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Exosomes are membrane-bound tiny particles that are released by all live cells

that contain multiple signal molecules and extensively participate in numerous

normal physical activities and pathologies. In glaucoma, the crucial role of

exosome-based crosstalk has been primarily revealed in animal models and ex

vivo cell studies in the recent decade. In the aqueous drainage system, exosomes

derived from non-pigment ciliary epithelium act in an endocrine manner and

specifically regulate the function of the trabecular meshwork to cope with

persistent oxidative stress challenges. In the retina, a more complicated

regulatory network among microglia, retinal neurons, retinal ganglial cells,

retinal pigment epithelium, and other immune effector cells by exosomes are

responsible for the elaborate modulation of tissue homeostasis under physical

state and the widespread propagation of neuroinflammation and its consequent

neurodegeneration in glaucoma pathogenesis. Accumulating evidence indicates

that exosome-based crosstalk depends on numerous factors, including the

specific cargos they carried (particularly micro RNA), concentration, size, and

ionization potentials, which largely remain elusive. In this narrative review, we

summarize the latest research focus of exosome-based crosstalk in glaucoma

pathogenesis, the current research progress of exosome-based therapy for

glaucoma and provide in-depth perspectives on its current research gap.

KEYWORDS

exosome, glaucoma, trabecular meshwork, neuroinflammation, microglia,
oxidative stress
1 Introduction

Glaucoma is a multifactorial disease characterized by progressive damage to the retinal

ganglial cells (RGCs) and consequent visual impairment (1). Many pathological processes,

including oxidative stress, chronic neuroinflammation, mechanical damage with elevated

intraocular pressure (IOP), mitochondrial dysfunction, impaired micro-circulation, and

extracellular matrix remodeling have been found to contribute to its irreversible damage to

the retina yet the associated mechanisms remain elusive (2–4). Due to the complexity,
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chronicity, and irreversibility of glaucoma, current medical and

surgical treatment which is mainly based on IOP management fail

to provide sufficient efficacy in a number of patients who progress

to end-stage glaucoma and suffer from poor vision and chronic pain

(5). In the recent decade, the focus of glaucoma research and

management undergoes paradigm shifts from the previous focus

on IOP-induced damage to prolonged neuroinflammation and

neurodegeneration, with persistent efforts on regenerative therapy

to reverse the damage of the retina (6–8). As discussed in detail in

our previous reviews, there is accumulating evidence that the

breakdown of the blood retinal barrier (BRB) and activation of

immune effector cells, including microglia, T cells, plasma cells,

macrophages, and glial cells participate in the entire process of

glaucomatous neuroinflammation and precede the development of

retinal damage (9, 10). However, how immune cells are

synchronized and organized to induce neuroinflammation is

poorly understood and remains the frontier of glaucoma research.

Conventionally, signal molecules, including cytokines,

chemokines, growth factors, and hormones are found to be

regulators of cell states and contribute to maintaining tissue

homeostasis and their imbalance have been extensively studied in

glaucoma pathogenesis. Recently, a new way of intercellular

communication based on exosomes has been revealed to play a

significant role in glaucoma (11–20). Exosomes are tiny membrane-

bound nanovesicles with a size of 30 – 150 mm that are constitutively

produced by all live cells (21). Exosomes contain several active

biological materials, including proteins, messenger RNA (mRNA),

micro RNA (miRNA), small interfering RNA (siRNA), and

transcription factors that can regulate the function of recipient cells

(22). Although exosomes are ubiquitous in the body, they

demonstrate the selectivity of action which is achieved by the

recognition and internalization through surface receptors (23, 24).

Emerging evidence from animal studies and ex vivo cell experiments

describes the central role of exosome-based crosstalk between

trabecular meshwork (TM) and non-pigment ciliary epithelium

(NPCE) in the modulation of aqueous drainage in reaction to

oxidative stress and the crosstalk among microglia, retinal pigment

epithelium (RPE), and retinal ganglial cells in the regulation of retinal

inflammation and neurodegeneration (12, 13, 15, 25–27). In addition,

exosome-based therapy has been primarily explored in animal

models of glaucoma and shows promising results, despite

numerous knowledge gaps to be explored (28–35). This review

comprehensively summarizes the physical, pathological, and

therapeutic role of exosomes associated with glaucoma, focusing on

oxidative stress and retinal neuroinflammation.
2 Exosome-mediated crosstalk
between NPCE and TM in the
modulation of oxidative stress and
extracellular matrix remodeling

The NPCE and TM are key components of the aqueous humor

production and drainage system and play a vital role in the

regulation of IOP. In patients with primary open-angle glaucoma
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(POAG), stiffened extracellular matrix builds up in the aqueous

drainage system of the TM and Scheme’s canal, leading to their

dysfunction (36). Exosomes as constitutive components in the

aqueous humor have been found to play a vital role in the

regulation of the homeostasis of the aqueous drainage system

(37). The oriented outflow of the aqueous humor from NPCE to

TM results in the basically one-way transmission of signals between

the two tissues. Although theoretically exosomes can be secreted by

all live cells, the binding of exosomes with receptor cells is relatively

specific and exosomes originating from RPE have little effect on TM

cells compared to NPCE-derived exosomes (14). The whole uptake

process of NPCE-derived exosomes by TM starts with the

recognition of specific surface receptors and ligands and involves

the Dynamin 2-dependent route of transportation, which primarily

depends on the endocytosis route for internalization (38). In the last

decade, a number of ex vivo studies have explored the delicate

crosstalk between NPCE and TM, which support the positive role of

exosomes in maintaining the function of TM, especially under stress

conditions (11–13, 15, 16, 39–42).

Intraocular tissues are consistently exposed to oxidative stress

and rely on the antioxidant system to clear reactive oxygen species

(43). Patients with chronic glaucoma present with dysfunction of

mitochondria and deficiency of antioxidants, which results in the

elevated production of reactive oxygen species in the aqueous

humor and intraocular tissues (44). Higher levels of oxidative

stress markers, such as malondialdehyde, are significantly

enriched both in the aqueous humor and blood samples collected

from glaucoma patients, particularly POAG, compared to healthy

control (45). The chronic challenge of oxidative stress is detrimental

to TM, which triggers an inflammatory cascade and activation of

apoptosis and leads to the dysfunction and blockage of the aqueous

drainage pathway (46). In addition, the antioxidant defense

mechanisms of TM are compromised as the TM is not naturally

exposed to the sunlight like cornea or iris, thus the TM is found to

be particularly sensitive to oxidative damage (47). Exosomes

produced by NPCE have been found to act as signal transmitters

and break the vicious cycle of oxidative damage and TM

dysfunction in glaucoma pathogenesis, as emerging evidence

supports their role in the protection and modulation of TM

metabolism, including improving their endurance under oxidative

challenge and the ability to refresh the extracellular matrix (11–15).

In the face of oxidative stress, exosomes from NPCE carry high

levels of carbonylated proteins, which are end products of oxidized

proteins and act as signal markers to evoke the activity of catalase

and superoxide dismutase in TM cells (39). TM exposed to

exosomes derived from hypoxia-challenged NPCE exhibits a

significantly decreased level of oxidative stress due to the

induction of major antioxidant genes (11). However, such

activities are not observed when exosomes derived from non-

stressed NPCE are used, suggesting their role in alerting target

cells and improving their resistance under stressed conditions

(39, 48).

The chronic stress condition of the TM eventually results in its

dysfunction in the modulation of the extracellular matrix and

deposition of collagen fibers, leading to partial or complete

blockage of the aqueous drainage pathway (49). The canonical
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Wnt/b-catenin signaling pathway is a key signal cascade

downstream of the oxidative damage and is found to play

extensive roles in many physiological and pathological processes,

including cell proliferation, embryogenesis, inflammation,

apoptosis, cell migration, and most relevantly, extracellular matrix

remodeling and fibrogenesis (50–52). Activation of the canonical

Wnt/b-catenin signaling pathway activates downstream genes

involved in extracellular matrix recycling and refreshing and is

found to antagonize dexamethasone-induced glucocorticoid

receptor signaling in the TM (53). Inhibition of the canonical

Wnt/b-catenin signaling pathway and overactivation of its key

negative regulator glycogen synthase kinase-3b (GSK-3b) is a

signature of glaucoma patients and is associated with elevated

IOP (54, 55). In the canonical Wnt/b-catenin signaling pathway,

the Wnt ligand binds with its receptor low-density lipoprotein

receptor-related protein 5/6 (LPR 5/6) and disrupts the formation

of the b-catenin destruction complex, leading to the enrichment of

cytoplasmic b-catenin. b-catenin translocates to the nucleus, binds

with the T cell factor/lymphoid enhancer factor (TCF/LEF)

receptor, and activates related genes. In contrast, GSK-3b as a key

component of the b-catenin destruction complex leads to

hyperphosphorylation of b-catenin and subsequently activates its

proteolysis (Figure 1). Exosomes released from NPCE have been

found to elaborately modulate the canonical Wnt/b-catenin
signaling pathway and related modulators, which seems to be

both dose-dependent and time-dependent. Accumulating data

suggests that NPCE-derived exosomes up-regulate the Wnt/b-
catenin signaling pathway after their specific internalization by

TM cells. A more than 2-fold decrease of the cytosolic fraction of

b-catenin and conversely a significant increase of its nuclear

fraction are observed in TM cells after exposure to NPCE-derived

exosomes in vivo, accompanied by the decreased expression and

phosphorylation of its key inhibitor GSK-3b (12, 13). In addition, a

bimodal response of TM to NPCE-derived exosomes is revealed,

which shows decreased level of b-catenin and its nuclear receptor

LEF-1 when exposed to low concentration of exosomes compared

to high concentration, suggesting the concentration of exosomes

may play a key role in its differential regulation of TM metabolism

(14). The modulation effects of exosomes are also found to be much

more prominent in NPCE cell lines compared to NPCE primary

cells, although they demonstrate a similar tendency to activate the

Wnt/b-catenin signaling pathway in TM cells. Exosomes derived

from NPCE cell line have a significantly larger volume and carries 5

times more protein content compared to primary cells (56). Thus,

for therapeutic considerations, the selection of optimal cells for the

collection of exosomes is vital to improve their therapeutic effects.

Dysregulation of extracellular matrix deposition is a hallmark of

POAG, which increases the outflow resistance of the aqueous

humor and leads to elevated IOP (57). Under physiological

conditions, exosomes produced from TM and NPCE are found to

participate in the opsonization and refreshing of its extracellular

matrix, and this process is compromised in patients with POAG.

Proteomic analysis reveals that exosomes derived from TM contain

abundant proteins associated with extracellular matrix building and

remodeling, including fibronectin, collagen, and integrin-binding

ligand (15). TM secrete exosomes that assist the digestion of
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extracellular matrix components, including fibronectin and

collagen type I (41, 42). For example, in a glucocorticoid-induced

glaucoma model, excessive accumulation of fibronectin in the TM

extracellular matrix results from reduced turnover by exosomes that

bind significantly reduced amounts of fibronectin per exosome,

which is consistent with a dramatic decrease of its binding proteins

annexin A2 and A6 on its surface (58). Exosomes collected from

non-glaucomatous individuals show a 55% increase in fibronectin-

binding capacity compared to glaucoma patients, which can be

further induced to improve by 63% after pre-conditioning with

mechanical stretch, suggesting its regulatory role in reaction with

stress conditions (15). In addition, exosomes secreted from NPCE

demonstrate a positive role in the inhibition of TM extracellular

matrix fibrosis by reducing the secretion of collagen type I, a key

extracellular matrix component, by TM cells (40). Interestingly, TM

exosomes from POAG patients are much smaller than healthy

control due to the difference in membrane phospholipid content

and phospholipid conversion enzymes, indicating decreased

capacity to load extracellular matrix recycling proteins (59).

In addition to conditionally-expressed protein cargos, miRNA

as another key component and regulatory factor of exosomes have

been revealed to alter the gene expression of the TM and Schlemm’s

canal, playing a significant role in glaucoma pathogenesis (16, 17).

miRNAs are a group of non-coding RNAs that suppress the

expression of their complementary mRNAs by cleavage,

destabilization, or inhibition of their translation (60). As a core

regulator in the post-translational process, a single miRNA may

play multiple roles by interacting with numerous target mRNAs,

and vice versa, which greatly diversifies the complicated regulatory

network (61). As roughly estimated, more than 2,600 miRNAs have

been identified in human since its first discovery in the 1990s (62,

63). Altered miRNA expression profile has been found to act as a

signature of glaucoma in both experimental glaucoma models and

patients (64–66). A panel of 20 circulating miRNAs have been

identified to differentially express in glaucoma patients compared to

healthy control, suggesting their role as potential biomarkers and

pathogenic modifiers (67). Molecular analysis of exosomal cargos

elucidates 584 micro RNAs (miRNAs) and 182 proteins associated

with TM metabolism regulation (16). Accumulating evidence

indicates that miRNAs as key cargos of exosomes regulate the

response of TM to oxidative stress and alters the deposition of the

extracellular matrix (16, 17). For example, tumor growth factor b2
(TGF-b2) is a key modulator of extracellular matrix remodeling and

has been found to play significant roles in glaucoma pathogenesis

(68, 69). TGF-b2-stimulated TM cells secreted exosomes that

contain more than 2 folds the level of miR-7515 that promotes

the expression of VEGFA, VEGFR2, PECAM1, and Tie2 in

Schlemm’s canal endothelial cells (17). After culturing with TGF-

b2 for 24 hours, human TM cells produced exosomes that showed

an upregulation of 23 miRNAs and downregulation of 3 miRNAs

(70). Among these miRNAs identified, miR-29b as a major

downstream effector of TGF-b2 has been most extensively

studied, which is a suppressor of many extracellular matrix

proteins of the TM (71, 72). By inhibiting the binding of nuclear

factor-like 2 (Nrf2) to the promoter region of miR-29b, TGF-b2
suppresses its expression and promotes tissue fibrosis (73). In
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addition to its association with the TGF-b2 pathway, miR-29b is

also a key modulator of the canonical Wnt/b-catenin signaling

pathway, another important pathway involved in extracellular

matrix remodeling as mentioned in the previous text (74).

Exosomes produced from NPCEs carry abundant levels of miR-

29b, and significantly suppress the expression of collagen 3A1

(COL3A1) in the TM cells via the Wnt/b-catenin signaling
Frontiers in Immunology 04
pathway (16). Thus, collective evidence suggests that exosomes

produced by NPCEs may employ miRNAs as intracellular

messengers to communicate with target cells and result in

cell reprogramming.

Taken together, exosomes are constitutively released from

NPCE and TM and serve a physical role in maintaining their

homeostasis in oxidative stress response, apoptosis, and
FIGURE 1

Schematic view of exosome-based crosstalk between NPCE and TM. In the NPCE cells, exosomes are constitutively formed from multivesicular
bodies (MVE) after the inward budding of their membranes and are released with the fusion of MV with the plasma membrane. NPCE-derived
exosomes specifically act on TM via oriented outflow of the aqueous humor to regulate its activities, particularly the canonical Wnt/b-catenin
signaling pathway. Inhibition of the canonical Wnt/b-catenin signaling pathway in the TM is a signature of POAG, which is characterized by a
reduced nuclear fraction of b-catenin and overexpression of its key negative regulator GSK-3b. Under the physical state, NPCE-derived exosomes
positively regulate the Wnt/b-catenin signaling pathway in TM and promote the refreshing and phagocytosis of its extracellular matrix, which is
compromised in patients with POAG. NPCE, non-pigment ciliary epithelium; GSK–3b, glycogen synthase kinase-3b; LPR 5/6, low-density lipoprotein
receptor-related protein 5/6; TCF/LEF, T cell factor/lymphoid enhancer factor.
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extracellular matrix remodeling. In patients with glaucoma, elevated

oxidative stress and compromised function of exosomes form a

vicious cycle that leads to increased resistance of aqueous humor

outflow and elevation of IOP. Currently, researchers are aiming to

stimulate and reacquire the normal function of TM with the help of

external exosomes collected from mesenchymal stem cells, which is

discussed in detail in part 4.
3 Role of microglia-derived exosomes
in the spreading and modulation of
glaucomatous neuroinflammation

For many years, RGC apoptosis by elevated intraocular pressure

has been suggested to be the crucial etiology for irreversible visual

impairment in glaucoma patients (75). However, in the recent decade,

there is a paradigm shift that neuroinflammation induced primarily by

microglia and T cells participates in the entire process of glaucomatous

chronic neurodegeneration, which results in persistent and progressive

damage to RGCs (9, 10). Microglia as constitutive housekeepers of

neural tissues in the eye and the central nervous system are broadly

distributed and serve many important physical functions in their

quiescent form in maintaining the homeostasis of the neural tissue,

including immune surveillance, control of neuronal excitability,

organization of synapses, phagocytosis of cell debris, and secretion of

trophic factors (76–78). When activated, microglia are highly

heterogeneous and basically assume 2 different states in reaction to

different physical conditions and stimuli, including the neurotoxic M1

microglia and neurotrophic M2 microglia (79, 80). Animal models of

glaucoma reveal that microglia act as the earliest sensor and effector in

glaucoma pathogenesis, which develop ahead of evident damage of

RGCs (81–83). A pathogenic shift of microglial subtypes from M2-

dominant to M1-dominant composition stimulated by pro-

inflammatory markers such as interferon-g (IFN-g) is a hallmark of

glaucoma neuroinflammation and is responsible for the synchronous

activation of other immune effector cells, including cytotoxic T cells,

plasma cells, and macrophages (see our previous reviews) (9, 10).

Depletion of microglial activity by blockage of microglial adenosine

A2A receptor generates neuroprotective effects by suppressing the

spread of neuroinflammation and subsequent RGC death in a rat

glaucoma model (84). Collective evidence points to the central role of

retinal microglia in glaucoma neurodegeneration.

Trad i t iona l ly , microg l i a a re supposed to spread

neuroinflammation by physically wandering across the blood-

retinal barrier (BRB) and secretion of corresponding cytokines

and chemokines (tumor necrosis factor-a, interleukin-1b,
superoxides, and reactive oxygen species for M1 microglia and

interleukin-4, interleukin-10, interleukin-13, and tumor growth

factor b for M2 microglia, respectively) (85, 86). Recently,

researchers find microglia also employ exosomes to spread

inflammatory signals in a paracrine and endocrine manner and

serve as a key pathological component in many neurodegenerative

diseases, including glaucoma, Alzheimer’s disease, and Parkinson

disease (87–90). In the retina, the crosstalk between microglia,

RGCs, and RPE is highly complicated yet elaborately organized

due to the specificity of exosomes in signal transduction. Exosomes
Frontiers in Immunology 05
carry miRNAs and exchange them between origin and receptor cells

to regulate their physical activities (91, 92). Studies find that

microglia can amplify inflammation by selectively exchanging

exosomes with different cell types, including microglia, RGC,

RPE, retinal vascular endothelium, pericytes, oligodendrocytes,

and astrocytes (25–27). In a rat retinal degeneration model,

neural exosomes released from neural stem/progenitor cells that

are injected into the subretinal space are found to be taken up

primarily by microglial cells and result in immune modulation and

protection of the retina (93). RPE is able to propagate signals of

oxidative stress by sending exosomes from its apical site that

contains damaged mitochondrial DNA, which are internalized by

retinal microglia and induce a proinflammatory phenotype by

activation of its cytoplasmic receptor Z-DNA-binding protein 1

(94). Conversely, microglia are able to regulate the production of

exosomes in different states and modulate the immune background.

Activated proinflammatory microglia not only multiply the

production of exosomes but also load proinflammatory or

neurotoxic molecules (95). Consistent with the subgroups of

microglia, exosomes secreted by M1 and M2 microglia also

contain distinct state-associated proteins and miRNAs that may

participate in intercellular communication and regulation of

recipient cells (96). For example, exosomes derived from M2

microglia exhibit neuroprotective ability on mice brain ischemic

stroke model via exosomal miR-124 and its downstream target

ubiquitin-specific protease 14 (97). On the other hand, M1

microglia-derived exosomes contain a distinct group of miRNAs,

with the pro-inflammatory miR-146a-5p as their dominant miRNA

component (98). As suggested by the current evidence, microglia

seem to serve as an exchanging hub of exosomes with other cell

types, and this bidirectional communication via exosomes leads to

the change of their phenotypes and the spreading of

neuroinflammation (Figure 2).

In glaucoma pathogenesis, accumulating evidence indicates that

the activation of microglia is the prelude of neuroinflammation that

rapidly respond to ocular hypertension challenge and assume a

proinflammatory M1 phenotype within 24 hours (99–101).

Emerging evidence suggests that microglia-derived exosomes may

participate in the rapid spreading of inflammatory signals to other

microglia and result in RGC degeneration (18–20). Microglia cells

exposed to elevated hydrostatic pressure produced double amounts

of exosomes that activate naïve microglia in vivo and improve their

proliferation, phagocytic capacity, and mobility (18, 19). In

addition, injection of such exosomes into healthy mice vitreous

bodies induces propagation of intraocular inflammation and

widespread RGC death (20). Compared with exosomes generated

from naïve microglia, exosomes from activated microglia induced

by elevated hydrostatic pressure contain increased levels of major

histocompatibility complex II (MHC II), inducible NO synthase

(iNOS), TNF, and IL-1b. Interestingly, such effects are generally

abolished when GW4869, a neutral sphingomyelinase inhibitor that

impairs the formation of exosomes, is added into the system,

reinforcing the crucial role of exosomes in the spreading of

neuroinflammation (20).

In addition to the pro-inflammatory effects of M1 microglia, M2

microglia may generate neuroprotective effects via their exosomes
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and are beneficial for immune modulation and protection of retinal

cells. In a mice model of oxygen-induced retinopathy, microglia-

derived exosomes injected into the vitreous body are selectively

incorporated into photoreceptors and inhibit their apoptosis. These

exosomes are found to contain high levels of miR-124-3p that

inhibit hypoxia-induced activation of inositol-requiring enzyme 1a
(IRE1a)-X-box binding protein 1 (XBP1) cascade in recipient cells

(102). In addition, in the central nervous system, the protective

effect of M2 microglia-derived exosomes has been extensively

demonstrated in many different animal models, including
Frontiers in Immunology 06
Alzheimer’s disease (103), ischemic-reperfusion injury (97, 104),

oxygen-glucose deprivation (92), and ischemic brain injury (105,

106). The neuroprotective effects are found to be basically induced

by modulatory miRNAs carried in exosomes, such as miR-124,

miR-137, miR-23a-5p, and miR-672 that target different singling

pathways, including the Notch1, Olig3, and AIM2/ASC/caspase-1

pathways (97, 107–109). The activity of M2 microglia and their

exosomes are vital to limit the intensity of neuroinflammation

induced by M1 microglia and prevent extensive damage to the

retina. However, in patients with glaucoma, chronic insult of
FIGURE 2

Schematic view of M1 and M2 microglia exosomes in the regulation of retinal neuroinflammation. After activation, microglia assume M1 or M2
phenotypes that act differently in the promotion and control of retinal neuroinflammation. Consistent with the action of M1 and M2 cells, their
exosomes also contain phase-specific molecules, particularly miRNAs that regulate the activity of retinal neural cells through the complex crosstalk.
M1 exosomes contain proinflammatory signals (miR-146a, miR-132, miR-155, tumor necrosis factor a, interferon g, and reactive oxygen species) and
M2 exosomes contain neuroprotective signals (miR-124, miR-135a, miR-672, interleukin 4, interleukin 10, and tumor growth factor b). NFL, nerve
fiber layer; RGCs, retinal ganglial cells; IPL, inner plexiform layer; OPL, outer plexiform layer; RPE, retinal pigment epithelium.
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elevated intraocular pressure, oxidative stress, excitotoxicity, and

mitochondria dysfunction result in the imbalance of

proinflammatory and anti-inflammatory microglia and their

exosomes (110, 111). A shift of immune cells towards

proinflammatory phenotypes is evidenced by autopsy studies

(112–114) and peripheral blood samples collected from glaucoma

patients (115, 116). As a result, researchers have proposed

immunomodulatory therapy by applying regulatory exosomes,

which are commonly collected from M2 microglia and stem cells,

to shape microglia phenotypes (see part 4) (117).
4 Primary explorations of exosome-
based therapy for glaucoma

Exosomes are crucial signal carriers that shape the state of

recipient cells, and the imbalance of the production and

malfunction of exosomes have been revealed to contribute to

glaucoma pathogenesis both in the aqueous drainage system and

the retina (16–20). In recent years, researchers have employed

exosomes primarily originating from mesenchymal stem cells

(MSCs) and induced pluripotent stem cells (iPSCs) to modulate

the function of immune cells and achieve tissue regeneration in

different animal models of glaucoma.

MSC-derived exosomes are currently the most extensively

studied therapeutic exosomes in many medical fields, which have

been promoted into clinical trials in patients with inflammatory

bowel disease (118), chronic kidney disease (119), cerebral artery

infarction (120), and demyelinating diseases (121). In the ocular

system, exosomes as biological nano-sized particles have been

primarily explored in several inflammatory and degenerative

ocular disorders, including glaucoma, age-related macular

degeneration, and anterior ischemic optic neuropathy (122–124).

Compared with cell-based therapy, exosome-based therapy shows

superiorities of great tissue compatibility, better penetration

capacity, better immune tolerance, and the freedom to be

modified with specific cargos to regulate target cells (125, 126).

As with physical exosomes released by cells in the ocular system,

external exosomes originating from MSCs are well recognized and

free to distribute across the retina and taken up by microglia, RGCs,

and retinal neural cells, resulting in the regulation of their activities

(127). Exosomes show good retinal tropism after intravitreal

injection and expand to diffused areas (128). When injected into

the mice’s vitreous cavity, exosomes can efficiently reach the inner

nuclear layer and outer plexiform layer, and to a lesser extent the

outer nuclear layer as well (129). The rapid internalization of

exosomes by the retina and microglia also attenuates their

clearance and extends their effect time. Exosomes injected into

the rat’s vitreous body remain detectable for as long as 4 weeks, with

saturated binding to vitreous humor components (127). In addition,

although MSCs are generally immune suppressive and show good

tolerability, the immune-privileged intraocular tissues are highly

sensitive, especially in diseased conditions, and the risk of

inflammatory adverse events after MSC injection can’t be fully

eliminated. As an example, intravitreal injection of 2 × 104 bone

marrow-derived MSCs and human adipose-derived stem cells into
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rat vitreous body elicits retinal glial activation, pericytes apoptosis,

regression of retinal vessels, and formation of cataract with elevated

levels of interleukin-1b, complex 3, arginase 1, and heat shock

protein 90 (130). In a clinical trial, patients with retinitis

pigmentosa receiving a single intravitreal bone marrow-derived

MSCs showed mild adverse events, including mild macular

edema, localized choroidal detachment, and the development of

pre-retinal fibrous membrane (131). In comparison, injection of

exosomes into the vitreous cavity is generally safe and no adverse

events have been reported in animal studies so far.

As a cutting-edge research focus for glaucoma, exosome-based

therapy demonstrates potential benefits in 3 basic aspects:

modulation of neuroinflammation, protection of RGCs and

retinal neurons, and promotion of tissue regeneration (28–35).

However, currently, all evidence comes from ex vivo studies and

animal models, with no clinical data available (summarized in

Table 1). MSC-derived exosomes basically exert therapeutic

effects via miRNA-dependent mechanisms, which is consistent

with physical exosomes produced by intraocular tissues as

discussed in the previous parts of the review. Consequently, the

knockdown of Argonaute-2, a key miRNA effector molecule,

diminishes the beneficial effect of intravitreal injection of

exosomes produced by marrow-derived MSCs in a rat optic nerve

crush model (33).The neuroprotective effect is also absent when

fibroblast-derived exosomes are used, reinforcing the importance of

cargo carried by exosomes (30). Interestingly, when original cells

are primed in advance with appropriate conditions, the therapeutic

effects of exosomes can be enhanced. For instance, in a mice chronic

glaucoma model, the monthly injection of exosomes collected from

tumor necrosis factor a-primed bone marrow-derived MSCs shows

better efficacy of RGC protection compared with naïve exosomes

(30). In glaucomatous rats, injection of exosomes from hypoxic

MSCs but not normoxic MSCs exhibits beneficial effects by

recruiting pro-regenerative macrophages into the TM and

activation of ocular progenitor cells (28). The mechanisms of

priming the original cells are still poorly understood, but

researchers need to keep in mind the application of appropriate

stimuli during cell culture to achieve better therapeutic outcomes.

In addition, exosomes are excellent natural carriers of small and

large molecules that show better penetration and distribution

property compared to artificial nanocarriers (132). Modification

of exosomes by changing their surface ligands, cargos, and insertion

of specific genetic materials has become readily feasible and has

been explored in different medical fields. For example, to enhance

the activation of canonical Wnt/b-catenin signaling pathway in TM

cells, NPCE-derived exosomes are genetically modified and loaded

with SMAD7 small-interfering RNA (siRNA), which achieves a

53% knockdown of SMAD7 and elevation of b-catenin and tumor

growth factor b2 in TM cells after incubation in vivo (29). By

conjugating Arg-Gly-Asp, a ligand for integrins that are highly

expressed in choroidal neovascularization (CNV) tissues, exosomes

derived from Müller glial cells or retina are able to selectively

accumulate in areas of CNV after intravitreal injection and promote

therapeutic effect (133). In considerations of glaucoma therapy,

such surface modifications of MSC-derived exosomes may show

potential benefits by enhancing their selectivity to target cells, such
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TABLE 1 Exosome-based therapy for TM remodeling and RGC protection in animal disease models.

n Cargo modification Animal model Way and frequency
of administration

Dose Major outcomes Adverse
events

None Laser-induced
glaucoma, rat

N.A. N.A. Recruitment of macrophages for
tissue regeneration

N.A.

None Chronic glaucoma
model, DBA/2J
mice

IVT, monthly 3x109 ↑RGC survival, ↓ axonal
degeneration; TNF-a priming
provides extra benefits

None

None Optic nerve crush,
rat

IVT, weekly 3x109 ↑RGC survival, ↑ axonal
regeneration

None

None Retinal ischemia-
reperfusion injury,
mice

IVT, single dose 1 mg/2
mL

↓retinal inflammation, ↓RGC loss None

None Optic nerve crush,
rat

IVT, weekly 1 × 109 ↑RGC survival, ↑glial cell activation,
no effects on axonal regeneration

None

None Oxygen-induced
retinopathy, mice

IVT, single dose 20 mg/
1 mL

↑Vascular flow, ↑retinal thickness None

al stem cell; IVT, intravitreal injection; iPSC, induced pluripotent stem cell; TNF-a, tumor necrosis factor a; RGC, retinal ganglial cell; GMSC, gingival mesenchymal stem
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Publications Origin
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Pre-conditioning
of cells

Surface modificatio

Exosomes targeting TM

Tebid, 2022
(28)

MSC Hypoxia None

Exosomes targeting the retina

Mead, 2019
(30)

Human
BMSC and
iPSC

TNF-a priming None

Mead, 2017
(33)

Human
BMSC

None None

Yu, 2022 (31,
32)

GMSC TNF-a priming None

Pan, 2019 (35) UMSC None None

Moisseiev, 2017
(34)

MSC Hypoxia None

TM, trabecular meshwork; MSC, mesenchymal stem cell; BMSC, bone marrow-derived mesenchy
cell; ONHA, primary optic nerve head astrocyte; UMSC, umbilical cord mesenchymal stem cells
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as microglia and RGCs, which need to be further explored

and verified.

In the field of ophthalmology, exosome-based therapy is just in

its infancy phase of development. To promote the clinical

translation of exosome-based therapy, great efforts have been

made to lift the hurdles of manufacturing exosomes that comply

with good manufacturing practices (GMP) (134). Major challenges

come from the upstream standardized development, validation, and

culture of cell lines and the downstream purification, collection,

storage, and quality control of exosomes (135). Currently, only a

few contract manufacturing organizations worldwide are available

to provide clinical-grade exosomes under GMD regulation and no

global consensus on the validation, production, and evaluation of

exosome-based therapy is available, which limits the use of

exosomes in clinical trials (136, 137). From the view of

ophthalmologists, exosomes used for intraocular injection should

adhere to a stricter standard due to the immune-privileged state of

the eye in its physical state, despite their good safety profile

demonstrated in previous animal models (138–140). Another

important consideration for exosome-based therapy is its

relatively short duration of action due to the clearance of

exosomes and degradation of their cargos. This becomes a

particular problem in glaucoma patients as glaucoma is a chronic

and progressive disease and patients rely on long-term therapy to

control IOP and protect their retina. In animal models, exosomes

basically have to be injected into the vitreous body monthly or even

weekly to achieve durable effects (30, 33, 35). However, the exact

pharmacokinetics and efficacy of exosomes after intravitreal

injection is poorly understood, especially for larger animal eyes

such as nonhuman primates. Thus, the appropriate time gap

between injections in patients is still unknown based on the

current evidence. In addition, besides remarkable structural

differences between animal eyes and human eyes, another gap

between clinical translation and current animal models is the

chronic pathogenic mechanisms of glaucoma that can’t be fully

mimicked in acute phase animal models, such as optic nerve crush,

acute elevation of IOP, and retinal ischemic injury models (141,

142). Whether frequent intravitreal injection of exosome-based

therapy provides additional benefits over the conventional non-

invasive application of eye drops and anti-glaucoma surgeries needs

to be further evaluated. Moreover, a practice regimen that achieves

RGC protection with lower injection frequency, potentially by

combining the sustained release delivery system or using other

routes of administration (suprachoroidal injection or subretinal

injection) should be another focus of future research to improve

patients’ compliance (143, 144).
5 Summary and conclusions

In this review, we thoroughly summarize recent research

findings of exosomes in glaucoma pathogenesis and treatment. As

constitutive nano-sized biological particles in the eye, exosomes

participate in maintaining the homeostasis of TM and retina

through complicated crosstalk between origin and recipient cells.
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The relatively free movement of exosomes within intraocular

aqueous compartments and across BRB boundaries confers their

capacity to rapidly spread signals in a paracrine and endocrine

manner and shape the immune background of glaucomatous

chronic neuroinflammation. As a potential therapy for glaucoma,

exosomes originating from MSCs have been explored in multiple

animal models and demonstrate neuroprotective effects. However,

there are still obstacles between these emerging findings of

exosomes in animal studies and clinical application, including

knowledge gaps in pharmacokinetics, long-term efficacy, safety,

and clinical-grade manufacturing. However, with boosting

applications of exosomes in clinical trials in several other fields,

there is great potential that exosome-based therapy may become

readily available for clinical translation in the near future.
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