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Itaconate is a crucial anti-infective and anti-inflammatory immunometabolite

that accumulates upon disruption of the Krebs cycle in effector macrophages

undergoing inflammatory stress. Esterified derivatives of itaconate (4-octyl

itaconate and dimethyl itaconate) and its isomers (mesaconate and

citraconate) are promising candidate drugs for inflammation and infection.

Several itaconate family members participate in host defense, immune and

metabolic modulation, and amelioration of infection, although opposite effects

have also been reported. However, the precise mechanisms by which itaconate

and its family members exert its effects are not fully understood. In addition,

contradictory results in different experimental settings and a lack of clinical data

make it difficult to draw definitive conclusions about the therapeutic potential of

itaconate. Here we review how the immune response gene 1-itaconate pathway

is activated during infection and its role in host defense and pathogenesis in a

context-dependent manner. Certain pathogens can use itaconate to establish

infections. Finally, we briefly discuss the major mechanisms by which itaconate

family members exert antimicrobial effects. To thoroughly comprehend how

itaconate exerts its anti-inflammatory and antimicrobial effects, additional

research on the actual mechanism of action is necessary. This review

examines the current state of itaconate research in infection and identifies the

key challenges and opportunities for future research in this field.
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1 Introduction

Innate immune responses are the primary host defense to

infection. Macrophages participate in innate immunity by

recognizing pathogen- or danger-associated molecular patterns.

Upon activation, macrophages initiate an intracellular signaling

program to activate the expression of numerous genes involved in

inflammatory, immune, and antimicrobial responses .

Simultaneously, innate immune cells undergo significant

metabolic reprogramming depending on their differentiation

status (1–3). The metabolites up- or down-regulated during

infection act as signals to modulate immune pathways,

antimicrobial responses, and homeostasis (4–6).

Itaconate (ITA), a signaling metabolite produced by classically

activated macrophages (7), regulates the immune, inflammatory,

and oxidative responses to infection (8–10). The intrinsic pathway

of endogenous ITA production in macrophages requires immune-

responsive gene 1 (IRG1), also known as aconitate decarboxylase 1

(ACOD1), to decarboxylate cis-aconitate (Figure 1) (11). Normally,

cis-aconitate does not dissociate from aconitase, the enzyme

catalyzing the dehydration of both citrate and isocitrate, and at

equilibrium, the substrates of aconitase are present 90% of citrate,

6% of isocitrate, and 4% of cis-aconitate (12–14). The expression of

Irg1 encoding ACOD1 shows basal level in nonactivated

macrophages, though the gene level is induced upon infection

with live pathogens or LPS stimulation (11, 15). Classically

activated M1 macrophages undergo dynamic immunometabolic

remodeling, manifesting as early accumulation of succinate and

ITA, during infection and inflammation, and the accumulation of

the two molecules is correlated with each other (7, 16). ITA inhibits

succinate dehydrogenase (SDH) competitively based on structural

similarity with succinate (Figure 1) (17, 18).

To circumvent the low plasma membrane permeability, ITA is

esterified and investigated as 4-octyl ITA (4-OI) or dimethyl ITA

(DMI) (17, 19, 20). ITA, its esterified derivatives (4-OI and DMI),

and its naturally occurring isomers (mesaconate and citraconate)

make considerable contributions to infectious and inflammatory

diseases. Indeed, the anti-infective and anti-inflammatory roles of

ITA and its isomers and esterified derivatives have been discussed

(8–10, 21–23). Here, we review the regulation of endogenous ITA

production in terms of immunometabolic networks and the

functions of ITA and its relatives during infection. We also focus

on the molecular mechanisms by which ITA and its related

members regulate innate and inflammatory responses in infection

and immunity.
2 Immune regulation via the IRG1-ITA
pathway during infection

Classical activation of macrophages toward the M1 phenotype

drives metabolic reprogramming, leading to upregulated glycolysis,

disruption of the TCA cycle, and ITA accumulation (24). In

Mycobacterium tuberculosis (Mtb) infection, the metabolite

glutamine drives M1 macrophage responses via immunometabolic
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remodeling in which the biosynthetic precursor ITA is generated

(25). In turn, ITA functions as a feedback inhibitory regulator by

TCA-cycle reprogramming in macrophages (26). That is, ITA

inhibits isocitrate dehydrogenase 2 (IDH2), thereby altering the

mitochondrial NADP+/NADPH ratio and inhibiting SDH (26). In

addition, interleukin (IL)-33-mediated metabolic rewiring in

macrophages upregulates ITA production, and ITA promotes the

GATA3-mediated polarization of alternatively activated

macrophages, thereby contributing to tissue repair and the

resolution of inflammation (27). Moreover, 4-OI suppresses aerobic

glycolysis by directly alkylating Cys22 of GAPDH, thus inhibiting

inflammatory responses in activated macrophages (28).

Macrophage stimulation by toll-like receptor (TLR) ligands

activates ITA production (29). In human monocytic THP-1 cells,

lipopolysaccharide (LPS) stimulation upregulates IRG1 mRNA via

cyclin-dependent kinase 2 (CDK2)-mediated JUN activation and

IRG1 accumulation, thereby robustly activating the pro-

inflammatory tumor necrosis factor-a (TNF-a) signaling pathway

(30). In addition, the host TLR2, myeloid differentiation primary

response 88 (MyD88), nuclear factor-kappa B (NF-kB), stimulator

of interferon genes (STING), and type I interferon (IFN) receptor

signaling pathways induce IRG1 expression during Mtb infection

(31). Signals from phagocytosis and endosomal acidification are

needed to induce IRG1 expression in bone marrow-derived

macrophages (BMDMs) (31). In Brucella infection, MyD88

signaling is required for ITA production and ITA-mediated

antibacterial responses to B. melitensis in macrophages (32). By

contrast, IRG1-mediated ITA production is suppressed by the

induction of b-glucan-mediated trained immunity, thus

modulating immunoparalysis during sepsis (33).

Type I and II IFNs trigger the expression of IRG1 and ITA to

exert bactericidal functions against Legionella pneumophila, and

extracellular multidrug-resistant gram-positive and negative

bacteria (34). The pro-inflammatory cytokines TNF-a and IL-6

activate ITA-mediated direct antimicrobial responses in M. avium-

infected macrophages (35). TNF-a and IL-6 activate paracrine

signaling to promote the IRF1/IRG1 pathway and the repositioning

of mitochondrial to bacterial phagosomes duringM. avium infection

(35). Therefore, the inflammatory responses of bystander cells at

infection sites may contribute to endogenous ITA production,

thereby amplifying antimicrobial responses during infection.
3 Roles of ITA in infection

3.1 ITA-induced protection

In most infection models, ITA and its family members are

considered antimicrobial metabolites, because they target isocitrate

lyase of the glyoxylate shunt during Salmonella enterica and Mtb

infections (11). In vivo, the IRG1-ITA pathway ameliorates

neutrophil-mediated pathologic inflammation to promote

antimicrobial responses against Mtb infection (36). Also, the

endogenous ITA-mediated restriction of intracellular bacteria

such as S. Typhimurium depends on the guanosine

triphosphatase Rab32, which interacts with IRG1 to deliver the
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https://doi.org/10.3389/fimmu.2023.1203756
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuk et al. 10.3389/fimmu.2023.1203756
antimicrobial factor ITA to the Salmonella-containing vacuole (37).

In addition, the T helper cell 1 (Th1)-induced cytokine IFN-g
stimulates the production of ITA, which inhibits mitochondrial

complex II to increase bactericidal activity against Francisella

tularensis (38).

Brucella infection upregulates IRG1, which is critical for the

control of Brucella growth, in murine alveolar macrophages (39).

Notably, ITA and DMI exhibit direct antimicrobial effects against

Brucella by targeting isocitrate lyase of B. abortus (39). Similarly, in

a Vibrio infection model, ITA suppresses the growth of Vibrio sp.

DO1 (40). Moreover, ITA reduces intracellular Escherichia coli at

later time points in macrophages, at least in part by increasing

phagocytosis and bactericidal activity (41). In addition, DMI

suppresses intracellular growth of Mtb, M. avium, even of

multidrug resistant Mtb in macrophages, partly associated with

the induction of autophagy (22). In Zika virus infection of neurons,

receptor interacting protein kinase 1 (RIPK1) and RIPK3 signaling

suppresses viral replication via IRG1-mediated ITA production

(42). In addition, IRG1 is essential for the restriction of Coxiella

burnetii infection, which causes zoonotic Q fever, in macrophages

and intratracheal or intraperitoneal infection models. IRG1
Frontiers in Immunology 03
deficiency amplifies inflammatory responses—including the

expression of Il6, Ifng, Nos2, and Gbp1—in the lungs of infected

mice. Interestingly, exogenous ITA reduces the bacterial burden,

and the physiologic concentration of ITA is sufficient to control C.

burnetii replication (43). Furthermore, in chronic infection with

Toxoplasma gondii, which impairs cognitive functions, treatment of

infected mice with DMI improves behavioral performance and

ameliorates microglial inflammation (44).

There are few reports on the clinical relevance of ITA in human

infectious diseases. Interestingly, multidrug-resistant tuberculosis

(TB) patients show an inflammatory metabolic response, which

manifests as upregulated succinate and downregulated ITA, which

is increased in patients on appropriate anti-TB treatment (45).

Therefore, host metabolic remodeling accompanied by decreased

ITA drives immunopathological responses in human TB.
3.2 ITA pathological functions

Some findings indicate a pathologic or insufficiently protective

role for the IRG1-ITA pathway in infection. Respiratory syncytial
FIGURE 1

Molecular mechanisms of itaconate and its relatives in infection. Itaconate (ITA) is produced from the decarboxylation of cis-aconitate in
mitochondria in response to IRG1 induction. Itaconate modulates the activity of SDH by competing with succinate, thereby regulating the TCA cycle.
Itaconate causes KEAP1 to dissociate from the NRF2-KEAP1 complex by alkylating cysteine residues 151,257,288,273, and 297 on KEAP1.
Translocation of activated NRF2 to the nucleus increases anti-oxidant and anti-inflammatory gene expression. ATF3 induced by itaconate
translocates to the nucleus to inhibit IkBz, thereby preventing the production and secretion of inflammatory cytokines. TFEB alkylated by itaconate
on cysteine residue 212 elicits translocation to the cell nucleus, resulting in the upregulation of genes related to lysosomal biogenesis. DMI and 4-OI
decrease Akt phosphorylation, whereas ITA increases it. Inhibiting Akt phosphorylation inhibits mTOR/IRF signaling and the production of type I
interferon (Ifna and Ifnb). Alk, alkylation; ATF3, activating transcription factor 3; IkBz, IkappaB-zeta; IL, interleukin; IRF, interferon-regulated factor;
IRG1, immune-responsive gene 1; KEAP1, Kelch ECH associating protein 1; NF-kB, nuclear factor-kappa B; NRF2, nuclear factor erythroid 2-related
factor 2; SDH, succinate dehydrogenase; TFEB, transcription factor EB.
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virus (RSV) infection triggers IRG1 expression to promote reactive

oxygen species (ROS) generation in human A549 cells, immune cell

infiltration, and lung injury in vivo (46). In addition, the

dysfunctional complex of phosphatase and tensin homolog

deleted on chromosome 10 (PTEN) with the cystic fibrosis (CF)

transmembrane conductance regulator (CFTR), which is associated

with the pathogenesis of cystic fibrosis, increases the production of

succinate and IRG1-ITA (47). Nevertheless, these metabolic

changes are not sufficient to clear Pseudomonas aeruginosa due to

impaired PTEN activity and excessive oxidative stress (47). IRG1

and ITA are required for bacterial persistence and host tolerance

during infection with Klebsiella pneumoniae sequence type 258 (Kp

ST258) (48). Kp ST258 infection drives host metabolic pathways

towards glutaminolysis, fatty acid oxidation, and accumulation of

ITA, resulting in anti-inflammatory M2-type responses and

disease-tolerant immune responses (48). Together, these recent

studies raise the question of how the IRG1-ITA pathway

contributes to host detrimental responses rather than protection

in certain types of infection.

Intracellular microbes and parasites can distort the IRG1/ITA

axis and use ITA during infection (44). Influenza A virus (IAV)

infection increases Irg1 mRNA expression in M2-type human

macrophages and undifferentiated peripheral blood mononuclear

cells (PBMCs) (49). In a rabbit model of P. aeruginosa (PAO1)

infection, IRG1 induction and ITA production in host cells may

contribute to bacterial adaptation and biofilm formation by

enabling use of ITA as a carbon source in the acute phase of

wound infection (49). Some bacteria such as P. aeruginosa clinical

isolates can establish infection and replicate in host cells by using

ITA as their major carbon source (50). Upon exposure to ITA, P.

aeruginosa produces extracellular polysaccharides (EPS), which

stimulate the production of ITA in host cells (50). In addition,

ITA inhibits glycolysis in Staphylococcus aureus, a pathogen easily

adaptable to the host immunometabolic environment, and increases

the synthesis of extracellular polysaccharide and biofilm formation

(51). Furthermore, in a vaccine model of Francisella tularensis

infection, Irg1 deficiency increases resistance to secondary

challenge by promoting CD4+ and CD8+ T cell responses (52).

Together, these results suggest that pathogens can use endogenous

ITA as a nutrient to establish persistent infection by modulating

host immune pathways. Further studies are needed to determine

how pathogens manipulate the IRG1-ITA axis to influence innate

and adaptive immune pathways.
4 Mechanisms by which ITA and its
family members control infection

There are several mechanisms by which ITA and its family

members exert antimicrobial effects during infection; we briefly

discuss the four major mechanisms, i.e., nuclear factor erythroid 2-

related factor 2 (NRF2), activating transcription factor 3 (ATF3),

transcription factor EB (TFEB), and Akt, below. And these are

summarized in Figure 1 and Table 1.
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4.1 NRF2 and antioxidant responses

NRF2, a transcriptional factor with a cytoprotective function, is

a focus of research on ITA-associated therapeutics for infection and

inflammation. The NRF2 protein level and activity are regulated by

ubiquitination and degradation by E3 ligase complexes involving

Kelch ECH associating protein 1 (KEAP1) (52, 60). However, the

underlying regulatory mechanisms are beyond the scope of

this review.

ITA-induced alkylation of KEAP1 activates the NRF2 signaling

pathway of antioxidant and anti-inflammatory responses (20, 57,

61). Esterified derivatives of ITA, 4-OI, and DMI, are sufficient to

activate the NRF2 signaling pathway. For instance, in a model of

Aspergillus fumigatus keratitis, DMI reduces inflammatory

responses in human corneal epithelial cells by activating of NRF2/

heme oxygenase (HO)-1 signaling (53). An NRF2 signaling

pathway is also important for DMI-mediated anti-inflammatory

responses to LPS in macrophages, and DMI induces NRF2, HO-1,

and NAD(P)H quinone oxydoreductase 1 (NQO-1), expression,

downstream signaling factors of NRF2 signaling (54).

4-OI functions in the resolution of wounds in macrophages. 4-

OI suppresses TNF-a, but not IL-6, production via NRF2 signaling.

4-OI increases the expression of the immunosuppressive M2

markers TGF-b and CD36, but suppresses collagenase matrix

metalloprotease-8 in human monocyte-derived macrophages. In

addition, 4-OI alleviates the LPS-induced uptake of fibrous collagen

via the NRF2 and p38 MAPK signaling pathways (62). In a sepsis

model, 4-OI inhibits inflammatory and oxidative stress factors, but

increases anti-inflammatory responses, by activating NRF2

signaling (55). Interestingly, 4-OI exerts an antiviral effect against

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

infection by suppressing host inflammatory responses via NRF2

signaling (56). 4-OI and dimethyl fumarate exert antiviral effects

against herpes simplex viruses-1 and -2, vaccinia virus, and Zika

virus by controlling inflammatory responses (56). Moreover, NRF2

activation suppresses STING expression and signaling, an effect

mimicked by NRF2 inducers or 4-OI, to affect STING-dependent

inflammatory responses (61) . The cyc l i c guanos ine

monophosphate-adenosine monophosphate (cGAMP) synthase

(cGAS)/STING system is a therapeutic target for IFN-related

inflammatory and bacterial infections (61, 63). More data are

needed to clarify whether ITA and its family members protect

against bacterial infections.
4.2 ATF3

ATF3 is a stress-responsive transcription factor of the basic

leucine zipper (bZip) family and is essential for controlling

physiological functions such as the cell cycle, tumor suppression,

and TLR4 signaling (64, 65). An ATF3-mediated signaling pathway

regulates the production of inflammatory cytokines, such as IL-6,

mediated by ITA and DMI, both of which induce electrophilic stress

(57). Whereas TNF is induced by TLR stimulation, IL-6 is produced
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TABLE 1 Host protective functions of itaconate and its relatives as therapeutic candidates in infectious/inflammatory diseases.

Type of
ITA

Infectious
agents Models Functions Ref

Intermediated by NRF2

DMI

A. fumigatus

In vivo:
- Fungal keratitis
model
In vitro:
- Human corneal
epithelial cells

Host protection against fungal keratitis
- ↓ Clinical scores, PMN infiltration, and fungal load in eyes of mice
- ↓ Inflammatory responses in response to fungal keratitis
- ↓ IL-1b and CXCL1 in HCECs
- ↓ IL-1b, IL-8, and IL-6 in infected corneas
Activation of Nrf2/HO-1 signaling pathway
- ↑ Nrf2 and/HO-1 expression in DI-treated corneas of mice
- ↑ Nuclear Nrf2 accumulation in HCECs

(53)

LPS

In vivo:
- LPS-induced septic
model
In vitro:
- BMDMs

Host protection against LPS-induced inflammation
- ↓ Mice lethality and inflammation score in LPS-induced septic models
- ↓ LPS-Induced production of inflammatory cytokines in BMDMs
- ↓ IL-1b and CXCL1 in HCECs
· Activation of Nrf2 signaling pathway
- ↑ Level of Nrf2 and its target genes HO-1 and NQO1 in both LPS-treated mice and murine
macrophages
- No effects in LPS-treated Nrf2-/- mice.

(54)

4-OI

LPS

In vivo:
- CLP-induced septic
model
In vitro:
- RAW 264.7

Host protection against septic model
- ↓ Mice lethality, tissue injury, and inflammation score
Negative regulation of LPS-induced inflammation in RAW 264.7 cells
- ↓ M1 and ↑ M2 polarization
- ↓ IFN-g, IL-1b, TNF-a expression or ROS release
- ↑ IL-10 secretion
Activation of Nrf2/PD-L1 signaling pathway
- ↑ Nrf2 gene transcription and protein expression
- ↓ LPS-induced oxidative stress and PD-L1 via Nrf2 signaling

(55)

SARS-CoV2
HSV1, 2
VACA

Zika virus

Patient sample:
- COVID-19 biopsies
In vitro:
- Vero cells
- Calu-3
- NuLi cells
- A549 cells
- HaCaT
- PBMCs
- BMDCs

Nrf2-mediated antiviral responses via IFN-independent manner
- ↓ Replication of SARS-CoV2 and other virus including HSV, VACV, and Zika Virus
- ↓ Replication of HSV1 and VACV in type I IFN-deficient cells
- ↓ Replication of HSV1 and VACV in IFNAR2 or STAT1-deficient HaCaT cells
Anti-inflammatory effects to SARS-CoV2
- ↓ IFNB1, CXCL10, TNFA, and CCL5 in Calu-3 cells
- ↓ CXCL10 in PBMCs from healthy donor and patients with severe COVID-19

(56)

Intermediated by ATF3

DMI LPS

In vivo:
- Psoriasis mouse
model
In vitro:
- BMDMs
- BV2 cells
- PBMCs
- Primary
keratinocytes

Activation of electrophilic stress in BMDMs
- ↑ Transcriptional markers of Nrf2-dependent responses such as Hmox1, Nqo1 and Gclm gene
- ↓ LPS-induced the secretion of IL-6, but not TNF in macrophages
- ↓ Skin inflammation in vivo psoriasis
Negative regulation of TLR-mediated secondary, but not primary, transcriptional response via ATF/
IkBz signaling pathway
- ↓ LPS-induced IL-6-IkBz axis via ATF3, but not Nrf2
- ↓ IL-17-mediated IkBz induction in keratinocytes

(57)

Intermediated by TFEB

ITA

LPS/IFNg
S.

Typhimurium

In vivo:
- Salmonella infection
model
In vitro:
- BMDMs

Antibacterial effects against Salmonella Typhimurium infection
- ↓ Intracellular growth of Salmonella in BMDMs (In vitro) or splenic macrophages from mice
infected with S. Typhimurium SL1344 (In vivo)
- Activation of Irg1-Rab32–BLOC3 system
- Activation of TFEB–Irg1–ITA signaling

(58)

ITA
LPS
S.

Typhimurium

In vivo:
- Salmonella infection
model
In vitro:
- BMDMs
- PBMCs
- THP-1 cells

Antibacterial innate immune defense activation
- ↑ Lysosomal biogenesis and bacterial clearance via TFEB alkylation
- ↓ Lethality of mice and inflammation in a murine models of S. Typhimurium infection
- Activation of IRG1/ITA/TFEB axis

(59)

(Continued)
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as a result of secondary transcriptional responses, mainly mediated

by IkBz, which is encoded by Nfkbiz (66). Importantly, DMI-

mediated ATF3 upregulation suppresses IL-17–mediated IkBz
signaling pathway activation, thus ameliorating skin pathological

inflammation in vitro and in vivo (57). Therefore, the ATF3/IkBz
pathway is a target by which ITA and its derivatives regulate the

generation of proinflammatory cytokines.

Mesaconate and citraconic, two isomers of ITA, are

immunomodulatory metabolites. They suppress the production of

inflammatory cytokines and IFN signaling, and the release of IAV

particles from host cells. The anti-inflammatory and antioxidant

effects of ITA isomers depend on the NRF2 signaling pathway, and

citraconic is the most active NRF2 agonist (67). Mesaconate

downregulates glycolysis but does not suppress tricarboxylic acid

cycle activity or SDH. Mesaconate significantly reduces the secretion

of IL-6 and IL-12 and increases CXCL10 in macrophages. However,

this effect is not mediated by NRF2 and ATF3 (68). These data suggest

that ITA isomers modulate the NRF2 andATF3 signaling pathways to

influence immune responses in a context-dependent manner.
4.3 TFEB

TFEB is a transcription factor of the microphthalmia (MiT/TFE)

family (69) that regulates lysosomal biogenesis and autophagy by

binding to the CLEAR (coordinated lysosomal expression and

regulation) element, which is found in the promoters of lysosomal

genes (70, 71). TFEB activation alters carbon funneling to elevate the

level of ITA, thereby suppressing S. Typhimurium, an intracellular

pathogen, in macrophages and in vivo (58). Interestingly, S.

Typhimurium restricts TFEB activity, however, TFEB activation

alone is enough to induce Irg1 and increase the ITA level in

macrophages (58). Also, iNOS expression suppresses endogenous

ITA synthesis in activated murine macrophages (58). The IRG1-

Rab32–BLOC3 pathway is involved in the TFEB-driven ITA

transport from mitochondria into Salmonella-containing vacuoles

to restrict bacterial growth (58). Zhang et al. reported that ITA

produced by LPS-stimulated cells induces the alkylation of human

TFEB at Cys212, to drive its nuclear translocation and activation, thus
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suppressing S. Typhimurium infection (59). Therefore, the TFEB-

associated lysosomal function and ITA synthesis could be leveraged

to develop therapeutics for intracellular bacteria.
4.4 Akt signaling pathway

Akt/protein kinase B, a downstream serine/threonine protein

kinase of phosphoinositide 3-kinase (PI3K), is important in cell

growth and survival, cell cycle progression, glucose metabolism, and

immune responses (72, 73). Aberrant activation of the Akt pathway

contributes to multiple pathological processes during infection,

including inflammatory responses, viral propagation (74, 75), and

increased intracellular bacterial survival (76, 77). By contrast, the

Akt/mTOR-mediated signaling pathway contributes to the non-

canonical activation of IFN-dependent antiviral responses (78).

IAV-induced pathological inflammation in the lung is increased

in IRG1-deficient compared to wild-type mice (49). Importantly,

DMI and 4-OI exert the same protective effect as ITA and reduce

IFN and inflammatory responses in human PBMCs and lung tissue

(49). Mechanistically, both DMI and 4-OI suppress, whereas ITA

increases, the phosphorylation of Akt in human monocytic THP1

cells (49). The regulatory effects of ITA and its relatives need to be

characterized in terms of Akt signaling modulation and its

consequences in viral and bacterial infection.
5 Discussion

The roles of ITA and its family members in infection and

inflammation have been investigated extensively, but their roles in

host defense and pathogenesis during infection are unclear. ITA and

its family members exert antimicrobial effects during viral, bacterial,

and parasitic infections. However, the IRG1-ITA pathway promotes

the pathogenesis of infection in a context-dependent manner. These

findings suggest that the complex immunometabolic environment

determines the role of IRG1 and ITA in the modulation of host

defense against infection. Several pathogens can use ITA as a carbon

source during infection. There is no report that esterified derivatives
TABLE 1 Continued

Type of
ITA

Infectious
agents Models Functions Ref

Intermediated by Akt

ITA, DMI,
4-OI

IAV

Patient sample:
- Lung tissue
In vivo:
- IAV model
In vitro:
- PBMCs
- THP-1 cells
- BMDMs
- A549 cells

Anti-inflammatory and –viral functions against IAV infection
- ↓ IAV-induced IFN responses in macrophages and human lung tissue explants
- ↓ IAV-induced CXCL10 and CCL2 expression
- ↓ IAV-induced ROS generation and STAT1 and AKT phosphorylation
- ↓ Virion production in A549 and IAV RNA replication in PBMCs
- ↓ Pulmonary inflammation and ↑ mice survival in IAV-infected mice

(49)
frontiers
ITA, itaconate; DMI, Dimethyl itaconate; HCECs, Human corneal epithelial cells; NRF2, Nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; PMN, Polymorphonuclear
neutrophil; LPS, lipopolysaccharide; BMDMs, bone marrow–derived macrophages; NQO-1, Quinone oxidoreductase 1; 4-OI, 4-octyl itaconate; CLP, cecum ligation and puncture; SARS-CoV2,
Severe Acute Respiratory Syndrome Coronavirus 2; HSV, Herpes Simplex Virus; VAVV, Vaccinia virus; PBMC, Peripheral Blood Mononuclear cells; BMDCs, Bone marrow-derived dendritic
cells; IFNAR2, IFN alpha receptor 2; STAT1, Signal Transducer and Activator of Transcription 1; ATF3, Activating transcription factor 3; TLR, Toll-like receptor; Irg1, Aconitate decarboxylase
(Acod1); TFEB, Transcription factor EB; IAV, Influenza A virus; ROS, Reactive oxygen species. ↑ means "increased". ↓ means "decreased".
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of ITA (4-OI and DMI) are directly used by intracellular pathogens.

Therefore, ITA derivatives with similar activities as endogenous ITA

show promise as host-directed therapeutics for infectious diseases.

Although the mechanisms by which ITA and its relatives

promote host defense against pathogens are unclear, at least four

factors—NRF2, ATF3, TFEB, and Akt—are implicated. The esterified

forms (4-OI and DMI) are used to surmount the low cell permeability

and mimic the functions of ITA. 4-OI inhibits inflammation by

alkylating GAPDH and exerts antiviral properties through NRF2

signaling. DMI elicits NRF2 and ATF3 activation in response to

bacterial infection, promoting host defense. The two derivatives

decreased the phosphorylation of Akt, whereas ITA increases it.

Detailed regulation of cellular signaling and comparisons of

preclinical and clinical outcomes will further illuminate the unique

function of each derivative. It is likely that additional signaling

pathways, metabolic remodeling, and factors are involved and

should be investigated in greater depth. Further clinical trials are

needed to clarify whether ITA and its relatives contribute to

antimicrobial or tolerogenic responses during infection. Such efforts

will facilitate the development of ITA-based antimicrobials that

enhance host immune responses. Overall, the study of ITA and its

family members in the context of host defense against infections

represents an intriguing area of research with promising implications

for the development of novel therapeutic strategies.
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Glossary

ACOD1 aconitate decarboxylase 1

ATF3 activating transcription factor 3

BMDM bone marrow-derived macrophage

bZip basic leucine zipper

CDK2 cyclin-dependent kinase 2

CF cystic fibrosis

CFTR cystic fibrosis transmembrane conductance regulator

cGAMP cyclic guanosine monophophsate-adenosine monophosphate

cGAS cGAMP synthase

CLEAR coordinated lysosomal expression and regulation

CXCL C-X-C chemokine ligand

DMI dimethyl itaconate

EPS extracellular polysaccharides

HO heme oxygenase

IAV influenza A virus

IDH2 isocitrate dehydrogenase

IFN interferon

IL interleukin

IRG1 immune-responsive gene 1

ITA itaconate

KEAP1 Kelch ECH associating protein 1

Kp ST258 Klebsiella pneumoniae sequence type 258

LPS lipopolysaccharide

MiT/TFE microphthalmia

Mtb Mycobacterium tuberculosis

MyD88 myeloid differentiation primary response 88

NF-kB nuclear factor-kappa B

NQO-1 NAD(P)H quinone oxydoreductase 1

NRF2 nuclear factor erythroid 2-related factor 2

4-OI 4-octyl itaconate

PBMC peripheral blood mononuclear cell

PI3K phosphoinositide 3-kinase

PTEN phosphatase and tensin homolog deleted on chromosome 10

RIPK receptor interacting protein kinase

ROS reactive oxygen species

RSV respiratory syncytial virus

SDH succinate dehydrogenase

STING stimulation of interferon genes

TFEB transcription factor EB

(Continued)
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Th1 T helper cell 1

TLR toll-like receptor

TNF-a tumor necrosis factor-a.
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