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pancreatic ductal
adenocarcinoma: a model
validation study
Fan Yang1*, Yanjie He2, Nan Ge1, Jintao Guo1,
Fei Yang1 and Siyu Sun1*

1Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China,
2Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center,
New York, NY, United States
Introduction: Pancreatic ductal adenocarcinoma (PDAC) has the highest

mortality rate among all solid tumors. Tumorigenesis is promoted by the

oncogene KRAS, and KRAS mutations are prevalent in patients with PDAC.

Therefore, a comprehensive understanding of the interactions between KRAS

mutations and PDAC may expediate the development of therapeutic strategies

for reversing the progression of malignant tumors. Our study aims at establishing

and validating a prediction model of KRASmutations in patients with PDAC based

on survival analysis and mRNA expression.

Methods: A total of 184 and 412 patients with PDAC from The Cancer Genome

Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC),

respectively, were included in the study.

Results: After tumor mutation profile and copy number variation (CNV) analyses,

we established and validated a prediction model of KRAS mutations, based on

survival analysis and mRNA expression, that contained seven genes: CSTF2, FAF2,

KIF20B, AKR1A1, APOM, KRT6C, and CD70. We confirmed that the model has a

good predictive ability for the prognosis of overall survival (OS) in patients with

KRAS-mutated PDAC. Then, we analyzed differential biological pathways,

especially the ferroptosis pathway, through principal component analysis,

pathway enrichment analysis, Gene Ontology (GO) enrichment analysis, and

gene set enrichment analysis (GSEA), with which patients were classified into

low- or high-risk groups. Pathway enrichment results revealed enrichment in the

cytokine-cytokine receptor interaction, metabolism of xenobiotics by

cytochrome P450, and viral protein interaction with cytokine and cytokine

receptor pathways. Most of the enriched pathways are metabolic pathways

predominantly enriched by downregulated genes, suggesting numerous

downregulated metabolic pathways in the high-risk group. Subsequent tumor

immune infiltration analysis indicated that neutrophil infiltration, resting CD4

memory T cells, and resting natural killer (NK) cells correlated with the risk score.

After verifying that the seven gene expression levels in different KRAS-mutated

pancreatic cancer cell lines were similar to that in the model, we screened

potential drugs related to the risk score.
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Discussion: This study established, analyzed, and validated a model for

predicting the prognosis of PDAC based on risk stratification according to

KRAS mutations, and identified differential pathways and highly

effective drugs.
KEYWORDS
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1 Introduction

Pancreatic cancer is a highly malignant gastrointestinal cancer

that can be difficult to diagnose and treat. Among the various

subtypes of pancreatic cancer, pancreatic ductal adenocarcinoma

(PDAC) represents 90% of pancreatic malignancies (1–3). In recent

years, the morbidity and mortality associated with pancreatic cancer

have increased considerably, with PDAC exhibiting the highest

mortality rate among all solid tumors (3). Moreover, pancreatic

cancer has a relatively low rate of early diagnosis and is often

diagnosed at advanced stages, by which time the cancer has spread,

becoming more difficult to treat and resulting in a 5-year survival

rate of less than 7% (2, 4). PDAC is one of the malignant tumors

with the worst prognosis. According to the latest United States

Cancer Statistics, pancreatic cancer has the tenth and eighth highest

incidence rate for males and females, respectively, as well as the

fourth highest mortality rate for both males and females (2).

Furthermore, the latest World Health Organization (WHO)

statistics reveal that pancreatic cancer was the seventh most

common cancer, and sixth most fatal cancer, in China in 2020

(1). Although there are several new treatment methods or targets in

recent years, the prognosis of pancreatic ductal adenocarcinoma

remains poor (1–5).

Distant metastasis occurs in approximately 50% of patients

with PDAC (6). PDAC often metastasizes at early stages because

of complex interactions between cell-autonomous processes and

cellular components in the tumor microenvironment. The

oncogene KRAS promotes tumorigenesis, whereas inactivation

of key tumor suppressor genes accelerates the malignant

progression of pancreatic intraepithelial neoplasia precursor

lesions (7). KRAS mutations are present in approximately 90%

of patients with PDAC (8). Hence, an in-depth understanding of

the complex interactions between KRAS mutations and PDAC

may facilitate the development of therapeutic strategies for

reversing the progression of malignant tumors.

Nevertheless, KRAS has long been considered an undruggable

target for the following reasons: (1) mutant KRAS is a GTPase with

a high picomolar binding affinity with GTP; (2) the KRAS substrate,

GTP, has a very high intracellular concentration; and (3) the KRAS

protein has a very smooth surface that rarely harbors small-

molecule binding pockets other than the GTP-binding site. These
02
characteristics hinder the development of small-molecule inhibitors

and prevent the direct, specific targeting of KRAS (8). Therefore, the

research focus has shifted to indirect targets in cascades or pathways

upstream and downstream of KRAS (e.g., blocking the RAF-MEK-

MAPK pathway with MEK inhibitors), which is a promising

approach (9). Several relevant pathway-targeting drugs have

received approval from the Food and Drug Administration

(FDA); however, their antitumor activities are limited by

associated toxicity (10). As for direct KRAS inhibitors, significant

progress has been made in their development and advancement to

phase 1 clinical trials. Notably, sotorasib and adagrasib, two

prominent direct KRAS inhibitors, have successfully moved into

phase 1 clinical trials and have received FDA approval (10). These

advancements emphasize the promising potential of direct KRAS

inhibitors as effective treatment strategies for KRAS-related

diseases. Consequently, a comprehensive analysis of additional

KRAS-associated pathways, including the emerging role of

ferroptosis, is crucial for establishing optimal therapeutic

approaches that specifically target KRAS or its downstream

effectors in tumors. This analysis is of significant importance for

preserving the integrity of KRAS signal transduction in non-

malignant tissues.

Ferroptosis, a recently identified iron-dependent form of

regulated cell death, has emerged as a critical pathway in cancer

biology and therapy. Dysregulation of ferroptosis has been

implicated in various malignancies, including PDAC (11).

Investigating the changes in ferroptosis-associated pathways is

therefore essential for understanding the molecular mechanisms

underlying KRAS-driven tumorigenesis and identifying effective

therapeutic strategies. Furthermore, the interplay between KRAS-

associated pathways, including ferroptosis, and the tumor

microenvironment, particularly the immune response, is of great

interest. By analyzing the immunocorrelation between these

pathways and the tumor microenvironment, it is possible to gain

valuable insights into the complex interactions between cancer cells

and immune cells. This analysis can guide the identification of

potential immunotherapeutic targets and facilitate the development

of combinatorial strategies that leverage the antitumor immune

response while targeting KRAS-driven pathways. Hence,

considering the emerging significance of ferroptosis in cancer and

its potential interplay with KRAS signaling, an in-depth analysis of
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changes in ferroptosis-associated pathways is warranted. This

approach will enable the identification of novel therapeutic targets

and the development of more effective treatments for PDAC, while

ensuring the preservation of normal tissue homeostasis mediated by

KRAS-related signaling.

Therefore, in-depth analysis of the differentially expressed genes

(DEGs) related to KRAS mutations and changes in ferroptosis-

associated pathways in patients with PDAC is required to facilitate

the development of PDAC treatment strategies. In this study, we first

subjected PDAC gene expression profiles and mutation data retrieved

from public databases [i.e., The Cancer Genome Atlas (TCGA) and

International Cancer Genome Consortium (ICGC)] to tumor

mutation profile and copy number variation (CNV) analyses to

establish a prediction model of KRAS mutations based on survival

analysis and mRNA expression. After evaluating and validating the

model, we used it to elucidate the KRAS mutation-related ferroptosis

pathways via differential gene expression and pathway enrichment

analyses. Finally, we analyzed the correlation between PDAC risk

scores and the immune microenvironment and identify drug

candidates for effective treatment against PDAC.
2 Materials and methods

2.1 Data retrieval and preprocessing

Pancreatic cancer-associated expression profiles and mutation

datasets with a reliable source of samples (i.e., TCGA-PAAD) were

downloaded from TCGA database using the R package TCGAbiolinks

(version 4.0.2, http://r-project.org/). Additional expression profiles

and mutation datasets of pancreatic cancer (i.e., PACA-AU) were

retrieved from the ICGC database (https://dcc.icgc.org). All datasets

were generated using samples derived from Homo sapiens. The

expression profiles in the PACA-AU dataset were created using

microarray data generated on the Illumina microarray platform

GPL10558. TCGA-PAAD dataset comprises mutation and

expression profiles for tumor samples from 184 patients with

pancreatic cancer, whereas the PDAC-AU dataset contains mutation

profiles for tumor samples from 412 patients, as well as gene

expression profiles for tumor samples from 271 patients.

Neoantigen counts of the TCGA-PAAD dataset were retrieved from

The Cancer Immunome Atlas (https://tcia.at/home), whereas other

indicators, such as the tumor mutation burden (TMB) and

microsatellite instability (MSI), were retrieved from the cBioPortal

website (http://www.cbioportal.org/). Tumors were staged according

to the 8th tumor-node-metastasis (TNM) staging system drafted by

the International Union Against Cancer. Identification of neoplasm

histologic grades was performed using theWorld Health Organization

(WHO) grading system for PDAC (12).
2.2 Tumor mutation profile and
CNV analyses

Somatic mutation data retrieved from the public databases

TCGA and ICGC were analyzed for the aforementioned 184 and
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412 patients, respectively. After creating Mutation Annotation

Format files of the somatic mutations, visualization was

performed using the maftool package with multiple analysis

modules (13) to display the somatic landscape. We then used the

Genomic Identification of Significant Targets in Cancer (GISTIC)

algorithm to detect common CNV regions shared across all samples

with a q value < 0.05 in the TCGA-OV dataset, including

chromosome arm-level CNVs and minimal common regions

between samples (14).
2.3 Construction of the prediction model

ElasticNet is a regularization method extended from Ridge

Regression and LASSO. The R package glmnet can be used to fit

a generalized linear model with ElasticNet regularization (15).

ICGC and TCGA data were employed as training and validation

datasets, respectively, to evaluate the predictive ability of gene

expression for KRAS mutations. To use the ElasticNet method,

the expression data were filtered to include only genes shared

between the two datasets, as these two datasets may contain

expression values of slightly different gene sets. We used a = 0.9

as the ElasticNet penalty parameter to fit the generalized linear

model and performed cross-validation using ElasticNet methods.

Higher alpha values (a = 0.9) reduce the risk of overfitting, which is

crucial when dealing with biological data where the number of

features (genes) often exceeds the number of samples. It helps

prevent the model from fitting noise in the data. One of the cross-

validation scores is the regularization parameter (lambda), which

determines the amount of shrinkage used to train the machine

learning model. The machine learning classifier was trained using

the training dataset via leave-one-out cross-validation then

validated using the testing dataset (16).
2.4 Selection of prognostic markers

The correlation between the expression of each candidate gene

and the overall survival (OS) was determined using the univariate

Cox proportional-hazards regression model, with the ICGC dataset

of samples with KRAS mutations being used as the training dataset.

We used the LASSO algorithm for variable selection in a Cox

regression model to identify significant prognostic genes, in

accordance with the one-standard-error rule. Thereafter, we

further optimized and improved the practicality of our model via

stepwise Cox proportional-hazards regression analysis. This was

achieved through feature selection, improving model parsimony,

enhancing predictive capability, and determining the optimal

subset. Finally, the risk score was calculated on the basis of the

gene expression and estimated Cox regression coefficient as follows:

Risk Score = (exp Gene1 × coef Gene1) + (exp Gene2 × coef Gene2)

+…… + (exp Gene × coef Gene). The patients were then divided

into a high-risk group and a low-risk group according to their risk

scores. The OS rate of patients in each testing dataset was assessed

via Kaplan–Meier analysis and a log-rank test using the ‘survival’ R

package. Additionally, we evaluated the survival prediction using
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the time-dependent receiver operating characteristic (ROC) curves.

The prognostic or predictive accuracy of markers was determined

by calculating the area under the ROC curve (AUC) using the

pROCR package (17), and validated using an independent TCGA

dataset of KRAS mutations.
2.5 Correlation between risk factors and
clinical parameters

According to clinical parameters, such as age and cancer stage,

the risk score and other clinical parameters in the datasets were

integrated using univariate and multivariate Cox regression

analyses to assess the risk score as an independent prognostic

predictor. A nomogram of statistically independent predictors

was plotted using the rms package, and its predictive performance

was assessed using calibration curves.
2.6 Screening and functional analysis
of DEGs

The ICGC cohort of patients with KRAS mutations was

stratified according to their risk coefficients to identify DEGs

using the limma package. Volcano plots and a DEG heatmap

were also plotted using the ‘ggplot2’ and ‘pheatmap’ R packages,

respectively, to depict the differential expression of genes across the

samples. The DEGs screened from the dataset and stratified

according to the risk score met the criteria of differential

expression, i.e., adjusted p value (p adj) < 0.05 and |log2FC| >

0.05. Subsequently, the associated genes were screened according to

their correlation with the risk score. Similarly, volcano plots and a

heatmap of associated genes were plotted using the ggplot2 package

and pheatmap package, respectively, to illustrate the differential

expression of the associated genes across the samples. The DEGs

were then subjected to Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses using the ‘clusterProfiler’ package (18). The

‘clusterProfiler’ package was also used for gene set enrichment

analysis (GSEA) of the gene expression matrix, using

“c2.cp.kegg.v7.0.symbols.gmt” and “h.all.v7.2.symbols.gmt” as the

reference gene sets. A false discovery rate (FDR) < 0.25 and p < 0.05

were considered to indicate a significantly enriched gene set.

Subsequently, gene set variation analysis (GSVA) of the ICGC

cohort of samples with KRAS mutations was performed using the

R package ‘GSVA’ (19) to calculate the enrichment scores of each

pathway based on the gene expression matrix of each sample.

Statistical analysis was performed to determine the significance of

differences in the enrichment score between different risk groups.
2.7 Immunocorrelation analysis and
correlation with risk scores

CIBERSORT implements linear support vector regression to

deconvolute the gene expression matrices generated from
Frontiers in Immunology 04
transcriptome data and estimate the composition and abundance

of immune cells in a heterogeneous mixture of cells (20). In the

present study, we uploaded the gene expression matrices to

CIBERSORT, only including samples with p values < 0.05, to

obtain the profiles of immune cell infiltration. Histograms

depicting the distribution of 22 types of infiltrating immune cells

across samples were plotted using the ‘ggplot2’ R package.

Heatmaps illustrating the correlations between the risk score and

the 22 types of infiltrating immune cells and the expression of

human leukocyte antigen (HLA) family genes were plotted using

the ‘corrplot’ package. The stromal score, immune score,

ESTIMATE score, and tumor purity were calculated on the basis

of the mRNA expression using the R package ESTIMATE. The

correlation between the risk score and the immune-related gene

datasets retrieved from the immortal database was analyzed and

visualized using Cytoscape software (21).
2.8 qRT-PCR detection of mRNA
expression related to prognosis model in
pancreatic cancer cell lines with different
mutation sites

Four types of KRAS-mutant human pancreatic cancer cell lines:

MIA Paca-2(KRAS G12C mut), PANC-1(KRAS G12D mut),

SW1990(KRAS G12D mut), Capan-2(KRAS G12V mut), and 1

type of KRAS wild-type (WT) human pancreatic cancer cell line

BxPC-3 were purchased from the Shanghai Institutes for Biological

Science Cell Resource Center. Total RNA from all cell lines was

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, United

States). Reverse transcription and real-time quantitative reverse

transcription polymerase chain reactions (qRT-PCR) were

performed to detect the mRNA expression levels of CSTF2, FAF2,

KIF20B, AKR1A1, APOM, KRT6C, and CD70. For details, see

Supplementary File 1.
2.9 Prediction of drug efficacy and
drug screening

Tumor cell line expression profiles and mutation data were

obtained from the Cancer Cell Line Encyclopedia (CCLE) website

(https://portals.Broadinstitute.org/ccle/) (22). Data regarding the

drug sensitivity of tumor cell lines in the CCLE database were

retrieved from the Cancer Therapeutics Response Portal (CTRP,

https://portals.broadinstitute.org/ctrp) and the Profiling Relative

Inhibition Simultaneously in Mixtures website (PRISM, https://

depmap.org/portal/prism/). The CTRP database contains data

regarding the sensitivity of more than 835 tumor cell lines to

481 compounds, whereas the PRISM website provides access to

data regarding the sensitivity of more than 482 tumor cell lines to

1,448 compounds. Both datasets provide the AUC as a measure of

drug sensitivity, with lower AUC values indicating increased

sensitivity to the drug treatment. The k-nearest neighbor model

was used to input missing AUC values for the samples. As both

datasets contain data regarding tumor cell lines from the CCLE
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project, CCLE data were used for the subsequent CTRP and

PRISM analyses.
2.10 Statistical analysis

The TMB, MSI, neoantigen counts, overall immune scores of

risk groups, expression levels of immune-related genes, and

immune infiltration scores were compared between the mutant

KRAS group and the WT KRAS group using the t-test. P values <

0.05 were considered to indicate statistically significant differences.

All statistical tests in this study were two-sided tests. Moreover, all

statistical tests and visualization were performed using R packages

(version 3.6.1). The statistical parameters for box plot visualization

were calculated using the R package ‘ggpurbr.’
3 Results

3.1 Tumor mutation profile and CNV
analyses of different KRAS mutation groups

Figure 1 illustrates the overall workflow of this study. The

clinical information contained in the datasets used in this study is

summarized in Supplementary Table 1. We first analyzed the

somatic mutations of PDAC samples in TCGA and ICGC

datasets, then plotted waterfall charts to show differences in the

mutation profiles of patients between different groups. The KRAS

gene exhibited the highest mutation abundance, which far exceeded

the other common genes in both datasets (Figures 2A, B).

According to lollipop charts, the major mutation sites on the

KRAS gene included G12D, G12V, and G12R (Figures 2C, D).

CNV detection in the KRAS-mutant group using the GISTIC

algorithm showed that deletions of 9q21.2 and 18p21.2, as well as

amplifications of 18p11.2 and 18q11.2, were among the most

significant chromosome arm-level CNVs in the KRAS-mutant

group (Figure 2E).
3.2 Model for predicting KRAS mutations
based on mRNA expression profiles

Survival analysis of the TCGA-PAAD cohort revealed that

patients in the KRAS-mutant group had poor overall prognosis

(Figure 3A). Hence, we established a model for predicting

mutations based on mRNA expression profiles. Figure 3 shows

that a binary classifier was identified for all samples in the training

dataset using the minimum value of the regularization parameter

given by ElasticNet (Figure 3B). This classifier was established

based on the expression signatures of 50 genes (Figure 3C).

Moreover, genes with non-zero coefficients were mutually

exclusive for each class (Figure 3D). AUC values were calculated

to evaluate the predictive performance for the training (ICGC)
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and validation (TCGA) datasets, which were 0.995 and 0.747,

respectively (Figure 3E).
3.3 Construction of a prognostic model
based on patients with KRAS mutations

The univariate Cox proportional-hazards regression model

based on the ICGC cohort of patients with KRAS mutations

uncovered a total of 1,536 genes associated with OS (p < 0.05)

(Figure 4A). We also screened for prognostic genes using a Lasso-

Cox regression model according to the one-standard-error rule

(Figure 4B). The model was optimized to include only the most

predictive genes using a stepwise Cox proportional-hazards

regression model. Finally, seven genes were included in the

model: CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and

CD70 (Figure 4C). Patients in the ICGC training cohort

(Figure 4D) and TCGA validation cohort (Figure 4E) were

divided into a high-risk group and a low-risk group according to

their optimized risk scores. Kaplan–Meier survival analysis showed

that the high-risk group had a significantly lower survival rate than

the low-risk group in the training cohort (Figure 4F, p < 0.0001).

We then calculated the time-dependent AUC values for the two

cohorts to evaluate the predictive performance of the model. The

training cohort had AUC values of 0.77 and 0.82 for 6-month and

1-year survival predictions, respectively, whereas the validation

cohort had AUC values of 0.68 and 0.58 for 6-month and 1-year

survival prediction, respectively (Figure 4G). The correlation

between the risk score and mRNA expression level of KRAS was

validated using the training dataset and validation dataset,

respectively. No significant correlation was detected between the

risk score and KRAS expression in the training dataset (p = 0.637,

R = -0.03) (Figure 4H); however, there was a strong positive

correlation between the risk score and KRAS expression in the

validation dataset (p < 0.001, R = 0.46) (Figure 4I). Correlation

analysis between the risk score and the expression profiles of genes

selected for model construction revealed the strongest positive

correlation with KIF20B in the training dataset (Figure 4J) and

FAF2 in the validation dataset (Figure 4K). The risk score exhibited

the strongest negative correlation with AKR1A1 in both datasets.
3.4 Correlation between risk score and
clinical parameters

The comparison of tumor stage, lymph node metastasis, and

pathological grade between risk groups in the two datasets

revealed that the high-risk group had a relatively lower

pathological grade, with a statistically significant difference in

the two cohorts (p < 0.001, p = 0.003) (Table 1; Figures 5A, B).

Both univariate and multivariate regression analyses showed

that the risk score had an excellent predictive ability for the OS

and prognosis of patients with PDAC plus KRAS mutations in
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the ICGC cohort. In addition, the risk stratification based on

age, gender, histological type, pathological grade, T stage, N

stage, etc. (Figures 5C, D) did not identify any independent

prognostic factor among these clinical factors. For quantitative

prognostic prediction, the training cohort was used to establish

the best multivariate model, which considers not only the risk

score but also the histological type, pathological grade, N stage,

gender, and age. The model is presented in the form of a

nomogram in Figure 5E. The time-dependent AUC values of

the model, calculated to assess its predictive performance, were

0.795, 0.833, and 0.846 for 1-year, 2-year, and 3-year survivals,
Frontiers in Immunology 06
respectively (Figure 5F). The calibration curves showed greater

consistency between the prediction and ideal models for

predicting the 1-year, 2-year, and 3-year prognoses using

Linear Algebra and Machine Learning (LAML) (Figure 5G).
3.5 Correlation between the model and
mutation-associated parameters

We confirmed the effectiveness of the risk score for predicting

the prognosis of patients with pancreatic cancer in the cohort of
FIGURE 1

Schematic diagram of the overall study design and workflow.
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KRAS mutations. We also validated the predictive ability of the risk

score using the TCGA cohort of WT KRAS, thereby demonstrating

the extensiveness of the prediction model. The survival analysis

(Figure 6A) revealed intersections between the two curves in the

initial stage, whereas risk stratification provided a better prognostic

prediction in the later stage. However, there was no statistically

significant difference, which could be attributed to the limited

sample size (p = 0.12). Figure 6B shows that KRAS WT patients

in the TCGA cohort had similar results to patients with KRAS

mutants with 1-year, 2-year, and 3-year AUC values of 0.61, 0.71,

and 0.75, respectively. Figure 6C indicates a statistically significant

difference in the TMB between the KRAS-mutant group and the

KRAS WT group in the TCGA cohort (p < 0.001). However, unlike

the TMB, the MSI score showed a significant positive correlation

with the risk score in the cohort of KRAS mutations (p = 0.011, R =

0.25) (Figure 6D), indicating that the underlying mechanisms

affecting prognosis, which were used to perform the risk
Frontiers in Immunology 07
stratification, may differ from the mechanisms by which KRAS

mutations lead to poor prognosis.
3.6 DEGs and enriched pathways between
different risk groups in the cohort of
patients with KRAS mutations

According to principal component analysis (Figure 7A), the two

risk groups can still be readily distinguished from each other,

despite some overlaps. DEGs between the high-risk group and the

low-risk group were extracted from the ICGC-PACA-AU gene

expression matrix using R software (refer to volcano plot and

heatmap in Figures 7B, C) and subjected to pathway enrichment

analysis and GO enrichment analysis. GO enrichment analysis

divides GO terms into three ontologies: biological processes (BP),

cellular components (CC), and molecular functions (MF).
A B

D

E

C

FIGURE 2

Panoramic view of mutations in the KRAS mutant group and KRAS wild-type group. (A) Distribution of mutations across different groups of patients
with PDAC in the TCGA dataset. (B) Distribution of mutations in patients in the ICGC dataset. (C) Mutation sites on KRAS genes in PDAC samples in
the TCGA dataset. (D) Mutation sites on KRAS genes in PDAC samples in the ICGC dataset. (E) Genome-wide distribution of chromosomal
amplifications and deletions in the TCGA cohort of KRAS mutations.
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According to the results of GO enrichment analysis and the GO

term networks, “metabolic process” was an important BP term

among the DEGs, wherein the xenobiotic metabolic process is

closely associated with ferroptosis (Table 2; Supplementary

Table 2; Figure 7D). However, there was no significant

enrichment of CC or MF terms.

The pathway enrichment analysis (Table 3) showed that the

DEGs were mainly enriched in cytokine-cytokine receptor

interaction, metabolism of xenobiotics by cytochrome P450, and

viral protein interaction with cytokine and the cytokine receptor

(Figure 7E), wherein metabolism of xenobiotics by cytochrome

P450 is often associated with ferroptosis. The donut chart of

pathway enrichment analysis (Figure 7F) shows that most of the

enriched pathways are metabolic pathways predominantly enriched

by downregulated genes, suggesting numerous downregulated

metabolic pathways in the high-risk group. However, further

analyses are still required to determine whether the high-risk

group exhibited reduced ferroptosis that led to a poor prognosis.
3.7 GSEA of all genes

Using GSEA, we further explored specific signaling pathways

among the different risk groups in the ICGC dataset. As shown in
Frontiers in Immunology 08
Tables 4, 5; Supplementary Tables 3, 4; Figure 8A, the high-risk

group had a higher number of downregulated metabolic pathways

than the low-risk group. Among these, fatty acid metabolism is

closely associated with ferroptosis. Moreover, the high-risk group

showed significantly upregulated expression of genes associated

with the classical pathways of tumorigenesis (i.e., MAPK pathway

and DNA damage-related pathways such as mismatch repair,

homologous recombination, etc.). Figure 8B also shows similar

results, wherein the P53 pathway, DNA repair pathways, etc.,

were upregulated in the high-risk group. Here, all ferroptosis-

associated pathways reported in previous literature were retrieved

for analysis. As shown in Figures 8C, D, fatty acid metabolism and

xenobiotic metabolism were downregulated, whereas other

oncogenic pathways (e.g., the cell cycle pathway, P53 pathway,

and epithelial–mesenchymal transition (EMT) pathway) were

upregulated in the high-risk group. Thus, the DEGs in these

pathways were subsequently validated.
3.8 Correlation between risk score and
immune microenvironment

The tumor purity, stromal score, and immune score were

determined using the ESTIMATE algorithm to investigate the
A B
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C

FIGURE 3

Construction and validation of a diagnostic model based on the expression signature of 50 genes. (A) Survival differences between the mutant and
wild-type KRAS groups in the TCGA dataset. (B, C) Binomial deviance as a function of the regularization parameter (lambda) for leave-one-out
cross-validation of the training dataset. Each dot in the graph corresponds to a classifier, and error bars represent the standard deviations.
Coefficients of 50 genes were selected at the minimum value of lambda. (D) Coefficient for each of the 50 selected genes in each class, where a
positive coefficient indicates that upregulated expression of the gene increases the probability of a sample belonging to this class. (E) ROC curves of
classifiers based on the above genes and their external validation using an independent cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1203459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1203459
TABLE 1 Correlation between risk score and clinical parameters.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Risk score 162 1.320 (1.229–1.417) <0.001 1.321 (1.220–1.430) <0.001

Tumor histological type 162

PDAC 144 Reference

other 18 0.758 (0.382–1.506) 0.430 0.579 (0.266–1.261) 0.169

Tumor grade 162

G1&2 107 Reference

G3&4 55 1.795 (1.190–2.708) 0.005 1.482 (0.947–2.320) 0.085

T 162

(Continued)
F
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FIGURE 4

Identification of prognostic genes in patients with KRAS mutations. (A) A 100-fold cross-validation of parameter selection in the LASSO model.
(B) LASSO coefficient profiles for the screening of prognostic genes. (C) Further screening of prognostic genes using a stepwise Cox proportional-
hazards regression model. (D) Risk score distribution, survival, and gene expression profile of the ICGC cohort. (E) Risk score distribution, survival,
and gene expression profile of the TCGA cohort. (F) Kaplan–Meier survival curves showing the survival difference between different risk-score
groups in the training dataset. (G) ROC analysis of the prediction of 6-month and 1-year prognosis using the training dataset and validation dataset,
respectively. (H, I) Correlation analysis of risk score and mRNA expression level of KRAS in the training set, and lollipop chart depicting the
correlation between the risk score and the expression of genes selected for model construction. (J, K) Correlation analysis of risk score and mRNA
expression of KRAS in the validation dataset, and lollipop chart depicting the correlation between the risk score and the expression of genes selected
for model construction. *p<0.05; **p<0.01.
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differences between the low-risk group and the high-risk group. We

observed significant differences in all four scores between the two

risk groups (Figure 9A). We then sorted the samples in the ICGC

cohort of patients with KRAS mutations by risk score and

constructed a histogram to display the distribution of infiltrating

immune cells in each sample. The results showed that the

infiltration of some immune cells (e.g., neutrophils) increased as

the risk score increased (Figure 9B). In addition, the correlations

between the risk score and corresponding genes with the infiltration

of 22 types of immune cells and the expression of HLA family genes

were illustrated using correlation heatmaps. Neutrophil infiltration

was significantly positively correlated with the risk score and was

significantly negatively correlated with the infiltration of resting

memory CD4 T cells and resting natural killer (NK) cells

(Figures 9C, D). A total of 44 immune-related genes that were

significantly correlated with the risk score were selected via

corre la t ion ana lys i s and disp layed as a corre la t ion

network (Figure 9E).
3.9 mRNA expression levels related to
prognosis model in pancreatic cancer cell
lines with different mutation sites

The mRNA expression levels of CSTF2, FAF2, KIF20B,

AKR1A1, APOM, KRT6C, and CD70, which were included in

the prognostic model, were detected in different types of
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pancreatic cancer cell lines (Figure 10A). Similar to the training

dataset and validation dataset, KIF20B was expressed at a

relatively low level in WT pancreatic cancer cells BxPC-3 (p <

0.05), while AKR1A1 was highly expressed in WT pancreatic

cancer cells (type BxPC-3), compared with mutant types, such

as MIA Paca-2(KRAS G12C mut), PANC-1(KRAS G12D mut),

SW1990(KRAS G12D mut) and Capan-2(KRAS G12V mut)(p <

0.01). Interestingly, KRT6C was extremely highly expressed in WT

pancreatic cancer cells BxPC-3 (p < 0.01). As for FAF2, there was

no statistical difference in the expression levels across different cell

lines, reflecting the differences from the training dataset and

validation dataset.
3.10 Screening of potential drugs related
to the risk score

The CTRP and PRISM datasets, which contain gene

expression profiles and drug sensitivity profiles for hundreds

of tumor cell lines, can be used to establish a model that predicts

the drug response. There are 160 overlapping compounds

between the two datasets, with 1,770 compounds remaining

after removing duplicates. Compounds containing nucleosides

or nucleoside (acid) analogs, as well as cell lines derived from

hematopoietic and lymphoid tissues, were excluded from the

datasets. Finally, we analyzed the sensitivity data of 354 tumor

cell lines to 354 compounds in the CTRP dataset and the
TABLE 1 Continued

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T1&2 23 Reference

T3&4 139 1.053 (0.607–1.827) 0.854

N 162

N0 37 Reference

N1 125 1.633 (0.966–2.759) 0.067 1.377 (0.807–2.351) 0.241

Gender 162

male 90 Reference

female 72 0.798 (0.532–1.195) 0.273 0.890 (0.584–1.357) 0.587

Age 162 1.014 (0.992–1.035) 0.214 1.020 (0.998–1.042) 0.075

Age group 162

<65 65 Reference

≥65 97 0.972 (0.650–1.455) 0.892
fro
G1: well differentiated, low grade, mitotic rate<2, Ki-67 index<3%;
G2: well differentiated, intermediate grade, mitotic rate 2-20, Ki-67 index 3%-20%;
G3: well differentiated, high grade, mitotic rate>20, Ki-67 index>20%;
G4: poorly differentiated, high grade, mitotic rate>20, Ki-67 index>20%.
T1: Tumor ≤2 cm in greatest dimension.
T2: Tumor >2 cm and ≤4 cm in greatest dimension.
T3: Tumor >4 cm in greatest dimension.
T4: Tumor involves celiac axis, superior mesenteric artery, and/or common hepatic artery, regardless of size.
N0: No regional lymph node metastases.
N1: Metastasis in regional lymph nodes.
Bold values indicate statistical significance.
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sensitivity data of 439 tumor cell lines to 1,291 compounds in

the PRISM dataset. Two different approaches were employed to

identify drug candidates that demonstrated higher sensitivity in

cell lines with high-risk scores, representing a phenotype closely

aligned with high-risk patients (Figure 10B). First, the

differential drug response analysis of patients with a high-risk

score (upper decile) and a low palliative performance scale score

(lower decile) was performed to identify potential compounds

(LOG2FC > 0.05) in the high-risk group. Subsequently, the

correlation between AUC values and risk score was analyzed to

select compounds with negative Spearman ’s correlation

coefficients (R < -0.4 for the PRISM dataset and R < -0.2 for

the CTRP dataset). These analyses gave rise to seven compounds

from the CTRP database (triptolide, AZD8055, birinapant,

saracatinib, gefitinib, canertinib, and dasatinib) and eight

compounds from the PRISM database (dacomit in ib ,

AZD8931, ganetespib, BMS-754807, pelitinib, cabazitaxel,

riciribine, and cycloheximide) (Figures 10C-F).
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4 Discussion

KRAS mutations in patients with PDAC affect the selection of

drugs and patient prognosis (23–25). Therefore, research into

KRAS mutations in patients with PDAC will improve our

understanding of their roles in the onset and development of

PDAC. Previous studies have suggested that the development,

metastasis, and therapeutic resistance of PDAC are predominantly

controlled by KRAS. Various approaches to tackling RAS

mutations have been employed, including the direct inhibition

of RAS, prevention of its membrane localization, and inhibition of

its upstream or downstream signaling molecules (25–27).

However, only second-generation EGFR inhibitors targeting the

upstream EGFR of RAS and therapeutic methods targeting the

downstream RAF-MEK-ERK pathway have exhibited any

therapeutic effects (28, 29). Previous studies, as well as the

analysis in this study, have uncovered ubiquitous KRASG12D,

KRASG12V, and KRASG12R point mutations in patients with
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FIGURE 5

Correlation between risk scores, clinical characteristics, and independent prognostic factors. (A, B) Differences in clinical characteristics between risk
groups in different cohorts. (C, D) Univariate and multivariate regression analyses of characteristics and other clinical factors associated with risk
stratification. (E) Nomogram constructed based on clinical characteristics and risk scores for predicting the 1-year, 1-year, and 3-year survivals of PDAC
patients with KRAS mutations. (F) ROC analysis of the prediction of 1-year, 2-year, and 3-year prognosis using the ICGC cohort. (G) Calibration curves
showing the consistency between predicted and observed 1-year, 2-year, and 3-year survival rates. Gray solid line represents the perfect prediction
made using the ideal model; other colored solid lines represent the actual performance of the nomogram, where a closer fit to the gray line represents
a higher predictive accuracy.
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PDAC (30). Current therapeutic approaches for cancer, e.g.,

monochemotherapy target ing KRAS mutations and a

comb ina t i on o f ch emo th e r apy w i t h r ad i o t h e r apy /

immunotherapy, have exhibited limited efficacy in patients with

PDAC (31). One important reason is the development of drug

resistance, especially apoptosis resistance. Ferroptosis is one of

many non-apoptotic forms of cell death mediated by lipid

peroxidation. Therefore, non-apoptotic types of cell death, e.g.,

ferroptosis, may offer new therapeutic strategies against PDAC or

apoptosis resistance (32). Considering the fact that KRAS

mutations profoundly affect patient prognosis, and that any

single factor may not be sufficient for classifying patients with

PDAC, we explored the possibility of predicting PDAC prognosis
Frontiers in Immunology 12
based on KRAS mutations, ferroptosis-associated pathways, and

the immune microenvironment.

In this study, we found that patients with KRASG12D,

KRASG12V, and KRASG12R mutations had poor prognosis, which

is consistent with the results of previous studies (9, 33). Hence, it is

necessary to determine the status of KRAS mutations in patients

before treatment. However, the diagnosis of KRAS mutations via

surgical resection and biopsy has a limited detection rate (34, 35).

Moreover, tumor heterogeneity may affect the diagnostic accuracy.

As KRAS mutations can also be predicted from the expression of

other genes, we constructed and validated a model for predicting

KRAS mutations based on mRNA levels, which exhibited better

predictive performance than diagnosis via surgical resection alone.
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FIGURE 6

Correlation between mutational signatures and risk score. (A) Survival analysis of different risk groups in the TCGA cohort of KRAS wild-type patients;
(B) ROC analysis of the prediction of 1-year, 2-year, and 3-year prognosis for the TCGA cohort of patients with wild-type KRAS. (C) Differences in
TMB, MSI, and neoantigen counts between the KRAS wild-type group and the KRAS mutant group in the TCGA cohort. (D) Analysis of the correlation
of risk score with TMB, MSI, and neoantigen counts in the TCGA cohort of patients with KRAS mutations.
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FIGURE 7

Screening of DEGs from the datasets. (A) Principal component analysis of mRNA expression matrices in the ICGC datasets of KRAS mutations.
(B) Volcano plot of all mRNAs in the dataset. Red and dark blue dots represent significantly upregulated and downregulated genes in the high-risk
group, respectively. (C) Heatmap showing the distribution of DEGs across the two groups. Red and dark blue boxes represent genes with high and
low expression, respectively. (D) Significantly enriched GO terms and functional networks of GO terms. (E) Significantly enriched signaling pathways.
(F) Donut chart of KEGG pathway enrichment. The first ring shows the top 20 most significantly enriched KEGG pathways with a coordinate ruler
representing the number of genes outside the ring. Different colors represent different KEGG categories. The second ring shows the number of
background genes in the category and the Q value or P value. The length of each bar indicates the number of genes, where a redder bar represents
a smaller Q value or P value. The third ring is a bar chart showing the proportion of upregulated (dark purple) and downregulated (light purple)
genes. The fourth ring shows the Rich Factor value of each category (number of foreground genes in the category divided by the number of
background genes).
TABLE 2 Top three most significantly enriched BP, CC, and MF terms in the GO enrichment analysis of DEGs between different risk groups.

Pathway ID Category Description Count p.adjust

GO:0006721 BP terpenoid metabolic process 19 8.24E-06

GO:0034754 BP cellular hormone metabolic process 19 1.29E-05

GO:0001523 BP retinoid metabolic process 17 1.29E-05

GO:0005911 CC cell-cell junction 39 3.62E-06

GO:0062023 CC collagen-containing extracellular matrix 31 0.000272664

GO:0000779 CC condensed chromosome, centromeric region 15 0.000272664

GO:0003777 MF microtubule motor activity 12 0.001569573

GO:0008017 MF microtubule binding 21 0.010928871

GO:0016616 MF oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor 13 0.010928871
F
rontiers in Immunolo
gy
 13
 fr
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1203459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1203459
Previous studies have also demonstrated excellent predictive

performance of data analysis and machine learning for KRAS

mutations in colon and lung cancers (10). To the best of our

knowledge, the present study is the first to construct a model for

predicting KRAS mutations in PDAC. We reported AUC values of

0.995 and 0.747 for the training and validation datasets,

respectively. These values indicate strong discriminative ability of

our model. Comparisons of these AUC values with those reported

in other reference studies (36, 37) provide further insights into the

exceptional predictive performance of our model. However, it is

important to acknowledge that our model’s use of data was limited

to Black and White American populations, based on data

availability. Our analysis primarily relied on a dataset containing

information predominantly from these two racial/ethnic groups,

shaping the foundation of our findings and conclusions. It is crucial

to recognize that addressing racial and ethnic disparities in cancer

research is a complex issue, and our study’s focus on these

populations should not overshadow the significance of studying
Frontiers in Immunology 14
other racial and ethnic groups in understanding PDAC prognosis.

Further research including diverse populations will be necessary to

comprehensively address this important aspect. Regarding our

predictive model, it specifically focuses on estimating the time-

dependent AUC values for 1-year, 2-year, and 3-year survival rates

in PDAC patients. These specific time intervals are commonly

employed in assessing prognosis and treatment response in

PDAC, given the low 5-year survival rate associated with the

disease. By selecting these particular time points, our aim is to

provide a comprehensive understanding of the model’s ability to

predict short-term and medium-term outcomes. Furthermore,

these time intervals align with standard clinical evaluations and

enable meaningful comparisons with other studies conducted in

the field.

To further determine prognostic genes in patients with KRAS

mutations, we assessed the predictive performance of seven

prognostic genes screened using a Lasso-Cox regression model

(CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and CD70), as

well as their correlation with the mRNA expression level of KRAS.

The selection of the alpha parameter in elastic net regularization is

crucial in building the prediction model. Alpha regulates the trade-

off between L1 (Lasso) and L2 (Ridge) regularization, with 1

denoting Lasso regression, 0 representing Ridge regression, and

any value between 0 and 1 indicating a combination of the two. In

this study, an alpha value of 0.9 was chosen for various reasons.

First, it promotes feature selection by encouraging sparsity in the

model, selecting a subset of highly relevant features while penalizing

less informative ones. This is particularly useful in the intricate

domain of genomic data for identifying crucial genes associated

with KRAS mutations. Additionally, higher alpha values (e.g., 0.9)

diminish the risk of overfitting, which is especially critical when

dealing with biological data having a higher number of features

(genes) than samples. It helps prevent the model from fitting noise

in the data. Stepwise Cox regression is used to select Kras genes

closely related to survival outcomes. It enhances the model through

feature selection, model parsimony, improved predictive capacity,

and identifying the optimal gene subset. The results revealed that

KIF20B and FAF2 displayed the strongest positive correlation in the
TABLE 3 Top 10 most significant pathways enriched by DEGs between
different risk groups.

ID Description Count p.adjust

hsa00980
Metabolism of xenobiotics by
cytochrome P450

13 0.000436743

hsa00982 Drug metabolism - cytochrome P450 11 0.002433605

hsa04061
Viral protein interaction with cytokine
and cytokine receptor

13 0.002433605

hsa00830 Retinol metabolism 10 0.005496136

hsa04974 Protein digestion and absorption 11 0.035216816

hsa04060 Cytokine-cytokine receptor interaction 21 0.040369276

hsa05204
Chemical carcinogenesis -
DNA adducts

8 0.073437966

hsa00910 Nitrogen metabolism 4 0.073437966

hsa00480 Glutathione metabolism 7 0.095520623

hsa00430 Taurine and hypotaurine metabolism 3 0.142513801
TABLE 4 Top 10 most significantly enriched hallmark gene sets in the GSEA between different risk groups.

Description setSize enrichmentScore NES FDR q-val

HALLMARK_HYPOXIA 106 0.37231782 1.6418664 0.022341566

HALLMARK_TNFA_SIGNALING_VIA_NFKB 113 0.39980704 1.7355567 0.011287187

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 103 0.42478487 1.8432508 0.004236918

HALLMARK_MITOTIC_SPINDLE 112 0.5257801 2.3399587 0

HALLMARK_E2F_TARGETS 85 0.57736474 2.440232 0

HALLMARK_G2M_CHECKPOINT 97 0.58410454 2.5336802 0

HALLMARK_MYC_TARGETS_V1 95 0.34807268 1.4886647 0.06445707

HALLMARK_INTERFERON_GAMMA_RESPONSE 98 0.34494698 1.4875005 0.05810461

HALLMARK_DNA_REPAIR 52 0.445993 1.6810238 0.017534915

HALLMARK_PANCREAS_BETA_CELLS 18 -0.57997334 -1.6499071 0.06562658
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TABLE 5 Top 10 most significantly enriched KEGG pathways in the GSEA between different risk groups.

Description setSize enrichmentScore NES FDR q-val

KEGG_CELL_CYCLE 72 0.44863206 1.7996947 0.08955626

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 57 0.43718052 1.7014115 0.12950997

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 48 -0.63126934 -2.244582 0

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 48 -0.62915623 -2.2343724 0

KEGG_GLUTATHIONE_METABOLISM 37 -0.6026078 -2.032244 0.002371647

KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION 32 -0.55526716 -1.8053486 0.029310916

KEGG_RETINOL_METABOLISM 36 -0.53703487 -1.8158599 0.03257731

KEGG_ECM_RECEPTOR_INTERACTION 64 0.41171035 1.6640197 0.11847458

KEGG_BUTANOATE_METABOLISM 29 -0.52998686 -1.7029611 0.06348657

KEGG_NITROGEN_METABOLISM 22 -0.60035735 -1.7704971 0.03784737
F
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FIGURE 8

Pathway enrichment analysis between risk groups. (A, B) Heatmaps showing significant differential pathways between risk groups in
c2.cp.kegg.v7.0.symbols.gmt and h.all.v7.2.symbols.gmt pathway sets, respectively. (C, D) GSEA of ferroptosis-related pathways reported in the
literature and genes involved in these pathways.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1203459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1203459
training dataset and validation dataset, respectively. However,

AKR1A1 had the strongest negative correlation with the risk score

in both datasets. A bioinformatics analysis performed by Yang et al.

showed that KIF20B may be a prognostic marker of PDAC (38).

This finding was then experimentally confirmed by Chen et al. (39).

A bioinformatics analysis conducted by Bai et al. on DEGs

associated with lipid metabolism revealed that FAF2 was highly

expressed in pancreatic cancer tissues and cells, and that

abnormalities in lipid metabolism are an important ferroptosis-

associated pathway (40), laying the foundations for this study.

CD70, which is a cytokine belonging to the tumor necrosis factor

ligand family, is also a prognostic marker for pancreatic cancer (41)

and a potential therapeutic target for pancreatic cancer (42).

AKR1A1 is an aldehyde reductase that is associated with

resistance to radiotherapy and chemotherapy in laryngeal cancer,

breast cancer, etc.; however, there have been no similar studies for

pancreatic cancer. Indeed, there are extremely few high-quality

mechanistic studies on other signature genes (e.g., CSTF2, APOM,
Frontiers in Immunology 16
and KRT6C) that may serve as targets for subsequent studies on the

molecular mechanisms of pancreatic cancer. Importantly, the

correlation between the risk score model and previously identified

KRAS mutations further confirmed the association between these

variables. The excellent predictive performance of nomograms

combining the seven signature genes and clinicopathological

parameters may allow clinicians to better determine the prognosis

of individual patients.

According to the GO enrichment and network analyses of

DEGs in the KRAS-mutant group, “metabolic process” was an

important BP term enriched by the DEGs, and xenobiotics play an

important role in KRAS mutations. A xenobiotic is a chemical

substance found within an organism but not usually produced or

expected to be present within the organism (43). The production of

xenobiotics in an organism can also be considered as a response to

foreign substances (e.g., drugs). The pathway enrichment analysis

also confirmed that xenobiotics may affect ferroptosis by altering

the metabolism of the cytochrome P450 system. The GSEA
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FIGURE 9

Risk-based immune microenvironment assessment. (A) Differences in immune microenvironment scores between risk groups. (B) Sorted histogram
of risk scores showing the distribution of 22 types of infiltrating immune cells. (C, D). Heatmap depicting the correlation of candidate core genes
with the infiltration of 22 types of immune cells and the expression of HLA family genes. Red and blue boxes represent positive and negative
correlations, respectively. Color intensity indicates the strength of the correlation; *p < 0.05; **p < 0.01; ***p < 0.001. (E) Correlation network of the
risk score and 44 immune-related genes. Larger nodes are indicative of smaller P values. Red and blue nodes indicate positive and negative
correlations, respectively. Color intensity indicates the strength of the correlation.
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uncovered multiple altered ferroptosis-associated metabolic

pathways in the high-r i sk group , among which the

downregulation of fatty acid metabolism and xenobiotic

metabolism further demonstrated the roles of xenobiotics

identified via GO and KEGG enrichment analyses. Other

oncogenic pathways (e.g., -The drug response of PDAC cells is

greatly affected by metabolic processes (8). Despite alleviating

apoptosis, SLC2A1-mediated glucose uptake can promote the

ferroptosis induced by System Xc
- inhibitors (but not that
Frontiers in Immunology 17
induced by GPX4 inhibitors) in various human cell lines or

primary cells of PDAC, because System Xc
- inhibitors, rather than

GPX inhibitors, selectively suppress the expression of PDK4 (44).

The latter can block ferroptosis in PDAC cells (PANC1 and

MIAPaCa2) by inhibiting pyruvate oxidation in mitochondria via

the phosphorylation of pyruvate dehydrogenase (PDH) (45).

Metabolic assays have demonstrated that pyruvate oxidation

generates acetyl-CoA in PANC1 cells for subsequent fatty acid

synthesis catalyzed by acetyl-CoA carboxylase alpha (ACACA) and
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FIGURE 10

Identification of 7 model genes in pancreatic cancer cell lines and drug candidates exhibiting higher sensitivity in patients with high-risk scores.
(A) Expression of CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and CD70 in human pancreatic cell lines and pancreatic cancer cell lines. **p < 0.05 BxPC-3
vs other pancreatic cancer cell lines; **p < 0.01 BxPC-3 vs other pancreatic cancer cell lines (n=3). (B) Overview of the workflow for identifying drugs with
higher sensitivity in patients with high-risk scores. (C, D) Spearman’s correlation analysis and differential drug response analysis of seven compounds from the
CTRP database. (E, F) Spearman’s correlation analysis and differential drug response analysis of eight compounds from the PRISM database. Note: Lower
values on the y-axis of the boxplot are indicative of greater drug sensitivities. *p < 0.05; **p < 0.01; ***p < 0.001.
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fatty acid synthase (FASN) (46). Eventually, the increased level of

fatty acids provides more substrates for ALOX5-mediated lipid

peroxidation under oxidative stress (47). In contrast to the pyruvate

oxidation- or glutaminolysis-mediated pro-ferroptotic properties of

mitochondria, branched-chain amino acid transaminase 2

(BCAT2)-mediated glutamate conversion and the subsequent

GSH synthesis inhibit System Xc
- inhibitor-induced ferroptosis

(44). Furthermore, ferritin phagocytosis and subsequent

activation of the AMPK pathway can suppress the expression of

BCAT2 in the pancreatic cancer cell line AsPC-1, suggesting that

AMPK plays a dual role in ferroptosis (44). The dual effects of fatty

acid metabolism rely on the type of tumors and stimulation by

drugs (e.g., xenobiotics). KRAS and p53 are the most common

mutated genes in PDAC (48). Kim et al. found that KRAS mainly

mediates the phosphorylation of CREB1S133, and that activated

CREB1 can enhance the binding affinity of mutant p53 for the

FOXA1 promoter, thereby activating its transcriptional network

and promoting the Wnt/b-catenin signaling pathway, which jointly

drives the metastasis of PDAC (8). p53 is an important regulator of

ferroptosis that exhibits broad and complex roles, not only in

canonical GPX4-mediated ferroptosis but also in non-canonical

GPX4-independent ferroptosis pathways (49). Future studies on the

roles of KRAS and p53 in ferroptosis will provide new insights into

the mechanism of ferroptosis as well as the treatment of PDAC by

targeting KRAS, p53, and ferroptosis.

The proportions of immune and stromal components in the

tumor microenvironment of each sample were estimated using

the ESTIMATE algorithm and presented as the immune score,

stromal score, and ESTIMATE score, which are positively

correlated with the infiltration of immune cells, the presence

of stromal cells, and the sum of the immune score and stromal

score, respectively (i.e., high scores denote greater proportions

of corresponding components in the tumor microenvironment).

We found that the high-risk group had a higher immune score

and stromal score, as well as poorer OS, suggesting that the risk

score model in this study can be used to accurately stratify

patients based on their immune microenvironment. Immune

cell infiltration analysis showed that the level of infiltrating

neutrophils increased with an increasing risk score and had a

significant negative correlation with resting memory CD4 T

cells and resting NK cells, indicating that neutrophil inhibition

can hinder the progression of high-risk pancreatic cancer.

Moreover, lorlatinib can prevent the growth of pancreatic

cancer by suppressing tumor-associated neutrophils and

improve prognosis with immune checkpoint blockade (50).

The inhibition of dipeptidyl peptidase can alter the CXCR3

axis and enhance the infiltration of NK cells to improve the anti-

PD1 effect in mouse models of PDAC (51). Our findings are

consistent with those of the above studies, but still require

fur ther exper imenta l confirmat ions in humans . The

subsequent correlation analysis identified immune-related

genes that are significantly correlated with the risk score,

among which the positively correlated gene FGF14 was

significantly correlated with the prognosis of pancreatic

cancer (52); other positively and negatively correlated genes
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still require further experimental validation because of a lack of

high-quality research on their basic correlation with PDAC.

The development of targeted drugs to inhibit RAS-driven

cancers has faced many challenges. Mutated KRAS is known as

an “undruggable” target because of its high binding affinity for GTP,

small catalytic sites, and smooth protein surface. However, previous

experience in the development of KRASG12C inhibitors has

provided lead compounds that aid the development of drugs

targeting other KRAS mutations [e.g., KRASG12D, KRASG12V, and

KRASG12R (10)]. The development and incorporation of

KRASG12C-specific inhibitors, like MRTX849, provide new

opportunities for targeted therapy against previously considered

‘undruggable’ KRAS mutations. Future studies should continue to

investigate the efficacy and safety profiles of MRTX849 and other

emerging KRAS mutant inhibitors, further exploring their potential

in combination therapies and understanding mechanisms of

resistance (10). In the present study, after detecting the mRNA

expression levels related to the prognosis model in pancreatic

cancer cell lines with different mutation sites, we confirmed the

consistency of this model in cell lines. Then, using a comparison of

KRAS mutations between the high-risk group and the low-risk

group, we identified a total of 15 highly effective drugs in the two

chemical databases, among which dacomitinib, pelitinib,

dacomitinib, and pelitinib are EGFR pathway inhibitors whose

effects on pancreatic cancer cells have been previously reported

(28). Some of these drugs have even entered phase I (53, 54) and

phase II (53) clinical trials. For example, ganetespib has entered a

phase II clinical trial (55); however, other drugs have only been

investigated in fundamental studies on pancreatic cancer cells, and

hence the supporting data from clinical trials are lacking (56).

Nevertheless, the therapeutic potentials of AZD893 and riciribine

against PDAC have not yet been reported and require further

investigation. Recently, Jiang et al. (57) successfully converted an

FDA-approved MEK inhibitor into a ferrous iron-activatable drug

conjugate (FeADC), which showed potent MAPK blockade in

tumor cells with KRAS mutations, while sparing normal tissues.

This demonstrates that ferrous iron (Fe2+) accumulation is an

exploitable feature for transforming drugs to target mutated

KRAS, and that FeADC holds potential for improving the

treatment of KRAS-driven solid tumors. Our study demonstrates

the clinical applications of compounds from the CTRP and PRISM

databases provide effective strategies and circumstantial evidence

for the screening of drugs targeting KRAS mutations. These

databases offer opportunities for drug repurposing, identification

of combination therapies, personalized medicine approaches, and

biomarker discovery (58). As for other genes whose expression in

cell lines was inconsistent with the model, we hope that further

verification can be carried out by other means, such as organoid

models, in which the sensitivity of candidate drugs can be

further verified.

In conclusion, we established, analyzed, and validated a model

for predicting the prognosis of PDAC based on risk stratification

according to KRAS mutations, as well as identified differential

pathways and highly effective drugs, laying the foundation for

subsequent development of drugs targeting PDAC with KRAS
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mutations. However, our study has certain limitations: (1) As all

information and tissues were retrieved retrospectively from public

databases, our external validation could not cover all changes in

PDAC cases in all relevant regions; (2) Some of the observed

differences were not statistically significant because of an

insufficient number of patients with pancreatic cancer in the

TCGA database; and (3) The KRAS mutation status in different

regions of a tumor might be indistinguishable when considering the

tumor as a monolithic entity because of intratumor heterogeneity

between the inner and outer region of the tumor. A combination of

single-cell RNA sequencing with spatial transcriptome analysis

could be employed in subsequent studies to address the issues

related to possible intratumor heterogeneity.
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