of

CD56dim NK cells, total NK cells, and their activated receptor

NKG2D in peripheral blood monocytes (PBMC) of NAFLD

patients can lead to NK cell dysfunction (111, 112). In particular,

NK cell function was defective and inactivated in patients with
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CHB, and monocytes suppressed HBV-specific T cell immune

responses, leading to chronic persistent HBV infection (113). The

increase of CD56bright NK cells could be detected in patients with

autoimmune-mediated liver disease, and elevated serum IFN-g
levels induced hepatocyte death by enhancing the cytotoxicity of

NK cells, ultimately resulting in macrophage activation and the

development of fibrosis (114).

NKT cells possess NK cell-like characteristics and express T cell

receptors, which recognize lipid antigens from major MHC-1-

associated protein CD1d (115, 116). Invariant natural killer cells

(iNKTs) are the primary subtype of NKT cells (109). Patients with

HBV-associated liver cirrhosis (HBV-LC) showed highly activated

peripheral iNKT cells, which may lead to overhealing caused by

extracellular matrix deposition and the progression from fibrosis to

cirrhosis (117). Liver injury induced by concanavalin A (ConA)

intravenous administration was considered as an experimental

model of T cell-mediated AIH in mice, in which iNKTs were

specifically activated to kill hepatocytes and accumulated in the

mouse liver, increasing activated immune cells cytokine through

upregulation of Fas/FasL in the liver, resulting in more severe

immune damage (118). With the prevalence of obesity, excessive

cholesterol uptake directly destroys the function of NKT cells

through lipid oxidation during the progression of NAFLD disease

to liver cirrhosis. Interestingly, NKT cell depletion occurred in the

early stage of mild NASH. For severe advanced NASH, NKT cells

were protective against disease progression and played an anti-

fibrotic role (119, 120). Compared with healthy people, primary

biliary cholangitis patients had more iNKT cells, which produced

high levels of IL-17A and promoted the progression of PBC-related

fibrosis (121).
2.7 Macrophage

For the complexity of the liver microenvironment and immune

function, macrophages show great plasticity and heterogeneity (122,

123). Macrophages can polarize into M1 cells and M2 cells. The

classical M1 subtype is activated by TLR ligand and IFN-g and

secretes pro-inflammatory cytokines. On the contrary, the

alternative M2 subtype secretes anti-inflammatory cytokines,

which are stimulated by IL-4 or IL-13 (124). In the progression of

NAFLD, it was found that hepatic macrophages polarized toward

M2 and promoted HSC autophagy and activation by secreting

prostaglandin E2 (PGE2) and then binding with EP4, which in

turn favored the development of liver fibrosis and cirrhosis (125). It

was reported that fibrinogen-like 2 (Fgl2) mediated mitochondrial

damage, disrupted mitochondrial HSP90-Akt interactions.

Moreover, Fgl2 induced M1 Polarization to secrete pro-

inflammatory factors in hepatitis B (126). CXCL10 promoted M1

polarization, resulting in the activation of the JAK/STAT1 pathway

(127). The connection between macrophages and HSCs can

facilitate liver fibrogenesis. Subtype M2C-like polarized

macrophages activated tyrosine kinase receptors (MerTK) on

their surface influencing the profibrogenic HSCs (128).

M1 Polarization of macrophages is critical in the liver. Xu et al.

found that osteopontin promoted M1 Polarization in NAFLD by
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activating JAK1/STAT1/HMGB1 signaling, which aggravated liver

injury and cirrhosis (129). Studies in a humanized mouse model of

HBV infection revealed that HBV could induce the differentiation

of human monocytes/macrophages into M2 macrophages, which

then expressed IL-10 and other inhibitory cytokines (113, 130). In

addition, soluble CD206 (sCD206) expressed by macrophages could

promote T cell activity and inhibit the antiviral effect of CD8T cells.

High expression of sCD206 accelerated the progression of cirrhosis

in patients with hepatitis B virus-related decompensated cirrhosis

(HBV-DeCi) (131).
3 Therapies

Treatment of the etiology is the cornerstone of cirrhosis

treatment. The means of treating the primary cause include

alcohol abstinence for alcoholic cirrhosis, antiviral drugs for HBV

and HCV, immunosuppressants for autoimmune hepatitis, and

ursodeoxycholic acid for primary biliary cholangitis. Several

studies have shown that etiologic treatment can effectively

restrain the progression of cirrhosis and even reverse patients

with decompensated cirrhosis to compensated cirrhosis (i.e.,

recompensated cirrhosis), thus reducing the rate of death and

improving the quality of life. Therefore, better studies of the

altered cirrhosis immune microenvironment would help to

develop more effective targeted therapeutic regimens.
3.1 Viral hepatitis

Currently approved antiviral therapies for HBV include pegylated

interferon alpha (PEG-IFN-a) with immunomodulatory activity and

nucleoside (acid) analogs (NAs) that inhibit HBV polymerase. Still,

neither achieves the functional cure of HBV (i.e., scavenging HBsAg)

(132). The conditions for the usage of the two drugs are different.

NAs can prevent severe viral hepatitis relapse, especially in patients

with liver cirrhosis. While PEG-IFN-a is contraindicated in cirrhosis

patients, for it can cause more severe liver damage (133). In a

randomized open phase II trial, treatment with elbasvir/grazoprevir

(EBR/GZR) + sofosbuvir (SOF) for 12 weeks was highly effective for

HCV patients treated either with or without peginterferon (PEG-

IFN-a-2a) or for cirrhosis patients (134).
The most advanced approach in clinical development to date is

the competitive inhibitor myrcludex-B (MyrB) based on the PreS1

peptide now called the hepatocyte entry inhibitor bulevirtide (BLV),

which has successfully blocked HBV and HDV entry (135). In

HDV-associated cirrhosis patients, for whom interferon is

contraindicated, treatment with BLV alone results in a sustained

virologic response (136), but the optimal duration remains

determined (137). The combination of BLV and tenofovir

disoproxil fumarate (TDF) has a favorable safety and efficacy

profile for treating HDV-related compensated cirrhosis (138).

Lonafarnib (LNF) and ritonavir (RTV) are promising therapies

for treating HDV, and the combination of PEG-IFN-amay increase

the efficacy. A phase III clinical trial of LNF is currently

underway (139).
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The risk of HCV progression to cirrhosis and HCC continues to

increase after treatment with direct-acting antiviral agents (DAAs).

Dysfunction of CD4+ and CD8+ T cells has been identified in

patients with hepatitis C, making liver immunotherapy urgent

(140). Compared with an oral agonist of TLR 7 (GS-9620), the

agonist of TLR 8 (GS-9688) stimulated the expression of IFN-g and
TNF-a in NK cells while all increased the antiviral capacity of CD8+

T cells (141). The immunotherapy by GS-9688 achieved sustained

efficacy in murine models of HBV (142). The safety and tolerability

of oral selgantolimod (TLR 8 agonist) was evaluated in CHB

patients in one phase Ib study, and the recent phase II study

further supported the development of this immunomodulator

(143). NASVAC, a vaccine formulation containing both hepatitis

B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg),

targeted a lower proportion of patients who developed cirrhosis in

phase III clinical trials compared with PEG-IFN (144). HCV

vaccine in phase I-II clinical trials found that 78% of HCV-

infected patients showed a specific response to T cells, reducing

the peak of HCV RNA level, providing a basis for future

immunotherapy (145). In a proof-of-concept clinical trial,

combination therapy of entecavir (NA) plus PEG-IFN-a-2a
followed by HBV vaccination developed a “blueprint” for serum

clearance of HBsAg, suggesting that the combination of drugs and

immunotherapy provides therapeutic interventions for functional

cure of viral infections (146).
3.2 Alcoholic hepatitis

Campaigns for vaccination, screening, and antiviral treatment

of hepatitis B and C have reduced the burden of chronic disease.

However, concurrent increases in drug injection, alcohol abuse, and

metabolic syndrome threaten these trends (1). A large randomized

clinical trial discovered that long-term administration of albumin

could improve survival in patients with decompensated cirrhosis

(147). Whereas, in an open-label multicenter trial ATTIRE,

increasing albumin infusion in patients with decompensated

cirrhosis showed no more benefit due to most of the patients

suffering alcohol-related liver disease (148). These results show

that breaking down the etiology of cirrhosis is crucial for

subsequent treatment.

Corticosteroids are currently recommended for the treatment of

severe alcoholic hepatitis (SAH), but about 25% of SAH did not

respond to prednisone treatment (149). Granulocyte colony-

stimulating factor (G-CSF) can prolong the survival of alcoholic

hepatitis (AH) patients, and the combination of N-acetylcysteine

(NAC) with standard drug therapy (pentoxifylline) may also reduce

AH liver injury and prolong survival (150). The immunomodulatory

effect of G-CSF in the AH mouse model had shown to increase the

number of immune cells entering the liver and promoting the

polarization of macrophages toward M2, which facilitated liver

repair (151). Macrophage and neutrophil infiltration diminished

in AH mice treated with intraperitoneal MSC infusion, and skeletal

muscle satellite cell-derived MSC counteracted ethanol-induced

inflammation by secreting PEG2 and HGF, thus making MSC

promising as an effective therapy for patients with alcoholic
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hepatitis (152, 153). In SAH patients, the fecal microbiome

transplantation (FMT) treatment for 90 days could cause a

reduction in the ratio of mucosa-associated invariant T and Th17

cells and a decrease in IL-17 and IFN-g production. Besides, FMT

could attenuate the hepatic inflammatory response and finally

improve survival in SAH patients, which suggests that FMT may

be an alternative to prednisone treatment (154). In the Defeat

Alcoholic Steatohepatitis trial (DASH), the combination of IL-1b-
receptor antagonist (anakinra) with pentoxifylline plus zinc

supplementation offered the opportunity for prolonged survival in

patients with AH (155). Significantly elevated markers of immune

cell activation stimulated by DAMP and PAMP, including

macrophages and neutrophils were found in AH subjects studied

in four clinical centers in the United States and correlated with the

severity of AH (156). Silybin, a kind of herbal plant, normalized

alcohol-induced immune regulation of the liver and induced

activation of T cells and downregulation of cytokines such as TNF

(157). These immune cells play an irreplaceable role in the intricate

liver immunemicroenvironment, which guides the direction for AH

to discover immune targets and provides future treatment strategies

to prevent disease progression, but further prospective clinical

studies are needed to confirm this good desire.
3.3 Nonalcoholic fatty liver disease

Anti-inflammatory and anti-fibrotic immunotherapy strategies

play a therapeutic role for NAFLD, with no standard treatments

change to currently approved (158). FXR is expressed in immune

cells. Cilofexor, an FXR agonist, improved hepatic steatosis in a 24-

week phase II study in NASH patients. However, Liver Fibrosis

scores and liver stiffness were not observed when were used only in

noncirrhotic NASH patients (159). Meanwhile, a modified and

optimized FXR agonist (MET409) had the same effect in another

12-week study in patients with NASH, despite the side effect of

headache. MET409 is intended to be used as first-line monotherapy

for NASH, while combinations of MET409 with other agents are in

development (160). More recently, results of a phase II trial showed

that the FXR agonist tropifexor led to sustained reductions in ALT

and liver fat, but the side effect of pruritus was unavoidable, and

further investigation for antifibrotic effects in combination with

other agents is needed (161). NAFLD is associated with

hypertriglyceridemia. In patients receiving the FXR agonist

cilofexor (CILO) and the acetyl-coenzyme A carboxylase (ACAC)

inhibitor firsocostat, inhibition of triglycerides by fenofibrate was

strengthened (162), providing strong evidence for the combinations

of multiple drugs. Saroglitazar is a PPAR-a/g agonist that is no less

effective than fenofibrate (163). Whether it can replace fenofibrate

in combination therapy for NAFLD remains to be proven.

The immunotherapy based on chimeric antigen receptor (CAR)

T cells targeting and destroying myofibroblasts can be used to

reduce extracellular matrix deposition in NASH mice (164). But

more evidence is needed to confirm the efficacy. Cenicriviroc

(CVC), as a dual CCR2 and CCR5 antagonist, had confirmed in a

phase IIb (CENTAUR) study in anti-fibrosis effect in NAFLD

patients (165). Unfortunately, the CVC clinical trial was
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prematurely interrupted in the anticipated phase III (AURORA)

study (166). Oral OKT3 (anti-CD3 mouse monoclonal antibody)

was administered to NASH patients with diabetes to induce Tregs

activation for ameliorating insulin resistance and liver injury.

Although the number of study subjects was small, the related

parameters showed promising results (167). Fibroblast growth

factor 19 (FGF19) analog aldafermin (also known as NGM282 or

M70) reduced liver fat content and fibrosis levels by 7.7% and 1%,

respectively, compared with the placebo group (168). Pegbelfermin

is a pegylated FGF21 analog. FGF21 improves the condition of

NAFLD and NASH by directly regulating lipid metabolism and

reducing fat accumulation in an insulin-independent manner (169).

Some clinical trials have shown that BMS-986036 has a good effect

on improving the liver fat content, inflammation, and fibrosis of

NAFLD and NASH, and is well tolerated (170, 171). As new

immunotherapeutic drugs, the clinical research of FGF19 and

FGF21 is in the third stage, and more studies are needed to

determine their biological characteristics and therapeutic

effects (172).

Given that none of the new drugs currently under evaluation

shows improvements in major clinical endpoints, it is expected that

a reasonable combination will be more effective in controlling or

preventing further deterioration of NASH. Several studies have now

shown that MSC-secreted exosomes supply natural drug delivery

vectors and offer prospective strategies for the treatment of NAFLD.

MSC-Exo miR-24-3p, miR-223-3p, and miR-627-5p attenuated

lipid deposition and liver fibrosis in NAFLD mice, but more

studies are needed to provide meaningful evidence for clinical

treatment (173–176). MSC-Exo extracted from human umbilical

cords stimulated M2 polarization, exhibited downregulation of pro-

inflammatory factors such as TNF-a, IL-6 and IL-1b, and detected

high expression of PPARa in liver tissue, thereby alleviating

methionine-cholesterol deficient (MCD) diet-induced progression

to NASH in NAFLD mice (177). Exosomes originated from human

adipose mesenchymal stem cells (hADMSCs-Exo) were shown to

inhibit HSCs activation and rectify choline metabolism disorders

via PI3K/Akt/mTOR pathway to ameliorate liver fibrosis, especially

caused by NAFLD (178). Deeper exploration of immune-related

mechanisms and further clinical trials may be needed to cure

NAFLD patients.
3.4 Autoimmune liver disease

3.4.1 Primary biliary cholangitis
Primary biliary cholangitis (formerly called primary biliary

cirrhosis) is characterized by cholestasis and biliary fibrosis, with

autoimmune destruction leading to immune-mediated damage (179).

Ursodeoxycholic acid (UDCA) is used as first-line therapy for PBC or

as second-line therapy (obectocholic acid and benzofibrate) if the

patient does not respond to UDCA (180). In a phase III clinical trial,

patients who did not respond to UDCA could also be treated with

budesonide, which improved liver function markers in serum but had

little effect on liver histology (181).

It is well recognized that PPARs are nuclear receptors that

regulate a variety of immune cell functions and play an important
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role in regulating innate and adaptive immunity (182). During the

52-week study, seladelpar, a selective PPARg-d agonist, was safe and
well tolerated in patients with PBC, which overcame the side effects

of skin itching and caused no serious adverse events or deaths (183).

Fatigue is also one of the symptoms of PBC. RITPBC is believed to

be the first randomized, controlled phase II clinical trial to

investigate fatigue in PBC. Rituximab is a monoclonal antibody

against CD20 on the surface of B cells to improve serum alkaline

phosphatase (ALP) of refractory UDCA in PBC and decimate B

cells (184). Rituximab is also considered a potential treatment for

PBC fatigue (185). In addition, the anti-IL12/23 monoclonal

antibody ustekinumab led to a slight decrease in PBC in a proof-

of-concept s tudy , but the efficacy and safety of i t s

immunomodulatory effect remain to be verified (186).

3.4.2 Primary sclerosing cholangitis
Primary sclerosing cholangitis is a chronic cholestatic liver

disease characterized by progressive inflammation and fibrosis of

the intrahepatic and extrahepatic bile ducts, leading to multifocal

biliary stricture and progressive liver disease (e.g., cirrhosis) (187).

Immunotherapy for PSC is complicated. Although a variety of

immunomodulators have been tested for the treatment of PSC,

the general treatment regimen has not been proven to benefit

patients (188). 24-Norursodoxycholic acid (norUDCA), a homolog

of UDCA, is a novel bile acid that reduces ALP in PSC patients in a

dose-dependent way and significantly improves cholestasis (189).

According to a meta-analysis, immunosuppressants (mycophenolate

mofetil, methotrexate, and tacrolimus) significantly reduced ALP and

AST and improved liver function, which seemed to be the most

effective treatment with severe side effects (188).

Liver transplantation (LT) is the only life-prolonging and curable

treatment for PSC. However, an international observational

study found that morbidity and mortality of recurrent primary

sclerosing cholangitis (rPSC) increased after liver transplantation in

children. It was thought that rPSC elicited a more robust immune

response than PSC (190). In addition, a 36-year-old woman who had

both PSC and ulcerative colitis was diagnosed with autoimmune

hepatitis after treatment with the mRNA vaccine COVID-19 (191).

We could speculate whether PSC or a specific immune response after

vaccination led to the conversion of immune disease, but the specific

mechanism was unclear. Proinflammatory cytokines, such as TNF-a
and IL-1b, were highly expressed in patients with PSC and AIH,

while the function of T lymphocytes and NK cells in the liver were

impaired (192), so anti-TNF therapy was also one treatment option.

Exploring the immunological changes in the liver microenvironment

may provide a solid basis to clinical immunotherapy.

3.4.3 Autoimmune hepatitis
Autoimmune hepatitis is characterized by elevated serum

aminotransferase, immunoglobulin G (IgG) levels, and positive

autoantibodies (193). The International Autoimmune Hepatitis

(IAIHG) defined “complete biochemical response” (CBR) as the

normalization of serum transaminases and IgG (194). To achieve

this goal, corticosteroids and/or azathioprine (AZA) are the standard

treatment for AIH, but some patients still respond poorly to standard
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treatment. The CBR rate of patients treated with mycophenolate

mofetil (MMF) was significantly higher than that of patients treated

with AZA, so MMF became an alternative therapy for initial

treatment (195–197). For children with AIH, MMF was a “life-

saving drug” for children (198). In most patients with

conventionally treated refractory AIH, one in three patients treated

with the immunosuppressant calcium phosphatase inhibitor

tacrolimus developed CBR and had good renal function after the

withdrawal of the drug (199). At the same disease stage, selective

depletion of B cells by rituximab, an anti-CD20monoclonal antibody,

also lowered transaminase and IgG levels (200, 201). In a multicenter

study, liver stiffness was reduced compared with that before

tacrolimus treatment, but no statistical significance was found,

possibly due to a small sample size. It is worth noting that only

one patient discontinued treatment due to serious adverse events

(202). Future studies need to enlarge the number of patients and

investigate the effects of immunomodulation on disease.

Depletion of Tregs was one of the methods to establish the AIH

mouse model. In conjunction with the reduction of Tregs by steroid

treatment, enhanced intrahepatic Tregs immunotherapy would be

the preferred option for AIH patients (203, 204). The low dose of

IL-2 improves the selectivity and number of Tregs after treatment,

thereby re-regulating the hepatic immune microenvironment for

improve AIH (204, 205).
3.5 Inherited disease

Wilson disease (WD) is an inherited disorder of copper

metabolism caused by mutations in ATP7B (hepatomegaly

protein) (194). It causes liver damage and neurological symptoms

due to abnormal copper ion metabolism in the body, leading to

copper accumulation in the liver, brain, and other tissues, which can

lead to cirrhosis in the long term (195, 196). Although liver

transplantation can cure WD, can also cause serious

immunosuppression (197). In most WD patients, oral chelating

agents such as D-penicillamine and trientine were effective (206).

Trientine tetrahydrochloride (TETA4) was found to be superior to

penicillamine in phase III clinical trials (199). Besides, these drugs

can decrease the number of whole blood cells in patients, weakening

the immune system and increasing the risk of infection (200).

Therefore, targeted liver immunotherapy would provide a better

cure for WD.
3.6 New strategies for MSC based therapy

The present study shows that a number of factors are

upregulated by MSCs, such as MMPs and VEGF, to promote

liver fibrosis regression (207). Besides, the study indicates A

combination of MSCs and macrophages was more effective in

reducing fibrotic gene expression and procollagen synthesis than

either of them individually. In line with this, it has been observed

that localized MSCs improve liver fibrosis by reducing the

activation of fibroblasts and the production of collagen (208).
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Evidence is mounting that MSC-mediated immune regulation can

alleviate liver fibrosis through programmed death mechanisms, such as

apoptosis, autophagy, ferroptosis, and pyroptosis (209). Maintaining the

characteristics of MSCs is dependent on basal autophagy levels. Aged

MSCs can benefit from activated or increased autophagy to slow

metabolism and strengthen their functions to resist aging. Conversely,

Aged MSCs are more susceptible to toxic substance accumulation and

mitochondrial damage, exacerbating inflammatory responses and cell

damage, and ultimately this accelerates the aging process. Increasing

evidence suggests that fibrotic microenvironment induced MSC

autophagy by upregulating Becn1, while Becn1 knockdown inhibited

T lymphocyte infiltration, HSC proliferation and suppressed the

production of cytokines by increasing PTGS2/PGE2 secretion, thereby

further enhancing MSC antifibrotic activity (210). Therefore, the

augmentation of the antifibrotic potential of MSCs through the

manipulation of their autophagic processes presents a viable approach

towards the management of liver fibrosis.

Recently, Zhang et al have proposed the therapeutic potential of

extracellular vesicles derived from mesenchymal stromal cells

(MSC-Evs) in facilitating liver regeneration (211). MSC-EVs have

been observed to stimulate the rejuvenation of aged hepatocytes and

augment their proliferation by upregulating mitophagy. Subsequent

to a more in-depth inquiry into the mechanistic intricacies of this

process, it was discovered that DDX5, which is abundant in MSC-

EVs, can be transferred to aged hepatocytes to stimulate EF1

nuclear translocation and consequent upregulation of Atg4B

expression, ultimately leading to the induction of mitophagy. The

validity of these findings was confirmed through in vivo and in vitro

experiments involving DDX5 knockdown in MSC-EVs. Therefore,

MSC-EVs present a promising therapeutic modality for liver

fibrosis patients by reversing senescence and promoting the

regeneration of senescent hepatocytes (211).
4 Summary

The disruption of hepatic homeostasis may lead to a persistent

inflammatory response and a reduction in immune function, thereby

emphasizing the critical role of the immunemicroenvironment in the

development of liver cirrhosis. Remarkably, recent clinical trials have

demonstrated that transplantation of mesenchymal stromal cells

derived from human umbilical cord blood can potentially improve

the long-term survival of patients with decompensated cirrhosis

(202). Moreover, the paracrine intercellular communication of

MSCs may confer the benefit of effectively eliciting physiological
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effects through minute concentrations of EV. The diversity of MSCs

derived from distinct tissue sources and the distinctive attributes

of MSC-EVs indicate a significant therapeutic potential of MSCs

for their antifibrotic properties. Nevertheless, the capacity of

MSCs to proliferate indefinitely is limited, and they may exhibit

senescence after cell division, which can disrupt homeostasis in

vivo through senescent cells and cell-cell interactions. Hence,

investigating the mechanisms of cellular communication in the

aging microenvironment is a pressing necessity and a promising

therapeutic strategy.
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